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Abstract

Single-cell sequencing is an emerging sequencing technology that can effectively identify the cell types
of tumors. In bladder cancer prognosis, muscular invasion often represents a poor prognosis and affects
patients' quality of life. This study aims to extract the expression levels of muscle-invasive related
genes(MIRGSs) in bladder cancer patients and construct a model of MIRG, which can predict bladder
cancer patients' prognosis using bioinformatics methods.

Methods: Single-cell sequencing data of bladder cancer patients were obtained from the GEO database.
After conducting quality control and cell type identification, all epithelial cells in the samples were
extracted and classified based on their invasive and non-invasive characteristics, followed by a
differential analysis. The results were identified as MIRGs. Subsequently, we downloaded and organized
gene data of bladder cancer patients from TCGA and determined the intersection of MIRGs and the
sequenced gene set of TCGA patients. Clinical information was then associated with the intersection, and
the data were divided into training and test sets, with the training set used for model construction and the
test set for model verification. Subsequently, the Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm and Cox regression were used to construct a prognostic model based on MIRGs.
Based on the prognostic features, risk scores were calculated, and patients were classified into high-risk
and low-risk groups. We observed the survival information of patients in the high-risk and low-risk groups
in both the training and test sets, constructed ROC curves to assess the predictive ability of the model,
and subsequently, we generated nomograms.

Results: Three cell types were identified, and epithelial cells were extracted, clustered, and divided into
invasive and non-invasive groups based on pathological staging. A total of 411 differentially expressed
genes were screened. GO and KEGG analyses revealed that these genes were significantly associated
with cellular processes such as apoptosis, cell adhesion, and tumor development and progression.After
intersecting the expressed genes, 402 genes were determined for model construction. Following the
LASSO algorithm and Cox regression, a risk prediction model consisting of CD74, AKR1B1, EIF3D, EMP1,
CRABP2, TRIM31, RPL36A and MRPS6 was established.Survival curves and Receiver Operating
Characteristic (ROC) curves demonstrated that the model exhibited good predictive ability. A nomograms
was constructed to predict patients' survival rates at 1, 3, and 5 years. The calibration curve of the
nomograms indicated that it had a satisfactory prognostic ability for patients.

Conclusion: In this study, based on single-cell sequencing data, TCGA sequencing data and clinical
information, the bladder cancer muscle-invasive related gene prognostic model constructed using multi-
omics methods demonstrated a certain degree of accuracy and reliability in predicting the survival
prognosis of bladder cancer patients. This provides a reference for assessing the prognosis of bladder
cancer patients.

Introduction
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Single-cell sequencing is a technique that performs genomic, transcriptomic, or epigenomic sequencing
analysis on individual cells. Compared to traditional sequencing methods based on whole tissues or cell
populations, single-cell sequencing can reveal heterogeneity between cells and provide detailed
information about cell states, functions, and subpopulations. This method has broad application
prospects in the fields of biology, developmental biology, neuroscience, oncology, and more’. In cancer
research, the development of single-cell sequencing technology provides powerful tools for studying cell-

to-cell differences, developmental processes, disease mechanisms, and potential therapeutic targets?.

Bladder cancer(BLCA) is a malignant tumor that usually forms cancer cells on the inner wall of the
bladder. Hundreds of thousands of people are diagnosed with bladder cancer worldwide each year, and
its incidence is increasing®. In developed countries, bladder cancer is more common among older
populations, while in developing countries, it is often associated with occupational environments and
environmental pollution. According to statistics, men are more likely to develop bladder cancer than
women, and factors such as smoking, long-term exposure to chemicals, and chronic bladder infections
are also associated with the development of bladder cancer®.

