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-e prevention and control of navel orange pests and diseases is an important measure to ensure the yield of navel oranges.
Aiming at the problems of slow speed, strong subjectivity, high requirements for professional knowledge required, and high
identification costs in the identification methods of navel orange pests and diseases, this paper proposes a method based on
DenseNet and attention. -e power mechanism fusion (DCPSNET) identification method of navel orange diseases and pests
improves the traditional deep dense network DenseNet model to realize accurate and efficient identification of navel orange
diseases and pests. Due to the difficulty in collecting data of navel orange pests and diseases, this article uses image enhancement
technology to expand. -e experimental results show that, in the case of small samples, compared with the traditional model, the
DCPSNETmodel can accurately identify different types of navel orange diseases and pests images and the accuracy of identifying
six types of navel orange diseases and pests on the test set is as high as 96.90%. -e method proposed in this paper has high
recognition accuracy, realizes the intelligent recognition of navel orange diseases and pests, and also provides a way for high-
precision recognition of small sample data sets.

1. Introduction

-e output of navel oranges in China ranks among the top in
the world, but, due to the impact of navel orange diseases
and pests, the output and quality of navel oranges have
declined to varying degrees. Diseases and pests of navel
oranges can be detected visually, because they often affect the
shape or color of fruits, leaves, stems, and other parts of the
plant [1]. Farmers must detect the diseased parts and
conditions as early as possible before the navel orange
disease spreads in the plantation. -e traditional method is
that farmers rely on human experts to carry out recon-
naissance of the plantation in order to find the infected fruit
and identify the type of disease. Reconnaissance of the entire
plantation is a time-consuming task. In addition, farmers
must also pay for experts, and experts are not always
available at all times. Due to these problems, researchers
have been committed to the application of artificial intel-
ligence methods to the disease detection of navel oranges,

and the use of convolutional neural network (CNN) models
[2] to identify pests and diseases has become a new trend in
the agricultural field.

In recent years, automatic image recognition technology
has shown excellent performance in the recognition and
classification of plant diseases. -ere are many ways to
identify plant diseases and pests images. Senthilkumar and
Kumarasan [3] proposed preprocessing based on bilateral
filtering, optimal weighted segmentation (OWS), feature
extraction based on Hough Transform (HT), and rough
fuzzy artificial neural network (RFANN) based on navel
orange. -e four types of disease identification, black spot
disease, ulcer disease, green disease, and scab, have the
accuracy rates of 96.52%, 95.20%, 97.88%, and 97.20%, re-
spectively. Waheed et al. [4] recommended an optimized
dense CNN architecture (DenseNet) to identify and classify
maize leaf diseases such as northern leaf blight, common
rust, grey leaf spot, and healthy leaves. In the experiment, the
accuracy rate reached 98.06%. Karthik et al. [5] used three
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tomato diseases in the Plant Village data set, leaf mold, early
blight, and late blight, and reported an attention mechanism
embedded in ResNet to identify tomato leaf diseases and the
overall accuracy of the classifier. -e rate reached 98%.
Malathi and Gopinath [6] applied the migration learning
method to the pest data set by fine-tuning the super-
parameters and layers of ResNet-50 model, and the accuracy
of the optimized ResNet-50 model reached 95.012%. Malek
et al. [7] developed a pest identification and classification
model using convolutional neural network (CNN), and the
classification accuracy of the model can reach 90%. Ahmad
Loti et al. [8] compared the characteristics of pepper diseases
and pests extracted by traditional methods with those
extracted by deep learning methods; the method based on
deep learning features can capture the details and features of
different types of pepper diseases and pests. Zekiwos and
Bruck [9] developed a model using deep learning technol-
ogy, CNN, to improve the detection of cotton leaf diseases
and insect pests. -e k-fold cross validation strategy was
used to segment and generalize the CNN model. -e ac-
curacy of the model in the classification of cotton leaf
diseases and insect pests was 96.4%. Chen et al. [10] pro-
posed a new network architecture, Mobile-DANet, to
identify maize diseases, and the model achieved an average
accuracy of 98.50% on the open maize data set.

