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Abstract

Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a key enzyme in the de novo 
pyrimidine biosynthesis pathway, which the Plasmodium falciparum relies on exclusively for 
survival, has emerged as a promising target for antimalarial drugs. In an effort to discover new and 
potent PfDHODH inhibitors, 3D-QSAR pharmacophore models were developed based on the 
structures of known PfDHODH inhibitors and the validated Hypo1 model was used as a 3D search 
query for virtual screening of the National Cancer Institute database. The virtual hit compounds 
were further filtered based on molecular docking and Molecular Mechanics/Generalized Born 
Surface Area binding energy calculations. The combination of the pharmacophore and structure-
based virtual screening resulted in the identification of nine new compounds that showed >25% 
inhibition of PfDHODH at a concentration of 10 μM, three of which exhibited IC50 values in the 
range of 0.38–20 μM. The most active compound, NSC336047, displayed species-selectivity for 
PfDHODH over human DHODH and inhibited parasite growth with an IC50 of 26 μM. In addition 
to this, thirteen compounds inhibited parasite growth with IC50 values of ≤ 50 μM, four of which 
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showed IC50 values in the range of 5–12 μM. These compounds could be further explored in the 
identification and development of more potent PfDHODH and parasite growth inhibitors.

Keywords

Malaria; Plasmodium falciparum; Dihydroorotate dehydrogenase; Pharmacophore model; Virtual 
screening; Molecular docking

1. Introduction

Malaria is a life-threatening parasitic disease, which continues to cause a severe global 
health problem. The World Health Organization estimated that in 2013 alone, malaria 
infected 198 million people and resulted in over half a million deaths.1 Malaria mostly 
affects children living in Africa, where it is believed that a child dies from malaria every 
minute.1 The disease is caused by Plasmodium parasites, which are spread to people through 
the bites of infected Anopheles mosquitoes. Of the five Plasmodium parasite species that 
cause malaria in humans, Plasmodium falciparum (P. falciparum) is responsible for most of 
the severe clinical malaria cases. No effective vaccines are available to date and thus 
antimalarial control programs and chemotherapy are used for prevention and treatment of 
this disease, respectively.2 Unfortunately, the chemotherapy-based treatments using 
traditional antimalarial drugs face widespread drug-resistance, compromising their efficacy. 
For example, some commonly used antimalarial drugs such as chloroquine 3, atovaquone 4, 
pyrimethamine 5 and sulfadoxine 6 have been withdrawn in many areas due to parasite 
resistance. Moreover, resistance has been reported to artemisinin-based combination 
therapies (ACTs), a new treatment option to combat drug-resistance, in the Thai-Cambodian 
border. 7 This highlights the pressing need for the development of novel, non-cross-resistant 
and effective antimalarial drugs. The identification of unique biochemical processes that are 
critical for parasite survival is an important step in the identification of novel drug targets for 
new antimalarial drugs.8

Pyrimidines are required for many biochemical processes including DNA and RNA 
synthesis, protein glycosylation and membrane lipid synthesis. 9 These essential precursor 
molecules are synthesized in many organisms, including humans, by both de novo 
pyrimidine biosynthetic pathways as well as salvage pathways that recover purine and 
pyrimidine bases formed during nucleic acid degradation. In contrast, the P. falciparum 
parasite genome lacks the required components for the pyrimidine salvage pathway 10 and 
thus the parasite relies exclusively on the de novo pyrimidine biosynthetic pathway.11 For 
this reason, the de novo pyrimidine biosynthetic pathway of P. falciparum has become an 
attractive target for the development of novel therapeutics for malaria. DiHydroOrotate 
DeHydrogenase (DHODH), the fourth key enzyme in P. falciparum de novo pyrimidine 
biosynthesis, catalyzes the oxidation of dihydroorotate to produce orotate in the presence of 
the co-factors flavin mononucleotide (FMN) and ubiquinone (CoQ). 12-14 P. falciparum 
DHODH (PfDHODH) and human DHODH (hDHODH) are members of the type II family 
of DHODH and are localized in the outer side of the inner mitochondrial membrane. They 
use respiratory quinones exclusively as terminal electron acceptors. 13, 15, 16 Recent studies 
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showed that the physiological oxidant ubiquinone, provided by the mitochondrial electron 
transport chain, is needed by PfDHODH for pyrimidine biosynthesis. Studies have also 
shown that PfDHODH inhibition leads to parasite death in both cell culture and animal 
models. 17, 18 Furthermore, inhibitors of hDHODH are presently in use for the treatment of 
rheumatoid arthritis 19 and have been evaluated as anti-tumor 20 and immunosuppressive 
agents 21, demonstrating that DHODH is a druggable target.