Bladder cancer patients can be divided into non-muscle-invasive and muscle-invasive types. Non-muscle-
invasive bladder cancer accounts for about 60%-70% of cases limited to the bladder mucosa (Ta stage),
20%-30% involving the subepithelial connective tissue (T1 stage), and about 10% presenting as
carcinoma in situ®. The main treatment for non-muscle-invasive bladder cancer is TURBT (transurethral
resection of bladder tumor), possibly accompanied by intravesical drug instillation therapy (such as BCG
or chemotherapy drugs). The prognosis for non-muscle-invasive bladder cancer is relatively good, with a
five-year survival rate of approximately 70-80%. However, it should be noted that the recurrence rate of
non-muscle-invasive bladder cancer is high, so regular monitoring is required. Muscle-invasive bladder
cancer invades the muscle layer, including invasion of the muscle layer (T2 stage), invasion of
surrounding tissues (T3 stage), invasion of surrounding organs such as the prostate, seminal vesicles,
uterus, vagina, pelvic wall, and abdominal wall (T4 stage), etc. Given the invasiveness of muscle-invasive
bladder cancer, timely diagnosis and treatment are crucial. Current treatments strongly recommend
radical cystectomy combined with bilateral pelvic lymph node dissection and cisplatin-based
neoadjuvant chemotherapy for all resectable non-metastatic muscle-invasive bladder cancer patients.
The five-year survival rate for patients undergoing cystectomy alone is about 50%, and radical
cystectomy can improve survival rates, making it the preferred treatment for muscle-invasive bladder
cancer. Radiation therapy can be considered as part of a multimodal bladder preservation approach or as
palliative treatment for patients who are not suitable for cystectomy. Chemotherapy is the preferred
treatment for metastatic bladder cancer or unresectable bladder cancer patients®. Whether muscle
invasion occurs has a significant impact on the treatment and prognosis of patients, and the treatment
methods for the two types of bladder cancer differ significantly. For example, most non-muscle-invasive
bladder cancers only require bladder electrocautery and instillation therapy, while muscle-invasive bladder
cancers require bladder removal and surrounding tissue dissection, and even bladder reconstruction,
although there is no evidence that this method improves long-term outcomes, it has a significant impact
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on patients' lives®. About 10-20% of non-muscle-invasive bladder cancers progress to muscle-invasive
bladder cancers, so people with non-muscle-invasive bladder cancer need continuous follow-up and
subsequent treatment’. During the development of bladder cancer, existing research has revealed
multiple genes, such as PIK3CA, which leads to changes in the invasive growth of bladder cancer, and
alterations in the FGFR3 gene, which are effective oncogenic drivers in bladder cancer®®. Therefore, it is
necessary to continuously identify new genes that affect the prognosis of bladder cancer patients. Our
study is the first to analyze the differential expression of muscle-invasive and non-muscle-invasive
bladder cancer in the single-cell sequencing field. Single-cell data can eliminate the confounding effects
of gene expression in different cell types, allowing for more accurate identification of differentially
expressed genes. Here, we use relevant single-cell sequencing data, extract epithelial cell populations, and
identify corresponding differentially expressed genes, and then combine clinical data to construct a
prognostic model for bladder cancer patients. We aim to provide new targets and strategies for the
treatment of bladder cancer.

Method
1.1 Data source

We downloaded single-cell data (GSE135337) from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135337), and bulk sequencing data along
with the corresponding clinical data for bladder cancer from TCGA. Single-cell analysis was performed
using the R language. Prior to the analysis, single-cell data underwent quality control and selection,
followed by cell type identification.

1.2 Selecting Highly Variable Genes and Determining PCA
Dimensions

We utilized the R package 'Seurat' to identify highly variable genes in the single-cell data and applied the
'ElbowPlot' function to determine the number of principal components (PCs) to be used for subsequent
dimensionality reduction through principal component analysis (PCA).

1.3 Identification of Epithelial Cell Types and Extraction of
Differentially Expressed Genes

After dimensionality reduction of the single-cell data for bladder cancer, we classified the cells into two
groups based on their pathological stage: muscle-invasive and non-muscle invasive. We used the SINGER
package in R to identify the cell types and subsequently selected the epithelial cells. Genes with [log2FC|
> 0.5 and p < 0.05 were considered differentially expressed.