2. Related Work

-e studies in [11, 12] proposed that some feature maps
generated by convolution are useless. In order to reduce the
influence of redundant features on classification, Hu et al.
[13] and Woo et al. [14] introduced an attention mechanism
to suppress unnecessary channels. -eir methods are more
adaptive than dropout [15] and random depth [16]. How-
ever, additional branches in each building block increase the
overhead of the network. -ere are many researches on the
attention mechanism, which can be generally divided into
channel attention mechanism (CAM) and spatial attention
mechanism (SAM) (Woo et al.) [14, 17]. In a Network in
Network [18], two continuous 11 convolution layers are used
to improve the discriminability of the model for local
patches. From another perspective, this structure is also a
good highway for refining feature mapping network. -e
study in [19] first proposed the idea of feature reuse, which
alleviated the optimization difficulty of deep network.
ResNet [20] generalized it with identity mapping. DenseNet
[21] further improves the frequency of skipping connections.
DenseNet has better presentation capabilities than ResNet
because it can produce higher precision with fewer pa-
rameters. DenseNet connects all network layers directly to
ensure the maximum information flow. In order to maintain
the feedforward characteristics, each layer obtains additional
input from all previous layers and transmits its own feature
map to all subsequent layers. Due to the dense connection
mode between layers, DenseNet achieves good performance
in image recognition and classification.

In this paper, a simple and effective image recognition
network named DCPSNET for navel orange diseases and
pests is proposed. -e design principle of the network

focuses on improving the utilization rate of model param-
eters, and the self-attention mechanism module is added on
the basis of the original DenseNet network, so that the
network can better notice the diseases and pests in the
training process.

3. Data Acquisition and Preprocessing

3.1. Navel Orange Image Acquisition. All the data sets of
navel orange diseases and insect pests in this paper came
from the southern Jiangxi region of Jiangxi Province and
were taken on-site by high pixel mobile phones in different
orchards. A total of 1157 pieces of navel orange images were
collected, and, according to experts in the field of knowledge,
image can be divided into health image and plant diseases
and pests image including the Sunguo, Canker, leaf miner,
Botrytis cinerea, and Anthrax. Table 1 describes the main
characteristics of five kinds of navel orange diseases and
pests. Figure 1 shows examples of typical symptoms of these
navel orange pests.

3.2.DataEnhancement. -e images of diseases and pests of
navel oranges are extracted and marked by consulting
related literature and data combined with main expert
knowledge, and then preprocessing techniques such as
filtering are performed on the images. Das et al. [22]
mentioned the problem of unbalanced data classification
by sharpening, resizing, and filling the edges on the
original image to increase the number of images in the
class whose data set size is smaller compared to other
classes. Secondly, in order to diversify the image, a data
enhancement scheme is used to enhance the deep con-
volutional generation adversarial network (DCGAN)
[23], with traditional methods such as random vertical or
horizontal flipping, random angle rotation, scale trans-
formation, and color dithering to generate new synthe-
sized images to expand the data set and reduce overfitting
during network training.

-e data set includes 1157 images of navel orange leaves:
74 images of sun fruit disease, 225 images of canker leaf
disease, 238 images of canker fruit, 88 images of gray mold,
283 images of leaf miner disease, and 69 images of an-
thracnose, as well as 180 healthy leaf images. -e data
distribution of the navel orange image data set is incon-
sistent, and the number of images of sun fruit disease,
anthracnose, and gray mold is relatively less compared to
other categories. -erefore, in order to enrich the image and
prevent overfitting, this article uses random angle rotation
within the range, image translation within ±10%, flip scale
transformation within the range, color jitter within the
range, Gaussian noise added to the image, and so forth. Data
enhancement technology is used to enrich the data set.
-rough data enhancement, the number of original image
samples has been increased by 17 times, and each category
has no less than 1000 samples. -e specific relevant data sets
are shown in Table 2.