Crystal structures of PfDHODH in complex with a number of diverse inhibitors have been 
determined 17, 22-27, providing insights into the structural basis for inhibition. PfDHODH 
has a large flexible active site that can accommodate structurally diverse inhibitors 26. Key 
hydrogen-bond interactions between the inhibitor and His185 and Arg265 residues are 
important for inhibitor binding and stacking interactions between Phe227 and Phe88 
residues leads to favorable binding of inhibitors with large aromatic rings. Deng et al 25, 26 

elucidated the structural basis for the species selective binding of the triazolopyrimidines to 
PfDHODH, identifying key amino acid residues that confer selectivity. Analysis of 
hDHODH and PfDHODH crystal structures revealed that replacement of Ala59 and Pro364 
residues in hDHODH with the more bulky Phe188 and Met536 residues in PfDHODH 
hinders the hydrophobic pocket that binds the biphenyl moiety of brequinar in hDHODH. In 
addition, the substitution of Thr63 and Met111 residues in hDHODH with Gly192 and 
Leu240 residues in PfDHODH leads to the formation of the pocket that binds the naphthyl 
group of triazolopyrimidines in PfDHODH.28

In the past decade, several classes of PfDHODH inhibitors with diverse chemical structures 
have been developed (Figure 1). Interestingly, modification of known hDHODH inhibitors 

using de novo design led to the identification of a new PfDHODH inhibitor (compound 1, 
Figure 1) 29. Phillips and Rathod et al. identified numerous classes of potent and selective 
PfDHODH inhibitors through PfDHODH enzyme-based screening 18, 30 and a lead 

optimization program on the selected triazolopyrimidine-based compound 2 led to the 

discovery of DSM265 (compound 3) which is currently in clinical development. 23, 31-33 In 
addition, Clardy and Wirth et al. identified some selective PfDHODH inhibitors using target-

based high throughput screening with the Genzyme library; compound 4 was the most 

potent among them. 34 Xu et al. discovered the hit compound 5 by structure-based screening 
with the SPECS database and subsequent lead optimization led to the potent and selective 

compound 6. 35 These studies demonstrate that the design of potent species-selective 
PfDHODH inhibitors is feasible using a combination of biochemical, structural and 
computational approaches.

Diverse computational tools are systematically integrated to speed up and facilitate hit 
identification, hit-to-lead selection, and lead optimization in drug discovery process.36-38 In 
such an integration of computational methods to identify new hits, pharmacophore 
modelling is initially employed as a powerful search tool to retrieve active compounds from 
databases. This search retrieves compounds that are similar to the pharmacophore model or 
entirely diverse scaffolds as the features of a pharmacophore model can map to multiple 
structural elements of the functional groups of compounds. The high scored compounds are 
collected as hits as they better map to the pharmacophore model.39, 40 This step significantly 
decreases the number of hits. As the second step, the best scored compounds retrieved by 
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pharmacophore-based screening are subsequently docked into the binding pocket of a target 
to narrow the number of active hits.41, 42 The combination of pharmacophore- and docking-
based virtual screening has been shown to be beneficial as it includes all possible 
information.43-45