1.4 KEGG and GO Analysis of Differentially Expressed
Genes
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For the obtained muscle-invasive related genes, we used the KEGG rest API
(https://www.kegg.jp/kegg/rest/keggapi.html) to obtain the latest KEGG Pathway gene annotations as
background, and mapped the genes to the background set. We performed enrichment analysis using the
R package clusterProfiler (version 3.14.3) to obtain the gene set enrichment results. We set the minimum
gene set to 5 and the maximum gene set to 5000. P<0.05 and FDR < 0.25 were considered as
significantly different. We further explored the potential molecular functions and cellular components
involved in these genes using Gene Ontology (GO) analysis, with the filtering criteria setto p<0.01 and q
<0.01.

1.5 Establishing a Risk Prediction Model and Survival
Analysis

First, we used univariate Cox regression analysis to evaluate the prognostic value of muscle-invasive
related genes and obtained differentially expressed genes related to muscle invasion. Then, we used the
least absolute shrinkage and LASSO regression to select predictive variables and avoid overfitting. We
then performed multivariate Cox regression analysis to determine the final candidates involved in the risk
model. A risk signature was constructed based on muscle-invasive related genes to predict the prognosis
of BLCA patients. The calculation method for risk score is as follows:

Riskscore = Xcoef gene_i x gene_i expression level, where the risk value is obtained by weighting the
regression coefficients (coef) and expression levels of muscle-invasive genes. Based on the median risk
score, BLCA patients in the TCGA dataset were divided into high-risk and low-risk groups.

1.6 Risk Prediction Model Assessment and Nomogram

The correlation analysis between risk score and clinical features was performed by comparing gender,
age, American Joint Committee on Cancer (AJCC) stage, and the relationship between risk score, gene
expression, and patient subsets. Subsequently, we compared whether there were significant differences in
survival time and status between high-risk and low-risk patients with the same clinical pathological
features, and used R software to plot Kaplan-Meier (K-M) survival curves. We then drew Receiver
Operating Characteristic (ROC) curves to observe the diagnostic value of the model. We also further
assessed the prognostic value of the model by grouping patients according to stage (stages - and -)
and used R software to plot K-M survival curves. Meanwhile, we downloaded patients' progression-free
survival time to observe the accuracy of the model in predicting progression-free survival. Based on the
ROC curve evaluation, we incorporated clinical data with a significant impact on patient prognosis,
constructed a nomogram together with the risk score to predict patient survival rates at 1, 3, and 5 years,
and built calibration curves to evaluate the predictive ability of the nomogram.

Results
2.1 Data source
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We analyzed single-cell sequencing data from 7 bladder cancer patients using the R language. The
criteria for cell inclusion were: more than 300 genes sequenced, mitochondrial gene percentage less than
10%, and red blood cell gene percentage less than 5%. In total, 36,787 patient cells were included (Fig.
1)19. Meanwhile, we organized the expression data of bladder cancer patients in the TCGA dataset, with a
total of 392 patients. The detailed information can be found in Table 2.

2.2 Identifying Highly Variable Genes and PCA
Dimensionality Reduction

We used the NormalizeData and ScaleData functions to standardize and centralize the cell data. Then,
we integrated the 7 single-cell datasets using an anchor-based approach, selecting 2000 genes for
integration. After integration, we used the FindVariableFeatures function to search for highly variable
genes in the single-cell data, setting the number of highly variable genes to 3000. Next, we performed
Principal Component Analysi(PCA)on the highly variable genes and generated an ElbowPlot to determine
the number of principal components to be retained in the PCA dimensionality reduction process.
Typically, as the number of principal components increases, the proportion of explained variance
gradually decreases. When the explained variance ratio has an obvious inflection point in the graph, it can
be considered as an appropriate number of principal components. This point is called the "elbow." We
selected pca = 20 as the subsequent analysis choice. After selecting the appropriate PC Figure 2a , we
then used the FindNeighbors and FindClusters functions to classify the cells into clusters and finally used
t-SNE for dimensionality reduction and visualization. Figure 2b is the t-SNE plot grouped by source after
integration, and Fig. 2c is the t-SNE plot grouped by cell clusters after integration. After cell cluster
identification, we used the HumanPrimaryCellAtlasData dataset from the SingleR package in R'', which
has already identified cell types, to determine the types of our cells. We finally identified 3 cell types (Fig.
2d), which are epithelial cells, endothelial cells, and macrophages’.

