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Abstract: Staphylococcus lugdunensis is a coagulase-negative, Gram-positive, and human pathogenic
bacteria. S. lugdunensis is the causative agent of diseases, such as native and prosthetic valve endo-
carditis, meningitis, septic arthritis, skin abscesses, brain abscess, breast abscesses, spondylodiscitis,
post-surgical wound infections, bacteremia, and peritonitis. S. lugdunensis displays resistance to beta-
lactam antibiotics due to the production of beta-lactamases. This study aimed to identify potential
novel essential, human non-homologous, and non-gut flora drug targets in the S. lugdunensis strain
N920143, and to evaluate the potential inhibitors of drug targets. The method was concerned with
a homology search between the host and the pathogen proteome. Various tools, including the DEG
(database of essential genes) for the essentiality of proteins, the KEGG for pathways analysis, CELLO
V.2.5 for cellular localization prediction, and the drug bank database for predicting the druggability
potential of proteins, were used. Furthermore, a similarity search with gut flora proteins was per-
formed. A DNA-binding response-regulator protein was identified as a novel drug target against
the N920143 strain of S. lugdunensis. The three-dimensional structure of the drug target was mod-
elled and validated with the help of online tools. Furthermore, ten thousand drug-like compounds
were retrieved from the ZINC15 database. The molecular docking approach for the DNA-binding
response-regulator protein identified ZINC000020192004 and ZINC000020530348 as the most favor-
able compounds to interact with the active site residues of the drug target. These two compounds
were subjected to an MD simulation study. Our analysis revealed that the identified compounds
revealed more stable behavior when bound to the drug target DNA-binding response-regulator
protein than the apostate.

Keywords: drug targets; subtractive genomics; homology modeling; molecular docking; molecular
dynamics simulation

1. Introduction

Staphylococcus lugdunensis is a coagulase-negative and Gram-positive staphylococci
first identified in 1988 [1]. S. lugdunensis is usually present on human and other mam-
mals’ skin [2]. Meningitis, septic arthritis, skin abscesses, brain abscess, breast abscesses,
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peritonitis, spondylodiscitis, and wound infections are different diseases associated with
Staphylococcus lugdunensis [3]. S. lugdunensis is the causative agent of bacteremia in
some patients [4]. Most virulent factors of Staphylococcus lugdunensis are identical to
staphylococcus aureus [5]. Both bacteria share approximately 70% of the genome [6]. For
S. lugdunensis identification, the ornithine decarboxylase test is mainly used [7]. The clinical
properties, infection, and biochemical features of S. lugdunensis are identical to S. aureus [8].
Genome sequencing flaunts the genes encoded for virulency, such as hemolysin, adhesions,
and toxins [9]. Biofilm production is an essential factor contributing to the pathogenicity
of Staphylococcus. Due to the presence of the ica gene, S. lugdunensis has the ability of
biofilm formation [10]. The pathogen becomes methicillin-resistant when SCC mec or
staphylococcal cassette chromosome, a movable genetic element, is transferred to different
staphylococcal species [11]. S. lugdunensis displays predominant resistance to beta-lactam
antibiotics because of the production of beta-lactamase enzymes. A total of 73.3% of
S. lugdunensis isolates were resistant to ampicillin, and 46.6% to cloxacillin and oxacillin.
Resistance to beta-non-lactam antibiotics was lower than beta-lactam antibiotics at 53% for
azithromycin and 46.6% for amikacin [12]. Yen and his coworkers stated that S. lugdunensis
showed 87% resistance to penicillin and 20% to oxacillin [13].