In this study, 3D quantitative structure–activity relationship (3D-QSAR) pharmacophore 
models were built based on a series of dihydrothiophenone derivatives that show PfDHODH 
inhibition. The validated model was used as a 3D search query for screening the National 
Cancer Institute (NCI) compound database to identify new inhibitors. Subsequently, the hits 
with good pharmacophoric fit values were docked into the crystal structure of PfDHODH 
using Glide standard precision (SP) and extra precision (XP) docking algorithms and filtered 
accordingly. The hit compounds were further evaluated based on their predicted binding 
affinity for PfDHODH calculated using Prime/MM-GBSA. Following this, sixty two hits 
were finally selected for experimental validation. Nine hit compounds exhibited >25 % 
inhibition against PfDHODH, with three of these showing IC50 values between 0.38 and 20 
μM. A hDHODH inhibition experiment confirmed the species-selectivity of the most active 
compound. In addition to this, thirteen compounds inhibited the growth of P. falciparum 
NF54 strain with IC50 values of ≤ 50 μM, with four of them showing IC50 values between 5–
12 μM.

2. Materials and methods

2. 1 3D-QSAR pharmacophore modeling

2.1.1 Data preparation—A set of 38 PfDHODH inhibitors were collected from recently 
published literature reported by Xu et al. 35 The inhibitors were derived from the 
dihydrothiophenone scaffold and the in vitro bioactivities of the collected inhibitors were 
expressed as the concentration of the test compounds that inhibited the activity of 
PfDHODH by 50% (IC50). The two-dimensional (2D) chemical structures of the inhibitors 
were sketched using ChemDraw Ultra and saved in MDL (Molecular Design Limited) mol 
file format. Subsequently, they were imported into Discovery Studio 4.0 (DS4) (Dassault 
Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 4.0, San Diego: 
Dassault Systèmes, 2015) and converted into corresponding standard 3D-structures, which 
were utilized as starting conformations for conformation generations.

According to the Catalyst program guidelines, the initial group of 38 inhibitors was then 
divided into a training set (Figure S1) and a test set (Figure S2). The training set consisted of 
19 structurally diverse compounds with bioactivities ranging from 6 to 39,450 nM, spanning 
over four orders of magnitude, including several most active, moderately active, and least 
active compounds. The activity values were classified as follows: IC50 ≤ 1000 nM means the 
compounds are the most active (represented as +++); 1000 nM < IC50 ≤ 10,000 nM means 
the compounds are the moderately active (represented as ++); and IC50 > 10,000 nM means 
the compounds are the least active (represented as +). The training set was then used to 
generate 3DQSAR pharmacophore models. The remaining 19 compounds were used as a 
test set to evaluate the predictive capability of the pharmacophore models.
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The molecular flexibility of each compound in the training and test sets was modelled by 
generating multiple conformers within a specific energy range. For this, 250 conformational 
models for each compound were generated using the Poling algorithm's “best quality” 
conformational search option 46 within the ConFirm module of DS4, which uses generalized 
CHARMm force fields. 47 An energy threshold of 15 kcal/mol was used to ensure maximum 
coverage of the conformational space; default settings were used for all other parameters.

2.1.2 Generation of 3D-QSAR pharmacophore hypotheses using HypoGen—

3D-QSAR pharmacophore hypotheses were generated using the HypoGen algorithm of 
DS4. In the HypoGen pharmacophore model generation, a minimum of 0 to a maximum of 5 
features were selected and used to build a series of hypotheses using an uncertainty value of 
2. HypoGen generates quantitative pharmacophore models based on the most active 
compounds from the training set and examines the training set compounds to correlate the 
structure-activity relations. In addition, the activity of each compound in the training set is 
estimated using the regression parameter, which is calculated by plotting the geometric fit 
value versus the negative logarithm of activity for each compound. The top 10 hypotheses 
with significant statistical parameters were selected on the basis of a high correlation 
coefficient (r), low total cost, and low root mean square (RMS).

2.1.3 Pharmacophore model validation

Test set predictions: Each pharmacophore model's (Hypo1-Hypo10) capability of 
predicting the activity of external compounds was determined using the test set compounds. 
The test set compounds were prepared in the same way as the training set compounds and 
the performance of the models was examined by regressing them against the test set 
compounds.