2.3 Cell Clustering and Cell Type Identification

As the histological origin of bladder cancer is predominantly epithelial cells, we subsequently isolated the
epithelial cells, resulting in a total of 36,169 cells. We displayed the cell cluster classification before
extraction and the epithelial cell extraction results in a t-SNE plot(Figure 3a). Using the pathological
information of seven patients(Supplementary Table 1), we divided the epithelial cell clusters into muscle-
invasive and non-muscle-invasive groups Figure 3b . We then employed the FindAlIMarkers function to
extract feature genes, with a selection criteria of p,adj<0.05 and |log2FC| > 0.5. A total of 411 feature
genes were extracted. We have listed the names and expression patterns of the top 20 genes with the
highest log2FC differential expression (Table 1).
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Table 1

Top 20 differentially expressed genes and their expression levels in
muscle-invasive and non-muscle-invasive bladder cancer cells.

Gene Avg_log2FC Pctinvasion Pct.non P_val_adj
S100A8 4151861311 0.48 0.055 0
S100A7 3.202385736  0.279 0.006 0
S100A9 2.777596415 0.685 0.336 0
MT1X 2.610142079 0.562 0.35 0
DMKN 2.546192707 0.678 0.535 0
IFI27 2.406189457 0.998 0.758 0
Clorf56 2244334995 0.482 0.366 0
IGKC 2.201257168 0.603 0.119 0
ZFAND2A 2195416493 0.678 0.239 0
RAB21 2.159856744  0.506 0.343 0
CCND1 2.048081225 0.911 0.603 0
TMEM19 2.026838153 0.446 0.263 0
DEFB1 2.011937288 0.62 0.13 0
PHLDA2 1.94197265 0.979 0.771 0
MDM?2 1.8867406 0.497 0.39 0
HSPB1 1.81725058 1 0.998 0
PI3 1.78192133 0.219 0.005 0
LEAP2 1.760338816  0.445 0.138 0
INSIG1 1.636347151 0.625 0.197 0

2.4 GO analysis and KEGG analysis of genes associated
with muscle layer invasion

We performed gene enrichment analysis and KEGG pathway analysis of the muscle-invasive -related
genes(MIRGSs) using R. Biological processes (BP), cellular components (CC), and molecular functions
(MF) were analyzed. In BP analysis(Figure 4a), we found enrichment of processes such as cytoplasmic
translation, regulation of apoptotic signaling pathway, and intrinsic apoptotic signaling pathway. In CC
analysis Figure 4b , we observed enrichment of components such as cell-substrate junction, focal
adhesion, and ribosome. In MF analysis Figure 4c , we found enrichment of functions such as structural
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constituent of ribosome, ubiquitin-like protein ligase binding, and ubiquitin protein ligase binding.For
KEGG pathway analysis Figure 4d , we found that in addition to Pathways in cancer, the enriched
pathways also included Proteoglycans in cancer, IL-17 signaling pathway, p53 signaling pathway, NF-
kappa B signaling pathway, and AMPK signaling pathway. These results indicate that the differentially
expressed genes are mainly related to cell apoptosis, cell adhesion, and intercellular interactions. In other
words, the activity and connectivity of cells and intercellular connections in muscle-invasive bladder
cancer cells are different from those in non-muscle-invasive bladder cancer cells. Furthermore, the KEGG
analysis showed that these cellular activities are closely related to the occurrence and development of
tumors, as IL-17 signaling pathway, p53 signaling pathway, NF-kappa B signaling pathway, and AMPK

signaling pathway have been found to play a role in the development of various tumors2~15,