Subtractive genome analysis plays a vital role in drug target identification. Drug
targets must be necessary for pathogen survival. In three types of cases, subtractive
genomics can be widely used: firstly, for pathogens with no virulent factor identified;
secondly, for pathogens resistant to drugs; and thirdly, for pathogens for which no powerful
drugs are available. There is a need to develop new drugs and cure diseases as the
available drugs for treating diseases caused by different pathogens exhibit side effects,
and drug-resistant strains increase daily. A unique therapeutic target in the pathogen is
predicted using subtractive genome analysis because the target should only be present in the
pathogen, preventing drug interactions within human proteins. Experimental approaches
are costly, time-consuming, and provide infrequent results. The subtractive genomics
approach is highly effective, quick, and inexpensive, so computational approaches are
usually preferred over experimental approaches [14,15]. Drug and vaccine targets can
be predicted [16]. Many researchers have utilized the subtractive genomics approach
for drug target prediction in Bacillus anthracis [17], Burkholderia pseudomalleii [18], and
Staphylococcus aureus [19]. This study aims to identify new, non-homologous, essential,
and non-gut flora therapeutic targets in S. lugdunensis strain N920143 using subtractive
genomics. Additionally, it aims to uncover novel drug target inhibitors and construct
a homology model of computationally predicted drug targets.

2. Materials and Methods
2.1. Pathogen Complete Protein Sequences Retrieval

The complete protein sequences of Staphylococcus lugdunensis strain N920143 were
downloaded from the NCBI (The National Center for Biotechnology Information;
Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 22 May 2022) database [20].
Proteins in the FASTA (Fast Alignment Sequence Test for Application; Available online:
https://www.ebi.ac.uk/Tools/sss/fasta/ (accessed on 22 May 2022) were selected for
further analysis.

2.2. Duplicate Proteins Identification

Proteins possessing ≥ 60% similarity were counted as duplicates. Proteins with
amino acid sequences < 100 and duplicates were excluded because they were potentially
not essential for the survival of pathogens [21]. The CD-hit program; Available online:
http://weizhong-lab.ucsd.edu/cdhit_suite/ (accessed on 8 August 2022) was used to
identify duplicate proteins [22].

https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/Tools/sss/fasta/
http://weizhong-lab.ucsd.edu/cdhit_suite/
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2.3. Non-Paralogs Proteins Identification

The non-paralog set of proteins was submitted to the NCBI BLASTp (Basic Local Align-
ment Search Tool; Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins;
(accessed on 8 August 2022), in contrast to homo-sapiens proteins, which used a 10−4 E value
(expected value) [23]. Only non-homologous proteins were used for further analysis, while
human homologous proteins were removed.

2.4. Essential Proteins Identification

Key cellular functions of microbes are maintained by vital genes and are therefore
considered vital for pathogen survival. Non-homologous protein sequences were sub-
mitted to the BLASTp against DEG (differentially expressed genes; Available online:
https://tubic.org/deg/public/index.php; (accessed on 8 August 2022) using the antici-
pated E value of 10−5 to predict the pathogen genes involved [24]. The DEG database was
used to identify essential genes of the S. lugdunensis.

2.5. Analysis of Standard and Unique Pathways

Using the KAAS (KEGG Automatic Annotation Server) at the KEGG (Kyoto
Encyclopedia of Genes and Genomes) [25], metabolic pathways of S. lugdunensis strain
N920143 were analyzed. Metabolic pathways of pathogens and humans were identified
and compared manually. Pathways that appeared only in the pathogen genome were
considered unique to S. lugdunensis. In contrast, pathways that appeared in both pathogens
and humans were considered common pathways, according to the KEGG database [26].

2.6. Proteins Localization Prediction

Identifying the subcellular location of proteins is vital for effective drug target identifi-
cation. Extracellular cell wall, cytoplasmic, and membrane proteins were differentiated by
CELLO V.2.5 (Available online: http://cello.life.nctu.edu.tw/; (accessed on 8 August 2022).
Extracellular or membrane proteins could be possible vaccine targets, while cytoplasmic
proteins are considered potential drug targets.

2.7. Virulent Proteins Identification

PAIDB v2.0 (Available online: http://www.paidb.re.kr; (accessed on 8 August 2022)
was used for the identification of virulent proteins. The PAIDB gives essential information
about predicted pathogenicity in the prokaryotic genome [27].

2.8. Drug Ability Potential of Short-Listed Proteins

The drug bank database (Available online: https://go.drugbank.com/; (accessed on 8
August 2022) was accessed to evaluate the druggability potential of all the selected protein
sequences of S. lugdunensis strain N920143. FDA-approved drug targets for drug IDs are
present in drug bank databases [28].