Cost analysis: The statistical significance of a pharmacophore model can be described in 
terms of the fixed cost, null cost and total cost. 48 The fixed cost is the simplest model that 
fits all data perfectly and the null cost is the highest cost of a pharmacophore with no 
features and estimates activity to be the average of the activity data of the training set 
compounds. The total cost of any pharmacophore hypothesis should be close to the fixed 
cost to provide valuable models. In addition, the pharmacophore model is considered 
significant when the difference between the null and fixed cost value is large. A cost 
difference value should be 40–60 bits for a pharmacophore hypothesis, indicating that the 
model has 75–90% probability of correlating the data. The configuration cost and error cost, 
determine the quality of any pharmacophore hypotheses with predictive values. The 
configuration cost represents the complexity of the pharmacophore hypothesis space and 
should have a value of less than 17. The error cost dependents on the root-mean-square 
deviations (RMSDs) between the estimated and the experimental activities of the training set 
molecules. The RMSD represents the quality of the correlation between the experimental 
and the predicted activity data. The best pharmacophore model should have the highest cost 
difference, the lowest RMSD, and the best correlation coefficient.

Fischer's randomization test: The cross-validation was performed using the Fischer's 
randomization test 49 which uses the CatScramble program to randomize the experimental 
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activities of the training set. The confidence level was set to 95% and 19 different random 
spreadsheets were generated and used to construct hypotheses using exactly the same 
features and parameters used in generating the original pharmacophore hypotheses. This was 
done to ensure that the cost values of the randomized data set were not similar or better than 
the cost values of the original hypotheses.

2.2 Pharmacophore-based virtual screening

The validated pharmacophore model, Hypo1, containing four pharmacophore features, was 
used as a 3D-search query to retrieve lead-like compounds from the NCI database containing 
265,242 compounds (released in May, 2012, http://cactus.nci.nih.gov/download/nci/). The 
database was first prepared and duplicates were removed using the Prepare Ligands protocol 
of DS4, which returned 246,477 compounds. The molecular flexibility of each compound in 
the database was then modelled by generating multiple conformers with “best quality” 
conformational search option. The best/flexible search option of Catalyst program was 
applied to pharmacophore-based virtual screening to retrieve compounds from the database. 
A molecule was only retrieved as a hit if it fitted to all the features of a pharmacophore 
model. The hit compounds were ranked according to the fit value and the compounds with 
good fit values were docked into the crystal structure of PfDHODH.

2. 3 Structure-based virtual screening

Protein preparation—The crystal structure of PfDHODH in complex with inhibitor 
DSM1 (PDB: 3I65) was obtained from the protein data bank (PDB) and prepared for 
structure-based virtual screening 26. All HETATM residues and crystal water molecules were 
deleted except a crucial water molecule (W15), which mediates a hydrogen bond interaction 
between DSM1 and the binding site. The protein was prepared using Protein Preparation 
Wizard in Schrödinger 9.7 (Schrödinger, Inc., New York, NY, USA). This wizard was used 
to correct bond orders, add hydrogen atoms, create zero-order bonds to metals, optimize the 
orientations of added hydrogen for optimal hydrogen bond formation, and finally to 
minimize heavy atoms to a RMSD threshold of 0.3 Å using OPLS_2005 (optimized 
potential for liquid simulations_2005) force fields.