2.5 Construction of Prognostic Model for Muscle
Infiltration-Related Genes Using TCGA Expression Data

Clinical data, including age, gender, pT stage, pN stage, pM stage, AJCC stage, survival status, and
survival time of TCGA patients were included (Table 2). Ultimately, a total of 392 patients with both
clinical survival information and sample sequencing information were recruited and randomly divided
into training set (n = 186,Supplementary table2) and test set (n = 186,Supplementary table3) using the
"caret" package in R language. Next, we identified muscle infiltration-related genes and intersected them
with the gene expression files in TCGA, obtaining 402 intersection genes. We used these genes to
correlate with clinical data and normalized their FPKM values by taking log2 + 1(Supplementary table4).
Subsequently, we used univariate screening to identify genes related to patient clinical prognosis, and
employed the Least absolute shrinkage and selection operator(LASSO)for variable shrinkage(Fig. 5A, B).
Ultimately, we constructed a patient prognosis model composed of eight genes using multivariate Cox
regression, including CD74, AKR1B1, EIF3D, EMP1, CRABP2, TRIM31, RPL36A, and MRPS6. The
corresponding model coefficients, Hazard ratios, and P values are shown in Fig. 5C,D and Supplementary
table5. Patients were further divided into high-risk and low-risk groups according to the median value of
their risk scores. Heatmaps were created to show the expression differences of muscle infiltration-related
genes between the high-risk and low-risk groups. The results showed that the expression of the eight
genes in the high-risk group was different from that in the low-risk group in both the training and tset sets.
Subsequently, scatter plots and risk curves were used to display the survival status and risk scores of
each bladder cancer patient. Additionally, the K-M survival curves for the test set, test set, and overall
population showed significant differences in overall survival rates between high-risk and low-risk patients
(P <0.05), with higher mortality rates and hazard ratios in the high-risk group than in the low-risk group

(Fig. 6).
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Table 2
Clinical information

Covariates

Age

Gender

Stage

Type
<=65
>65
female
male
MO

M1
unknow
NO

N1

N2

N3
unknow
Stagelll
Stagellll
Stage IV
T2

T3

T4

unknown

Total
157(40.05%)
235(59.95%)
103(26.28%)
289(73.72%)
188(47.96%)
11(2.81%)
193(49.23%)
227(57.91%)
46(11.73%)
74(18.88%)
6(1.53%)
39(9.95%)
124(31.63%)
136(34.69%)
132(33.67%)
115(29.34%)
190(48.47%)
56(14.29%)
31(7.91%)

Test
74(37.76%)
122(62.24%)
58(29.59%)
138(70.41%)
89(45.41%)
2(1.02%)
105(53.57%)
109(55.61%)
25(12.76%)
36(18.37%)
3(1.53%)
23(11.73%)
64(32.65%)
66(33.67%)
66(33.67%)
55(28.06%)
94(47.96%)
30(15.31%)
17(8.67%)

Train
83(42.35%)
113(57.65%)
45(22.96%)
151(77.04%)
99(50.51%)
9(4.59%)
88(44.9%)
118(60.2%)
21(10.71%)
38(19.39%)
3(1.53%)
16(8.16%)
60(30.61%)
70(35.71%)
66(33.67%)
60(30.61%)
96(48.98%)
26(13.27%)
14(7.14%)