In addition to retaining some images to evaluate the
effectiveness of the model, according to the method
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proposed by Too et al. [24], the navel orange pest data are
divided into training set and validation set as 8 : 2, and then
all image sizes are converted to 224× 224 using OpenCV
technology and saved in jpg image format.

4. Establishment of the Model

Inspired by the performance of attention mechanism, this
paper embeds position self-attention mechanism (PSAM)
and channel self-attention mechanism (CSAM) modules in
the network in a serial way. By learning the relationship

between channels and the importance of position points to
input features, the classification accuracy and the learning
ability of micro lesion features are improved.

-erefore, the overall architecture of the model studied
in this paper retains the network structure of DenseNet. A
total of four density block modules and three training
modules are designed. CSAM module is added to each
density block module to retain the structure of transition
layer. CSAM and PSAM serial modules are added between
density block and transition layer, and this network archi-
tecture is named DCPSNET.

Table 1: -e main symptoms of navel orange diseases and pests.

ID Disease name
-e navel orange disease characteristics

Shape Color Location

1 Sunguo Cracking deformities of the fruit
Grayish green at first and then yellowish

brown
Fruit

2 Canker Cork-like protuberance Yellow, grayish brown Leaf, shoot, fruit, and sepa
3 Leaf miner -e blade curls to the back — Young shoots and young leaves

4
Botrytis
cinerea

Round or irregular Yellowish brown Leaf edge and tip

5 Anthrax
-e leaves will be watery and soft

rot
Light yellowish brown

Petals, tender leaves, young fruits, and
branches

(a) (b) (c)

(d) (e) (f)

Figure 1: Typical symptoms of navel orange disease. (a) Fruit canker, (b) canker leaf, (c) sunguo, (d) leaf miner, (e) Botrytis cinerea, and
(f) anthrax.

Table 2: Data before and after enhancement of various types of navel orange units (source: Zhang).

Label Types Original data (sheet) Enhanced data (sheet)

0 Sunguo 74 1332
1 Canker leaf 225 4050
2 Fruit canker 238 4284
3 Leaf miner 283 5094
4 Botrytis cinerea 88 1584
5 Anthrax 69 1242
6 Healthy 180 3240
Total Seven 1157 20826
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4.1. DenseNet. DenseNet ensures enough information
transmission between layers and improves the transmission
efficiency of information and gradient in the network. Each
layer can directly obtain the gradient value from the loss
function and get the input signal directly, which solves the
problem of gradient disappearance and reduces the setting of
network parameters. DenseNet connects the input images,
and the input of each layer is the connection of the output of
all the previous layers, so that the eigenvalues can be reused
in the whole network:

Il � Yl I0, I1, . . . , Il−1[ ]( ), (1)

where Il is the characteristic output of layer L, which passes
through a neural network of layer L, and the nonlinear
transformation of layer I represents the combined operation
of BN, ReLU, and 3× 3 conv three functions, where [],
represents the splicing operation. All the output feature
mapping from layers I0 to Il−1 are combined together by the
channel. -e dense block is shown in Figure 2(a).

In order to use downsampling, DenseNet is divided into
four density blocks, and transition layers are set between
different density blocks to realize downsampling. -e
transition layer in this paper consists of BN, ReLU, 1× 1
Conv, and 2× 2 average pooling, as shown in Figure 2(b).

4.2. Position and Channel Attention Mechanisms.
Attention mechanism is a selective mechanism, which can
pay attention to the important characteristic information of
some diseases and pests in navel orange images, while ig-
noring other unnecessary information. In this paper, posi-
tion self-attention mechanism (PSAM) is used to capture the
spatial dependence of the feature graph between any two
positions, and the features of all positions are aggregated and
updated by weighted summation. -e weight is determined
by the feature similarity of the two corresponding positions.
Channel self-attention mechanism (CSAM) is used to
capture the channel dependence between any two channel
graphs. Finally, each channel graph is updated with the
weighted sum of all channel graphs. -e overall structure of
CPSAM is shown in Figure 3.