Glide docking—The Glide docking program in Schrodinger 9.7 (Schrödinger, Inc., New 
York, NY, USA) was used for the docking experiments. The docking method described 
below was validated by re-docking the DMS1 structure into the PfDHODH crystal structure 
and calculating the RMSD between the top docked pose and the bound DMS1 conformation 
in the crystal structure. A docking grid box on the centroid of the DSM1 in the crystal 
structure was generated using Glide-Receptor Grid Generation with default parameters for 
van der Waals (VDW) radius scaling. The hit molecules were optimized using the LigPrep 
module of the Schrödinger suite with OPLS_2005 force fields. This module generates 
possible 3D conformations for each ligand with various ionization states at pH 7.0 ± 2.0, 
tautomers, stereochemistries and ring conformations. All the generated conformations were 
saved as maestro files and used for docking. Standard precision (SP) Glide docking (default 
parameters) was used to dock hit molecules into the DSM1 binding site and the best pose for 
each hit was chosen based on the Glide docking score (G-Score). The hits with the best 
poses were then subjected to Extra precision (XP) Glide docking, a more precise scoring 
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function, and finally, the top ranked poses were retained for Molecular Mechanics/
Generalized Born Surface Area (MM-GBSA) calculation.

2.4 Prime MM-GBSA calculation

The binding free energies of docking poses, obtained from XP Glide docking, were 
calculated using the MM-GBSA method (Prime version 2.1, Schrödinger, LLC, New York, 
NY, 2009) with default setting. This method calculates energies using the OPLS-AA force 
fields for molecular mechanics energy (EMM), the surface-generalized born model for polar 
solvation energy (GSGB), and a nonpolar solvation term (GSA). The binding free energy 
(ΔGbind) was calculated as follows:

(1)

The scored poses by Prime MM-GBSA were visually inspected for protein-inhibitor 
interactions similar to those seen in inhibitor bound PfDHODH crystal structures.

2.5 Structural similarity and cluster analysis

The compounds that showed favorable interactions with PfDHODH were compared with 
eight known PfDHODH inhibitors for structural similarity (Figure S3) using SciTegic 
extended-connectivity fingerprints (ECFP_4) in DS4. The ECFP_4 is an atom type-based 
method, which computes the fingerprint features for each atom that is within a diameter of 
four bonds to the neighbor atoms. Tanimoto (Tc) similarity distance was used as a metric to 
filter out compounds that were structurally similar to the known PfDHODH inhibitors. On 
the basis of the metric, compounds were selected and clustered using Cluster Ligands 
protocol in DS4. After examining the favorable interaction and structural diversity, 39 
compounds were finally obtained from the NCI and tested in vitro on PfDHODH and 
PfNF54.

2.6 Comparison of Pf-DHODH-NSC336047 with crystal structures

The PfDHODH-NSC336047 structure was superimposed with the docked hDHODH-
NSC336047, PfDHODH-DSM1 (PDB: 3I65)26, PfDHODH-A771726 (PDB 1TV5)50, 
hDHODH-Brequinar (PDB 1D3G)51 structures by aligning the backbone atoms of full-
length structures in PyMOL.52 Structures were displayed using the graphics program 
PyMOL.

2.7 Novelty analysis

The structural similarity of identified hit compounds was analyzed using SciFinder 
(SciFinder; American Chemical Society, 2015) and compared to known PfDHODH 
inhibitors found in ChEMBL53 and 100 known active PfDHODH inhibitors (Table S2). 
Tanimoto similarity of each hit compound was calculated against ChEMBL and known 
active PfDHODH inhibitors using the “Find similar molecules by fingerprints” protocol in 
DS4, along with use of the ECFP_4 fingerprint. This protocol allowed us to calculate the 
minimum, maximum, and average similarities as measures of proximity to known 
PfDHODH inhibitors.
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2. 8 Biological testing of selected virtual hits

DHODH expression, purification and IC50 determination—P. falciparum and 
human DHODH were expressed as recombinant proteins in BL21 (DE3) phage-resistant 
cells and purified as previously described.18, 30 Steady-state kinetic analysis for IC50 

determination was performed using the colorimetric assay that monitors the reduction of 2, 
6-dichloroindophenol (DCIP) at 600 nm (ε = 18.8 mM) for measuring DHODH inhibition. 
The assay was carried out using a buffer containing 100 mM HEPES, pH 8.0, 150 mM 
NaCl, 10 % Glycerol, 0.1 % Triton X-100, 20 μM CoQD (coenzyme QD), 200 μM L-
dihydroorotate and 120 μM DCIP. The enzymatic reaction was initiated by the addition of 5 
nM of enzyme. Data were fitted to the log [I] vs response (three parameters) equation 
(Y=Bottom + (Top-Bottom)/(1+10^((X-LogIC50))) or to the standard IC50 equation (Y=1/
(1+X/(IC50))) for compounds with IC50 >10 μM in Graph Pad Prism.