Pvalue
0.4096

0.1685

0.1151

0.8918

0.884

0.846

2.6 Validation of the Risk Model and Nomogram

To evaluate whether the model score, age, gender, and pathological grade are independent prognostic
factors for bladder cancer patients, we obtained forest plots through univariate and multivariate Cox
regression analyses. The results showed that both AJCC staging and risk scores were independent
prognostic factors for bladder cancer patients (P < 0.05) (Fig. 7A, B), indicating that our prognostic model
is an independent factor for patient prognosis and has diagnostic value, regardless of other clinical
characteristics.To assess the accuracy of risk scores and clinical features in predicting the prognosis of
bladder cancer patients, we plotted clinical information ROC curves and time-dependent ROC curves for
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the training set, test set, and the entire cohort (Fig. 8A,B,C). The training set showed Area Under Curve
(AUC) values of 0.780, 0.805, and 0.821 for 1-year, 3-year, and 5-year risk scores, respectively. The test set
showed AUC values of 0.735, 0.632, and 0.635 for 1-year, 3-year, and 5-year risk scores, respectively. The
overall patient population showed AUC values of 0.746, 0.721, and 0.724 for 1-year, 3-year, and 5-year risk
scores, respectively(Fig. 8D,E,F). Additionally, we plotted ROC curves predicting the 1-year survival
probability for the training set, test set, and the entire cohort, including all clinical information and the
model. The largest AUC value was observed for the model, suggesting that our model has greater
diagnostic value for prognosis compared to other clinical characteristics. Moreover, there was no
correlation between gender, age, and grade and risk scores of bladder cancer patients (P < 0.05). To
further study the prognostic value of the model, we grouped patients by stage (Il and llI-IV) (Fig. 9A, B).
K-M survival curve analysis showed that patients with higher risk values had shorter survival times and
poorer prognosis for patients with the same AJCC stage of bladder cancer (P <0.05). This indicates that
our model has diagnostic value for predicting patient prognosis. We also performed an analysis of
progression-free survival based on patient data (Fig. 9C). The results showed that the progression-free
survival time of high-risk patients was significantly longer than that of low-risk patients, indicating that
the expression of model genes may have an impact on patients' progression-free survival period. Finally,
we found that age, stage, and risk score had an impact on patient prognosis, so we constructed a
nomogram based on these three indicators to score patients and predict their one-year, three-year, and
five-year survival probabilities. The calibration curve of the nomogram showed that the predicted values
were close to the actual survival probabilities, indicating that the nomogram and overall model have good
diagnostic value(Fig. 9D,E).

Discusion

Single-cell sequencing is a high-throughput sequencing technology that allows for the determination of
the genome, transcriptome, or epigenome at the single-cell level. Single-cell sequencing can resolve
heterogeneity among different cell types within cancer tissue and provide a deeper understanding of the
tumor microenvironment and intercellular interactions. It can determine the cell type, such as epithelial
cells, endothelial cells, macrophages, T cells, and more, which is important for cancer therapy. Through
single-cell sequencing, personalized genomic information can be provided for patients, which helps
identify drug targets and achieve precise treatment. Despite the many advantages of single-cell
sequencing in cancer research, there are also limitations such as high cost and complex data processing.

Therefore, combining multiple techniques for cancer research can help better understand the biological

characteristics of tumors’®.