As can be seen from Figure 3, this paper combines
DANet location attention [17], ECANet channel attention
[25], and CBAM serial integration mode of channel at-
tention mechanism [14] and finally proposes our CPSAM
attention mechanism, which first uses PSAM to detect the
target’s position in the feature graph and then uses CSAM to
mine the interdependence between channel graphs, and the
whole attention mechanism is connected in a string. Firstly,
F ∈ RC×W×H, and the feature graph generated in the network
is input to PSAM module, and then it is sent to convolution
layer to generate two new feature graphs L and M,
L,M{ } ∈ RC×H×W, and then reshape to RC×N, N � H ×W.
-en, matrix multiplication is performed between M and l
transposes, and the softmax layer is applied to calculate the
spatial attention graph P ∈ RN×N.

Pji �∑N
i�1

Li ·Mj( )−1 ∗ exp Li ·Mj( ), (2)

where pji is the influence of position i on position j. -e
more similar the feature representation of the two positions,
the higher the correlation between them. At the same time,
feature F is sent into the convolution layer to generate a new
feature map O ∈ RC×H×W, which is reshaped as RC×N. -en,
matrix multiplication is performed between the transposes
of O and P, and the result is reshaped as RC×H×W. Finally, we
multiply τ by the scale parameter and use the characteristic L
to perform the element summation operation to obtain the
final output V ∈ RC×H×W. -e specific formula is as follows:

Vj � Fj + τ∑N
i�1

pji · Oi( ), (3)

where τ is initialized to 0 and gradually learns to assign more
weights. -e resulting feature V at each location is the
weighted sum of the features at all locations and the original
features. -erefore, it has a global context view and selec-
tively aggregates contexts according to the spatial attention
graph. -en, the feature map V ∈ RC×H×W generated by
PSAM module is used as the input of CSAM feature map,
and GAP operation is performed first. -e mathematical
formula is as follows:

Ζ ω1 ,ω2{ }(V) � ω2ReLU ω1V( ), (4)

where Ζ ω1 ,ω2{ }(V) represents the corresponding relationship
between weights ω1 and ω2 in the feature map V, and ReLU
represents Rectified Linear Unit activation function.
Equation (5) can realize the information interaction between
channels by one-dimensional convolution with convolution
kernel size of T. -e specific relationship is as follows:

ω � ξ C1DT(V)( ), (5)

whereC1D represents one-dimensional convolution; there is
a mapping θ between T and C, where an exponential
function with the base of 2 is used to represent the nonlinear
mapping relationship:

C � θ(T) � 2(λ∗T−a), (6)

where C is the channel dimension and T is the adaptive
kernel size. -e relationship size of T and C is as follows:

T � μ(C) �
log2(C)

β
+
m

β

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣odd, (7)

where ||odd represents the nearest odd and parameters β and
m are set to 2 and 1. In conclusion, CSAM and PSAM both
use average pooling to calculate input features F, and the
calculation formula of CPASM is as follows:

F′ � CPASM(F) � PSAM(F)⊗CSAM(PSAM(F)), (8)

where ⊗ represents convolution operations, PSAM represents
position self-attention mechanism, CSAM represents channel
self-attention mechanism, and F′ is output feature map.

4.3. Construction of the Network Framework. In the first
convolution layer, channel self-attention mechanism
(CSAM) module is embedded, named first layer. In each
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dense block of density block, channel self-attention mech-
anism (CSAM) module is embedded, named DCSAM block
layer. Training transition layer is reserved without any
modification. After each transition layer, a self-attention
mechanism CPSAM module integrating channel self-at-
tention mechanism (CSAM) and position self-attention
mechanism (PSAM) is embedded. Figure 4 describes the
network architecture of DCPSNET, and Table 3 shows the
relevant parameters of DCPSNET.