In vitro antiplasmodial assay—The in vitro antiplasmodial activity screening was 
performed against chloroquine sensitive (CQS) P. falciparum NF54 strain at the University 
of Cape Town (Division of Clinical Pharmacology) for selected thirty nine virtual hit 
compounds. The screening method was based on the parasite lactate dehydrogenase assay 
using chloroquine and artesunate as reference standards according to previously described 
methods54, 55 (Supporting information). An additional twenty three compounds were tested 
at the Swiss Tropical and Public Health (Swiss TPH) Institute. The screening method was 
based on the [3H] hypoxanthine incorporation assay using chloroquine and artesunate as the 
standard reference drugs according to previously described procedures 56, 57 (Supporting 
information).

3. Results and Discussion

3.1. Generation of 3D-QSAR pharmacophore model and validation

38 PfDHODH inhibitors were divided into a training set of compounds (Figure S1) and a 
test set of compounds (Figure S2) for 3D-QSAR pharmacophore model generation and 
validation, respectively. The training set compounds play a key role in determining the 
quality of the pharmacophore models generated; while the test set compounds served to 
evaluate the predictive capability of the resultant pharmacophore models. Both the training 
set and the test set were made up of molecules with a large range of activities ensuring that 
critical information on the pharmacophoric requirements for PfDHODH inhibition could be 
incorporated into the model and evaluated.

The training set, consisting of 19 structurally diverse dihydrothiophenone inhibitors with 
inhibitory activities spanning over four orders of magnitude (IC50 6–39,450 nM; Figure S1), 
was used to generate pharmacophore models for PfDHODH inhibitors. The cost values, 
correlation coefficients (R), root-mean square (RMS) values and the pharmacophore features 
of the top 10 ranked hypotheses (Hypo1–Hypo10) are shown in Table 1.

The cost analysis statistical calculation was used to determine the quality of the 
pharmacophore hypotheses. The null cost, fixed cost, and configuration costs for the top 10 
scored hypotheses were 198.74, 68.27 and 11.99, respectively. The magnitude of the cost 
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difference between the null cost (198.74) and the total cost (87.76) for the top ranked 
hypothesis, Hypo1, was 110.98; a cost difference greater than 60 indicates that the model 
has good predictive power and should represent 90% of the true correlation. In addition, the 
total cost (87.76) of the Hypo1 is close to the fixed cost (68.27), confirming that the 
generated Hypo1 was not obtained by chance. The configuration cost value must be below 
17 for the pharmacophore model to be considered as a good hypothesis. In our case a 
configuration cost value of 11.991 was obtained for all hypotheses (Table 1), indicating that 
the generated pharmacophore hypotheses are reasonable.

All 10 of the hypotheses were evaluated using both the training and the test set compounds. 
The Hypo1 model gave the lowest RMS (1.385) and the best correlation between the 
predicted activities and the experimental activities for the test set compounds. The evaluation 
of the Hypo1 model is described in detail below. Hypo1 consists of four features: two 
hydrogen-bond acceptors (A), one hydrophobic-aliphatic (H) feature and one ring-aromatic 
(R) feature. All 10 hypotheses had the same pharmacophore features as Hypo1. However, 
their spatial locations and statistical parameters differed (Table 1 and Figure S4). The 3D-
space and distance constraints of the pharmacophore features of Hypo1 are shown in Figure 
2.