Bladder cancer is a common malignant tumor that can be divided into invasive and non-invasive types.
The clinical treatment methods for the two types differ significantly. Because invasive bladder cancer
invades deeper tissues, more invasive treatment methods, such as surgery, radiotherapy, and
chemotherapy, are usually required. Non-invasive bladder cancer is typically treated with local methods,
such as transurethral resection and photodynamic therapy. Although the treatment methods for the two
types differ significantly, the cost of treatment is still substantial. In addition, the prognosis of invasive
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bladder cancer is usually worse than that of non-invasive bladder cancer’. This is because invasive
bladder cancer is more likely to spread to lymph nodes and other organs, leading to recurrence and
metastasis. The prognosis of non-invasive bladder cancer is usually better, but recurrence and metastasis
can also occur. Moreover, the treatment of bladder cancer is often accompanied by a large amount of
follow-up and subsequent treatment, which imposes a heavy economic burden on patients. For patients
with non-invasive bladder cancer, an effective target that can identify their prognosis is needed, which
can roughly predict the progression of their disease and adjust treatment accordingly. For patients with
invasive bladder cancer, factors affecting their survival rate need to be observed to determine whether
they are suitable for more aggressive surgeries, such as radical cystectomy®. In recent years, with the
continuous development of single sequencing technology, especially emerging single-cell sequencing,
more specific genes can be discovered. In addition, there have been significant advances in the research
of immunotherapy and targeted therapy for bladder cancer. These treatment methods can target specific
cancer cell molecules or immune cells for targeted therapy, thereby improving treatment effectiveness
and prognosis. Bladder cancer tissue usually originates from epithelial cells®, so this study utilizes single-
cell sequencing data to extract differentially expressed genes to eliminate interference from other cell
types.

Using multi-omics analysis, this study utilized bladder cancer single-cell sequencing data to perform
quality control, high variance gene selection, cell clustering, and cell type identification. All epithelial cells
were grouped based on patient T staging, resulting in the identification of 411 differentially expressed
genes, which were subjected to KEGG and GO analysis. Subsequently, we took the intersection of these
genes and those expressed in TCGA patient data, resulting in 402 differentially expressed genes. These
genes were further analyzed in conjunction with clinical information to investigate patient prognosis,
ultimately revealing eight key prognostic genes closely related to bladder cancer. CD74, AKR1B1, EIF3D,
EMP1, CRABP2, TRIM31, RPL36A and MRPS6. Based on these eight genes, a prognosis model was
constructed and a line chart was created, and survival analysis, ROC curves, and the calibration curve of
the line chart all indicated the accuracy of the model.

Among the genes involved in the model construction, the protein encoded by CD74 is related to the major
histocompatibility complex class Il (MHC) and serves as an important partner in regulating antigen
presentation in immune response. It also acts as a cell surface receptor for macrophage migration
inhibitory factor (MIF), which, when bound to the encoded protein, initiates survival pathways and cell
proliferation. CD74 has been found to be significantly correlated with better prognosis in immune-related
diseases and hepatocellular carcinoma'’, consistent with the negative coefficient of CD74 in the model
indicating that high expression of CD74 would lower patients' risk scores. AKR1B1 encodes a member of
the aldo/keto reductase superfamily, encompassing over 40 known enzymes and proteins. In lung cancer,
its expression has been found to suppress de novo glutathione synthesis, thereby overcoming acquired
resistance to EGFR-targeted therapy'®. It is also considered a prognostic marker for endometrial cancer
and is closely associated with the development of various cancers, such as colorectal and cervical