4.4. Loss Function. -ere are many loss functions used in
convolutional neural network to solve classification prob-
lems, such as cross entropy loss function, hinge loss func-
tion, ramp loss function, and center loss function. Using
different loss functions in different situations can make the
model learn more features. If the loss function is small, it
indicates that the deep learning model is close to the real
distribution of data, and then the model has good perfor-
mance; if the loss function is large, it indicates that the deep
learning model is different from the real distribution of data,
and then the performance of the model is poor. In this paper,
navel orange pest recognition is a multiclassification
problem. In the process of network training, cross entropy is
used as the loss function in network training, which is
expressed as in the following equation:

L(n, c) � −n[c] + log ∑c
k�1

exp(n[k]) . (9)

Here, L(n, c) is the cross entropy, c is the sample label,
and n[k] is the one-bit effective coding representation of the
sample label. Considering that the samples are unbalanced
and the data sets of individual samples are too few, the
accuracy of the model can be effectively improved by setting
different types of weight ratio training model. In combi-
nation with equation (10), weight is added to simplify the
equation:

L(n, c, δ) � δ[c] −n(c) + log∑c
k�1

exp(n[k]) , (10)

where δ[c] is the weight vector of the corresponding cate-
gory. In this paper, according to the imbalance of the pest
image, δ[c] � [0.3, 0.1, 0.1, 0.1, 0.3, 0.3, 0.1].

5. Analysis of Experimental Results

5.1. Experimental Environment andModel Parameter Setting.
In this paper, we use the PyTorch framework to implement
the experiment on the operating system Ubuntu 20.04.2
LTS, running memory 31.3Gib, processor AMD @ Ryzen
95900×12 core processor× 24, disk capacity 3.0 TB, 1
NVIDIA RTX 3070Ti 8G graphics card, and use CUDA11.2
and cuDNN as support.

At present, there are many ways to train the network
model, including randomly initializing the weights of all
networks and also using the network weight parameters
pretrained on other networks. In addition, in order to

further study the performance of the proposed program, this
paper selects four influential convolutional neural networks
for comparison, namely, AlexNet [26], Vgg19 [27],
ResNet-18, and DenseNet-121.

In this paper, we use the Adam optimized cross entropy
loss function proposed by Kingma and Ba [28] to train the
optimal model. Combining the advantages of AdaGrad and
RMSProp, Adam comprehensively considers the first mo-
ment estimation (mean value of gradient) and the second
moment estimation (variance of gradient) of gradient and
calculates the update step. -e step size is shown in the
following equation:

δi+1 �
δi − η∗mi

⌢����
vi+1
⌢

√
+ ε

, (11)

where δ is the step, τ is the weight, i is the class index, η is the
learning rate, m is the first moment estimation of the cor-
rection deviation, and v is the second moment estimation of
the correction deviation.

5.2. Evaluating Indicator. -e model is evaluated by the
commonly used top-1, top-5 accuracy rate, top-1 loss rate,
accuracy rate, confusion matrix, kappa coefficient, and other
indicators in the image classification task. Top-1 describes
the category with the highest probability in the final output
probability vector as the prediction category. If the pre-
diction category is consistent with the real category, the
prediction is correct; otherwise, the prediction is wrong; top-
5 describes the top five categories of the largest probability in
the final probability vector, in which the prediction is correct
as long as the real category is included. Kappa coefficient is
calculated by confusion matrix.

5.3. Analysis of Experimental Results. In the training, the
batch size of the network is set to 25, the number of iter-
ations is set to 30, and the learning rate is set to 10−4. In this
paper, four classical CNN models are trained, and a series of
experiments are carried out on the data set of this paper. -e
accuracy of top-1 is shown in Figure 5, and the loss rate of
top-1 is shown in Figure 6.