3.1.1 Predictions of IC50 values for the training set compounds by Hypo1—The 
activities predicted by the Hypo1 pharmacophore model for the 19 training set compounds, 
together with their experimental activities, are listed in Table 2. These compounds were 
classified into three groups (activity scales) based on their experimental activities (IC50): 
most active (IC50 < 1000 nM, +++); moderately active (1000 nM ≤ IC50 < 10000 nM, ++); 
least active (IC50 ≥ 10000 nM, +). The activities predicted by Hypo1 for all the compounds 
fell within the correct activity scales. The ratio between experimental and predicted activities 
(error) for most of the compounds was less than 5 (Table 2) and the correlation between the 
experimental and predicted activities was 0.935 (Figure S5), signifying good consistency 
between predicted and experimental IC50 values.

To further evaluate the robustness of the Hypo1 model, the training set compounds were 
mapped onto the Hypo1 model using the best fit option; the pharmacophoric fit values for 

each compound are reported in Table 2. The most active compound (compound 7, IC50=6 
nM) mapped well to all the pharmacophore features of the model [Figure 3(A)] with a good 
pharmacophoric fit value of 9.63 and a predicted IC50 of 20.47 nM. On the contrary, while 

the least active compound (compound 25, IC50=39,450 nM) mapped onto the ring-aromatic 
and hydrophobic-aliphatic features, it only mapped onto one of the two hydrogen-bond 
acceptor features [Figure 3(B)] and thus exhibited a lower pharmacophoric fit value of 6.61. 
The predicted IC50 value for this compound was over 21,685.3 nM, 3 orders of magnitude 
higher than the IC50 features predicted for the most active compound (Table 2), suggesting 
that a second hydrogen-bond acceptor is important for PfDHODH binding. However, it 

cannot be ruled out that the presence of an intramolecular hydrogen-bond in 25, as suggested 
by Xu et al 35, may control its conformation to miss one of the two hydrogen-bond acceptor 
features.
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3.1.2 Validation of the Hypo1 model—The Hypo1 model's capability to predict the 
activity of inhibitors that are not part of the training set was evaluated using the 19 
PfDHODH inhibitors in the test set (Figure S2). The IC50 values predicted by the Hypo1 
model for the test set compounds together with their experimental IC50 values and the error 
values for the predictions are shown in Table S1. Of the 19 test set compounds, 17 had error 

values below 10; the other two compounds (compounds 31 and 32) had error values of 15.90 
and 11.14, respectively. There was a good correlation (R = 0.933) between the experimental 
activities and the predicted activities for the test set (Figure S5). These results demonstrate 
that the Hypo1 model is capable of predicting activities of PfDHODH inhibitors not 
included in the training set.

The Fischer's randomization test was used to evaluate the statistical significance of the 
Hypo1 model. This cross-validation method produced 19 random pharmacophore 
spreadsheets, at 95% confidence level, using the same features and parameters as used in the 
generation of the original 10 pharmacophore hypotheses. The cost value of Hypo1 is lower 
than the 19 randomly generated hypotheses (Figure 4), indicating that the Hypo1 model is 
superior and was not generated by chance. Furthermore, the result of Fischer's test confirms 
that there is a 95% chance that the Hypo1 represents a true correlation for the training set 
compounds, providing further evidence that the pharmacophore model, Hypo1, is a reliable 
model with statistical significance.

While this manuscript was in preparation, Aher and Roy reported a pharmacophore model 
generated using a similar series of dihydrothiophenone PfDHODH inhibitors. 58 Their 
model differed from the Hypo1 model presented here both in terms of features as well as 
feature constraints, which may be due to the different training set compounds used. 59 In 
contrast to their model, our model has an additional hydrophobic-aliphatic feature that maps 
to the ethyl group of many of the active compounds as shown in Figure 3. In addition, 
contrary to their validation, we have adopted the standard regression method on the test set, 
which showed good correlation (Figure S5). Furthermore, we have experimentally 
demonstrated in the following section that our model is capable of picking the active 
molecules from the NCI database, suggesting that the model is reasonable and more reliable.