cancer' %20 The protein encoded by EIF3D is the major RNA binding subunit of the Eukaryotic translation
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initiation factor-3 (elF3) complex. In gallbladder cancer, EIF3D promotes disease progression by
stabilizing GRK2 kinase and activating the PI3K-AKT signaling pathway?'. It is also involved in poor
prognosis of various cancers, such as lung adenocarcinoma and gastric cancer?%23. EMP1 is involved in
bleb assembly and cell death, and is located in the plasma membrane. In colorectal cancer, cells with
high EMP1 expression are considered the source of metastatic recurrence?*. Furthermore, it has been
found to play a role in the invasion and metastasis of various tumors, such as promoting the proliferation
and invasion of ovarian cancer cells via the activation of the MAPK pathway?®, and regulating the
proliferation, migration, and stemness of glioma cells through PI3K-AKT signaling and CD442°. This
aligns with our study as the HR value indicates EMP1 as a factor for poor prognosis in TCGA patients.
CRABP2 encodes a member of the retinoic acid (RA, a form of vitamin A) binding protein family and the
lipocalin/cytosolic fatty-acid binding protein family. It has been identified as a novel biomarker for high-
risk endometrial cancer?’. In breast cancer, it is thought to regulate invasion and metastasis via an ER-
dependent hippocampal pathway?8. Overexpression in ovarian cancer has been found to suppress
apoptosis, promote cell invasion, and increase the expression of epithelial-mesenchymal transition (EMT)
markers, with transfection of si-CRABP2 having the opposite effect?’. TRIM31 encodes a protein that
functions as an E3 ubiquitin-protein ligase. This gene exhibits altered expression in certain tumors and
may act as a negative regulator of cell growth. Loss of TRIM31 promotes breast cancer progression by
regulating K48- and K63-linked ubiquitination of p533°. In this model, the HR value for TRIM31 is
negative, which mirrors its role in breast cancer research. In breast cancer, muscle infiltration also
indicates a poor prognosis, suggesting that TRIM31 could be a key target in the progression of infiltrating
muscle cancer.RPL36A encodes a ribosomal protein that is a component of the 60S subunit. Sharing
sequence similarity with yeast ribosomal protein L44, it belongs to the L44E (L36AE) family of ribosomal
proteins. Studies suggest that RPL36A could serve as a prognostic marker for hepatocellular and renal
cell carcinoma®'32.The protein expressed by MRPS6 participates in the construction of mammalian
mitochondrial ribosomal proteins and has been found to be highly expressed in breast cancer, being
linked to poor prognosis in patients®3. Knockdown of MRPS6 has also been shown to decrease the
proliferation of breast cancer cells34.

In summary, we identified muscle infiltration-related genes by analyzing single-cell sequencing data from
bladder cancer patients, and subsequently constructed a prognostic model by linking TCGA bladder
cancer second-generation sequencing data and clinical data, providing a promising avenue for
personalized survival and clinical outcome prediction for bladder cancer patients. However, this study has
certain limitations as it is based on public databases and has not been verified by clinical trials or basic
research. The eight genes identified in this study, CD74, AKR1B1, EIF3D, EMP1, CRABP2, TRIM31, RPL36A
and MRPS6, have been found to be involved in tumor invasion and metastasis in multiple cancers, often
associated with patient prognosis. However, there is still limited research focused specifically on bladder
cancer, and our future research will focus on these eight genes to uncover their key biological markers
and therapeutic targets for bladder cancer muscle infiltration.
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Figure 1
(A) Number of genes detected in the 7 samples; (B) Number of sequencing counts obtained in the 7

samples; (C) Mitochondrial gene ratio in the cells of the 7 samples; (D) Red blood cell gene ratio in the 7
samples.
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(A) Elbow plot of variance explained vectors.(B) t-SNE visualization of single cells colored by the origin of
the samples.(C) t-SNE visualization of single cells colored by cell clusters.(D) t-SNE visualization of single
cells colored by cell type identification.
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Figure 3

(A) Epithelial cells individually extracted in t-SNE dimensionality reduction; (B) t-SNE dimensionality
reduction displayed according to the presence or absence of muscle invasion.
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Figure 5

(A,B) The number of genes selected by LASSO regression; (C) Single-factor Cox regression; (D) Multi-
factor Cox regression and model coefficients.
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scores in the training set, Scatter plot of risk scores and survival status, Kaplan-Meier curves of high- and
low-risk groups.
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(A) Univariate analysis of independent prognostic factors, (B) Multivariate analysis of independent
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Figure 8

(A, D) Training set clinical characteristics ROC curves, 1-, 3-, and 5-year ROC curves for the training set; (B,
E) Test set clinical characteristics ROC curves, 1-, 3-, and 5-year ROC curves for the test set; (C, F) Overall
clinical characteristics ROC curves, 1-, 3-, and 5-year ROC curves for the entire cohort.
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Figure 9

(A) Survival curve of patients with stage I-l; (B) Survival curve of patients with stage IlI-1V; (C)
Progression-free survival curve; (D) Prognostic nomogram of patients; (F) Calibration curve of the
nomogram.
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