As can be seen from Table 4, after 30-epoch training, the
highest top-1 and top-5 rates of DCPSNET, respectively, are
94.275% and 99.997%, and the worst top-1 rate of AlexNet is
only 87.536%. In this paper, space complexity is represented
by the number of parameters of the model, as shown in
Table 4; the number of parameters of DenseNet-121 is the
smallest, and that of AlexNet is the largest, and the number
of parameters of DCPSNET is 9.995 M, which is more than
3.034 M of DenseNet-121.

After 30 iterations of training, the optimal models of five
networks are saved. 227 pictures of diseases and pests of
navel orange in the orchard scene were selected as the test
set. Figure 7 clearly shows the accuracy and kappa value of
each network in the test set. -e precision trend is the same
as that in Table 4. -e test accuracy of this model is up to
96.90%, and kappa value is up to 0.962.

6 Computational Intelligence and Neuroscience



F
ir

st
 L

ay
er Dense

block 

Dense
block 

Dense
block 

Dense
block 

CSAM

DCSAM Block1

C
P

SA
M

T
ra

n
si

ti
o

n
 L

ay
er

CSAM CSAMCSAM

DCSAM Block2

C
P

SA
M

C
P

SA
M

T
ra

n
si

ti
o

n
 L

ay
er

T
ra

n
si

ti
o

n
 L

ay
er

DCSAM Block3 DCSAM Block3

C
P

SA
M

B
N

+
R

eL
U

+
L

in
n

er

Input images

Input Layer Output Layer

Classification

Dense Channel And Position Self-Attention Fuse Network (DCPSNET)

Figure 4: DCPSNET architecture.

Table 3: Main parameters of DCPSNET.

Layer name Type Input shape Stride Output size Maps Repeated times

Input layer Input layer 224× 224× 3 — 224× 224 — 1
First layer Conv2d 224× 224× 3 2 112×112 64 1
DCSAM block1 SeparableConv2D 112×112× 64 2 56× 56 160 6
CSAM Shortcutconnection 56× 56×160 1 56× 56 160 1
PSAM Shortcutconnection 56× 56×160 1 56× 56 160 1
Transform1 Conv2D+Avpooling 56× 56×160 1 56× 56 80 1
DCSAM block2 SeparableConv2D 56× 56× 80 2 28× 28 272 12
CSAM Shortcutconnection 28× 28× 272 1 28× 28 272 1
PSAM Shortcutconnection 28× 28× 272 1 28× 28 272 1
Transform2 Conv2D+Avpooling 28× 28× 272 1 28× 28 136 1
DCSAM block3 SeparableConv2D 28× 28×136 2 14×14 520 24
CSAM Shortcutconnection 14×14× 520 1 14×14 520 1
PSAM Shortcutconnection 14×14× 520 1 14×14 520 1
Transform3 Conv2D+Avpooling 14×14× 520 1 14×14 260 1
DCSAM block4 SeparableConv2D 14×14× 260 2 7× 7 516 16
CSAM Shortcutconnection 7× 7× 516 1 7× 7 516 1
PSAM Shortcutconnection 7× 7× 516 1 7× 7 516 1
Final_conv BN+ReLU 7× 7× 258 7 1× 1 7 1
Linear Classification 1× 1× 7 1 7 1 1
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By counting the number of samples of each network in
the test set, we analyze the output results in detail. By
calculating accuracy, precision, recall, and F1 measure to
measure the performance of the network for navel orange
pest identification, the definitions are as follows:

accuracy �
(TN + TP)

(TN + TP + FN + FP)
, (12)

recall �
TP

(FN + TP)
, (13)
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Figure 6: Comparison curve of top-1 loss rate of each model.

Table 4: Experimental results of different methods on the data set.

Models Top-1 accuracy (%) Top-5 accuracy (%) Params (M)

AlexNet 87.536 99.396 57.033
VGG19 90.676 99.710 39.599
ResNet18 92.705 99.565 11.180
DenseNet-121 92.729 99.782 6.961
DCPSNET 94.275 99.997 9.995
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specificity �
TN

(FP + TN)
, (14)

precision �
TP

(FP + TP)
, (15)

F1−score �
2TP

2TP + FN + FP
. (16)

In the above formulas, true positive (TP) represents the
number of images accurately classified in each type; true
negative (TN) represents the number of accurately classified
images of all types except related types; false positive (FP)
indicates the number of misclassified images in related types;
false negative (FN) is the number of misclassified images of
all types except related types.