2.9. Gut Metagenome Screening

Gut microbiota is constituted of beneficial bacteria that inhabit the human digestive
tract. In the human intestine, almost a hundred trillion microbes exist [29]. Between gut
flora and humans, a mutualistic and symbiotic relationship exists [30]. Functions such
as inhibiting pathogen growth, enhancing the immune system, and producing energy by
fermenting undigested carbohydrates are performed by beneficial microbes in the host [31].
The human microbiome project database (Available online: https://hmpdacc.org/;
(accessed on 8 August 2022) was used, and proteins resembling gut flora were excluded [32].

2.10. 3D Structure Prediction

As the crystal structure of the drug target was not available in the PDB database
(Available online: http://www.rcsb.org/pdb/; (accessed on 8 August 2022), homology
modeling was performed. The Phyre2 server can develop a highly confident 3D structure:

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://tubic.org/deg/public/index.php
http://cello.life.nctu.edu.tw/
http://www.paidb.re.kr
https://go.drugbank.com/
https://hmpdacc.org/
http://www.rcsb.org/pdb/
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the Phyre2 online server was used in this study to build 3D structures of the drug target.
Sequences of the target protein were taken in FASTA format from the NCBI, and submitted
as input files to the Phyre2 server. The 3D structure was developed automatically and
finally downloaded in PDB format.

2.11. Model Validation

The 3D structures developed via the Phyre2 server were validated by Procheck
(Available online: https://www.ebi.ac.uk; (accessed on 8 August 2022) and ProSA web
(Available online: https://prosa.services.came.sbg.ac.at; (accessed on 8 August 2022)
servers. The Procheck server was used for Ramachandran plot analysis [33]. ProSA
web is an online server that performs statistical analysis of protein structures [34].

2.12. Molecular Docking

In MOE (Molecular Operating Environment, 2016; Available online:
https://www.chemcomp.com/Products.htm; (accessed on 8 August 2022) software, the
study of molecular docking was performed to find the hits that interact strongly with the
predicted drug target. A default value of 0.05 was used for energy minimization, and the
model was protonated. The active site of the predicted drug target protein was identified
using the site finder option in MOE. Different parameters like Refinement, Rigid Receptor,
Rescoring, London dG, Placement, and Triangle Matcher functions in the MOE dock op-
tions, were used [24]. A total of 10,000 drug-like compounds retrieved from the ZINC15
database (Available online: https://zinc15.docking.org/; (accessed on 8 August 2022) were
docked with the active site of the drug target.

2.13. MD Simulation Study

The effect of the top two hits on the structure and stability of the identified drug target
proteins was investigated using molecular dynamics simulation. The Amber
20 software (Available online: https://ambermd.org/; (accessed on 8 August 2022) was
used to investigate the dynamics of the drug target in the presence and absence of ligands.
Cleaning each structure was the first step for MD simulation. After that, a cubic simulation
cell with a periodic boundary condition was built. The (AMBER14) force field was used
for the protein. Then, a cubic box of TIP3 water with a box dimension of 12 Ao of protein
was used. The counter ions (Na+ and Cl) were added to neutralize the systems [35,36].
Energy minimization was performed on the systems in 5000 stages, using 2500 steepest-
descent steps and 2500 conjugate gradient steps. The systems were gently heated from
0 to 325 Kelvin. The Langevin dynamics approach (1 atm pressure and 310 K temperature)
was used as a Langevin thermostat [37]. The MD simulation was run for 100 nanosec-
onds at a constant temperature of 325 K. Origin software was used for data visualization
and analysis.

2.14. Post MD Analysis

The conformational changes during simulations were analyzed in this study. The
CPPTRAJ module of AMBER 20 was used to investigate the root-mean-square deviation
(RMSD), root-mean-square fluctuation (RMSF), and radius of gyration (RoG).