Figure 8 describes the identification results of DCPSNET
in the test set by confusion matrix, and Table 5 shows the
results determined by the above measurement method.
DCPSNET successfully recognized most of the sample im-
ages in each category in the orchard scene, and the images of
sunguo and health category were correctly recognized with
an accuracy of 100%; 89 of 91 ulcer samples were correctly
identified, with an accuracy of 97%; only one sample of leaf
miner was identified incorrectly, and the accuracy was
98.2%; among 17 samples, 15 were correctly identified, and
the accuracy rate was 99.1%; only two of the 13 samples of
anthrax were identified incorrectly, with an accuracy of
98.7%.

-e classification of models can be achieved by activating
the graph (Grad-CAM) [29]. -e results provide a good
visual basis. -erefore, for further analysis in this paper, we
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Figure 8: DCPSNET confusion matrix recognition results.

Table 5: DCPSNET identification results metrics.

Class Types Test sample Correct sample Accuracy Precision Recall Specificity F1-score

0 Sunguo 14 14 1.0 1.0 1.0 1.0 1.0
1 Canker leaf 44 43 0.987 0.956 0.977 0.989 0.966
2 Fruit canker 47 46 0.991 0.979 0.979 0.994 0.979
3 Leaf miner 56 55 0.982 0.948 0.982 0.982 0.965
4 Botrytis cinerea 17 15 0.991 1.0 0.882 1.0 0.938
5 Anthrax 13 11 0.987 0.917 0.846 0.995 0.88
6 Healthy 36 36 1.0 1.0 1.0 1.0 1.0
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extract part of the test images. -e heat of activation in the
comparative experiments of various networks is shown in
Figure 9. It can be observed that DCPSNET model is more
accurate than the other models. It is very important to judge
the correct classification of the plant diseases and pests.

6. Conclusion

In this paper, a dense network DCPSNET with attention
mechanism is proposed to identify navel orange pests. -e
experimental results show that the DCPSNET model can
accurately recognize most of the navel orange diseases
samples except a few other samples in the orchard scene.-e
recognition accuracy of DCPSNET for spot ulcer samples is
0.970, and that for leaf miner and gray mold samples is 0.982
and 0.991, respectively. -rough DCPSNET, most of the
navel orange plant diseases and pests were accurately
identified, and the impressive performance was achieved on
the test image. -is shows that the proposed DCPSNET
model has an important ability in identifying various navel
orange pest types and can be transplanted to other fields,

including computer-aided detection and online fault
assessment.

In contrast, in the case of different diseases on the same
plant, there are also individual identification errors. High
clutter background and irregular light intensity affect the
feature extraction of navel orange lesion image and also lead
to individual misclassification. Because the development of
artificial intelligence technology makes it possible to auto-
matically identify plant diseases from the original image, it is
very important to use digital image to identify and classify
various crop diseases to improve the accuracy of disease
diagnosis. Deep learning, especially CNN, can identify most
of the visual symptoms related to crop diseases efficiently
and effectively. Based on the discussion of the efficiency and
attention mechanism of DenseNet, this paper proposes a
new DCPSNET network architecture. -e model has high
accuracy and small scale and can be used to identify the pest
types of navel orange.-e experimental results show that the
model has good performance in identifying different dis-
eases of navel orange crops. For the future work, we plan to
deploy the model on portable devices to widely monitor and

Input image AlexNet Vgg19 ResNet18 DensNet121 DCPSNET

Figure 9: Comparison of thermal activation diagrams of various networks.
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identify navel orange diseases and pests information and
apply it to more practical applications.
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