3. Results and Discussion

A new drug target in the S. lugdunensis genome was identified by performing sub-
tractive genomics. Figure 1 describes the systematic workflow, and Table 1 describes
the relative number of proteins obtained from each step. By subtractive genome analysis,
a DNA-binding response-regulator protein was found as a novel drug target in
S. lugdunensis bacteria. Due to the lack of its 3D structure in the protein databank database
(PDB), homology modeling was performed to predict new inhibitors against computation-
ally predicted drug-target-protein molecular docking.

https://www.ebi.ac.uk
https://prosa.services.came.sbg.ac.at
https://www.chemcomp.com/Products.htm
https://zinc15.docking.org/
https://ambermd.org/
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Figure 1. The proposed procedure and methodology followed in the present study.

Table 1. The relative number of proteins obtained from each step.

S. No. Steps Followed No. of Proteins

1 The total proteome of the N920143 strain downloaded from NCBI 2351
2 Non-paralogous proteins obtained from the CD-HIT tool 2102
3 Human non-homologous proteins obtained from BLASTp against humans 980
4 Proteins essential to pathogen survival obtained from DEG 670
5 Pathways unique to the pathogen 21
6 Proteins involved in pathogen-unique pathways 5
8 Analysis of druggability potential of proteins 5
9 Number of cytoplasmic proteins obtained from CELLO 3
10 Gut metagenome screening 1

3.1. Retrieval of Pathogen Proteome and Removal of Duplicates

Among all the available strains of S. lugdunensis, N920143 was selected as this strain
was human pathogenic. From the NCBI database, a total of 2240 proteins of S. lugdunensis
strain N90143 were downloaded. All the protein sequences obtained from the NCBI
database were submitted to the CD-hit tool, with an identity value of 60%, to remove
duplicate proteins and sequences with fewer than 100 amino acids [21,22]. The total
number of proteins of N920143 were minimized to 2102 after running the CD-hit tool.

3.2. Pathogen Essential and Non-Homologous Genes Identification

Non-duplicate proteins were submitted to the NCBI BLASTp (Available online:
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins; (accessed on 8 August 2022)
against human proteome using a 10−4 E value [38]. A total of 980 proteins were found
as non-homologous in the N920143 strain. The basic standard for potent drug targets
is that drug target proteins are crucial for pathogen survival, but must be absent in the
human host so that human and pathogen proteins do not cross-bind and to avoid the side
effects of drugs [15]. Complete protein sequences of the N920143 strain were submitted to
the BLASTp instead of a DEG (database of essential genes) to determine the pathogen’s
essential genes, using expected values 10−5. In the N920143 strain, 670 essential proteins
were found in the database of essential genes.

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
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3.3. Pathways Analysis

The KEGG database was used to analyze the pathogen and host metabolic pathways
through the KAAS server [39]. Common pathways were not considered, and only the
pathogen’s unique pathways were preferred. In the N920143 strain of S. lugdunensis,
21 unique pathways were found. Unique pathways, along with pathway IDs, are presented
in Table 2. In these unique pathways, five proteins were involved (Table 3). A single protein
could be involved in more than one pathway. Proteins that are not homologous to humans
and take part in multiple pathways can be a more potent drug target [26].

Table 2. Unique metabolic pathways of S. lugdunensis, along with pathway IDs.

S. No. Pathway Metabolic Pathway

1 sln00280 Lysine biosynthesis
2 sln00550 Peptidoglycan biosynthesis
3 sln00121 Secondary bile acid biosynthesis
4 sln00053 Ascorbate and aldarate metabolism
5 sln02020 Two-component system
6 sln00261 Monobactam biosynthesis
7 sln01110 Biosynthesis of secondary metabolites
8 sln02024 Quorum sensing
9 sln01210 2-Oxocarboxylic acid metabolism
10 sln00460 Cyanoamino acid metabolism
11 sln00622 Xylene degradation
12 sln01220 Degradation of aromatic compounds
13 sln00450 Selenocompound metabolism
14 sln01501 beta-Lactam resistance
15 sln00521 Streptomycin biosynthesis
16 sln03070 Bacterial secretion system

17 sln00860 Porphyrin and chlorophyll
metabolism

18 sln01502 Vancomycin resistance
19 sln01503 CAMP resistance

20 sln00660 Biosynthesis of siderophore group
non-ribosomal Peptides

21 sln01120 Microbial metabolism in diverse
environments

Table 3. Proteins involved in unique pathways.

S. No. Accession No. Drug Bank Target Drug Bank ID

1 WP_002460335.1 P0A6K3 Peptide deformylase DB01942

2 WP_014533179.1 P04217 Alpha-1B-glycoprotein DB01593

3 WP_002459785.1 P17405 Sphingomyelin phosphodiesterases DB01151

4 WP_002491992.1 Q13231 Chitotriosidase-1 DB02325

5 WP_002459785.1 P17405 Sphingomyelin phosphodiesterase DB01151

3.4. Prediction of Protein Subcellular Localization

According to CELLO V.2.5, 70% of the proteins were present in the cytoplasm and 30%
were present in the membrane.

3.5. Druggability of Selected Proteins

For the druggable potentiality identification, all the essential and non-homologous
proteins were blasted with a drug bank database, containing FDA-approved drug targets.
Five proteins revealed similarities with FDA-approved drugs in the drug bank database.
Table 4 delineates proteins possessing druggable potency, along with drug bank IDs.
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Table 4. Non-homologous, essential, and virulent druggable targets of S. lugdunensis.

S. No. Accession No. KEGG ID Target Name Pathway Name

1 WP_002478208.1 K00215 4-hydroxtetrahydrodipicolinate reductase Monobactam biosynthesis
2 WP_002461066.1 K03100 Signal peptidase Quorum sensing
3 WP_002460335.1 K07705 DNA-binding response regulator Two-component system
4 WP_026050227.1 K06153 Genome polyprotein Bacterial secretion system
5 WP_011079778.1 K02034 Chloride channel protein 2 beta-lactam resistance

3.6. Screening of Short-Listed Proteins with Gut Flora

Along with pathogenic bacteria, the beneficial bacteria in human gut flora can also be
targeted by most antibiotics [40], so we tended to exclude those proteins of
S. lugdunensis that displayed homology with gut flora proteins to avoid the side effects
of drugs. Regarding this concept, the human microbiome project database was used to
evaluate those proteins that showed similarities with regular gut flora proteins. Of the
human non-homologous, virulent, and essential proteins that were compared with gut
flora proteins, 11 out of 12 displayed similarities with gut flora. Only one DNA-binding
response-regulator protein did not display any similarity with gut flora; therefore, this was
selected as a novel drug target in S. lugdunensis.

3.7. Homology Modeling and Model Validation

The crystal structure of the target protein was not found in the PDB database; homol-
ogy modeling was performed via the Phyre2 server. Figure 2 shows the 3D structures of the
drug target DNA-binding response regulator. The 3D structure was further validated by
the Ramachandran plot and the ProSA web server. The quality of the model was predicated
on the Z-score plot of the ProSA web server. The Z-score of the excellent quality model lies
within the range of native protein structures, while the erroneous structure has a Z-score
outside this range [33]. The Z-score of the target DNA-binding response-regulator protein
is −3.63, as in Figure 3. Ramachandran plot analysis was performed by the Procheck
server [17]. According to the Ramachandran plot, 94.7% of residues are in the most favored
region, 5.3% in the additional allowed region, 0% in the generously allowed, and 0% in the
disallowed region as seen in Figure 4. The Ramachandran plot quantified that the quality
of the model is good if >90 % of residues are in the most favored regions.
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Figure 3. Ramachandran plot for structural validation of drug target protein (DNA-binding response
regulator). The most favored zone contains 93.6% of the residues, the additional allowed region
contains 6.4%, and the disallowed region contains 0% of the residues. (a = α-helix (right/left handed);
B = anti-parallel β-sheet; b = parallel β-sheet; p = proline. The coloring/shading on the plot represents
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the most favorable combinations of phi-psi values).
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Figure 4. Z-score of the drug target protein (DNA-binding response regulator) is −3.63.

3.8. Molecular Docking Study

Ten thousand compounds of zinc database were docked against the receptor active
site of the DNA-binding response regulator. Among the top 100 compounds, two hits
yielded a favorable interaction with the DNA-binding response-regulator protein (Figure 5).
Compounds ZINC000020192004 and ZINC000020530348, with docking scores of −16.231
and −14.187, were found as novel and potent inhibitors against the predicted drug target
protein. Docking scores of these potent inhibitors are shown in Table 5.
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Figure 5. Hydrogen bond interaction of ZINC000020192004 with the drug target.

Table 5. Molecular docking of the most favorable interacting compounds.

S. No. ZINC ID S Score Interacting Residues Energy

1 ZINC000020192004 −16.231

ALA 74
ASP 48
ALA 74
LYS 69
ALA 74

−5.0
−1.6
−1.0
−1.0
−1.1

2 ZINC000020530348 −14.187

ALA 74
ALA 74
ALA 74
ASN 94

−6.1
−2.7
−0.6
−1.1

3 ZINC000035239931 −13.211
ALA 74
ARG 117
LYS 69

−3.0
−1.3
−0.6

4 ZINC000021883347 −10.811 ASN 94
LYS 69

−1.3
−6.3

5 ZINC000012630694 −9.337 GLN 72
HIS 73

−5.3
−0.7

6 ZINC000012631011 −8.112 LYS 69 −7.8

3.9. MD Simulation

The RMSD parameter determined the complex stability. The complex is more stable when
the average RMSD value is low [41,42] (Figure 6). The RMSD plots for ZINC000020192004
and ZINC000020530348 in complex with drug target and unbound (apo-enzyme) are shown
in Figure 7. The two complexes converged at around 5 ns and remained stable during the
simulation, with overall average values of 1.6 and 1.5. The apo-enzyme average RMSD
is 1.6A.
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Figure 7. RMSD of apostate (black color) and the ZINC000020192004 and ZINC000020530348.

The average RoG values of 16.2, 16.1, and 16.01 were observed for ZINC000020192004
and ZINC000020530348, and the apo-enzyme. The RMSF measures how the residues
fluctuate when bound to a drug [43]. An increase in the RMSF value indicates an increase
in the flexibility of the alpha-carbon atoms. Compared to the two predicted hits, the more
flexible regions were found in the apo-enzyme. High residual fluctuations were recorded
at residues 20–40 and 60–80, as shown in Figure 8.
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The RoG parameter was used to evaluate the structural compactness of proteins when
bound to molecules [44]. A lower RoG value indicates more stability, while a higher RoG
value indicates an unstable system [45]. The RoG plot results correlate with its RMSD plot,
indicating that molecule binding did not affect the structural stability of the DNA-binding
response-regulator protein [46]. In the case of the ligand-bound complexes, a lower RoG
value was revealed; meanwhile, for the apoenzyme, a slightly higher RoG value was
indicated, as is displayed in Figure 9.
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4. Conclusions

In the present study, we utilized the art of computational biology to identify novel
therapeutic targets in S. lugdunensis proteome. Through subtractive proteomic analysis,
novel drug targets involved in unique metabolic pathways were identified by using com-
parative sequence analysis and different biological updated databases. The prioritized
therapeutic targets, including 4-hydroxtetrahydrodipicolinate reductase, signal peptidase,
DNA-binding response regulator, and genome polyprotein, are critical to the pathogen’s
survival. The drug target predicted in the present study was promising to be essential to
the pathogen survival and did not share homology with the human gut microbiota. The
three-dimensional structure of the DNA-binding response regulator-protein was subjected
to molecular docking studies, and it evaluated ZINC000020192004 and ZINC000020530348
as lead compounds. These compounds showed striking interactions with the DNA-binding
response regulator. Furthermore, the results of the MD simulation analysis demonstrated
that the two hits, ZINC000020192004 and ZINC000020530348, remained stable with the
active site residues of the DNA-binding response-regulator protein. Further in vitro study
is needed to validate these drug targets and the lead compounds.
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