3.2. Virtual screening

Virtual screening, a complementary approach to the experimental high-throughput 
screening, has been demonstrated to increase the success rate in the hit identification stage 
of the drug discovery process.60 Many studies have suggested that combining 
pharmacophore-based screening with structure-based methods could enhance the enrichment 
of virtual screening. In this study, a multistep virtual screening protocol, combining 
pharmacophore-based screening with structure-based methods, was adopted to identify new 
and potent PfDHODH inhibitors in the NCI database. A schematic representation of the 
screening cascade is shown in Figure 5.

3.2.1 Pharmacophore-based virtual screening—The NCI open library has 
previously been used to find new anti-cancer and anti-viral agents using both in vitro and in 
vivo screening methods. 61 In this study, the NCI database, consisting of 246,477 unique 
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compounds, was screened for PfDHODH inhibitors using the pharmacophore model Hypo 1 
as a 3D-search query. The database was spiked with 100 known active PfDHODH inhibitors 
(≤ 1μM) (Table S2), which were not used to generate the Hypo1 model, and a multi-
conformer database was generated. The model retrieved 50,211 hit compounds from the 
246,577 compounds, of which 95 were known inhibitors. The enrichment factor (EF = [95 × 
(246577+100)] ÷ (50211 × 100) = 4.66) was calculated to be 5, indicating that the Hypo 1 
model was 5 times more likely to pick active molecules from the database than would be 
expected by chance. 62 Table 3 lists the statistical parameters from the pharmacophore-based 
virtual screening. To increase the stringency of the search, a pharmacophore fit value cut-off 
of ≥ 9, based on the pharmacophore fit of the most active compound in the training set, was 
applied. Therefore, the compounds with a fit value of <9 were considered as inactive and 
were omitted. This criterion reduced the number of active hits to 3529. To reduce false 
positives and to obtain lead-like compounds, these hits were subjected to docking-based 
virtual screening.

3.2.2 Docking-based virtual screening—Initial docking-based virtual screening was 
performed using the Glide SP method, which enabled the rapid docking of the 3529 hit 
compounds, obtained from the pharmacophore-based screening, into the PfDHODH crystal 
structure (PDB ID: 3I65). The capability of the docking protocol was validated prior to 
screening the hit molecules by re-docking the DSM1 into the PfDHODH crystal structure to 
see whether or not the crystal bound conformation of the ligand could be reproduced. The 
heavy atom RMSD between the top scored docking pose and the ligand bound crystal 
structure was 0.19 A° (Figure 6). The docked PfDHODH-DMS1 inhibitor complex 
displayed the same residue-ligand interactions observed in the bound crystal structure 
demonstrating that the Glide SP docking protocol was capable of regenerating the 
experimentally observed binding mode of the PfDHODH inhibitor, DSM1.

The initial docking screen yielded 2150 hit compounds; this was narrowed down to 919 
compounds by applying the reasonable Glide docking score threshold of ≤ −5 kcal/mol. The 
compounds were then re-docked into the PfDHODH using the more rigorous docking 
method, Glide XP, with the same internal docking parameters. Glide XP docking scores for 
the top pose of each hit compound were in the range of −11.60 to −1.63 kcal/mol. Recent 
studies have shown that binding energy calculations performed by Prime/MM-GBSA on 
docked complexes generated by Glide XP can be useful for predicting the binding affinity of 
hDHODH and PfDHODH inhibitors.35, 63 Prime/MM-GBSA calculations were performed 
for Glide XP poses with all these poses and based on this, 809 hit compounds, with 
predicted binding energies ranging from −107.10 to −20.04 kcal/mol, were selected for 
further analysis.

The predicted binding mode for each of the 809 hit compounds was visually inspected and 
the type and number of potential interactions within the PfDHODH binding site were 
analyzed. For this, a set of criteria were derived based on the analyses of critical interactions 
observed for known malaria specific inhibitors bound to the PfDHODH. 22, 24-26 The 
inhibitor binding site of PfDHODH is considerably flexible and thus accommodates 
different classes of inhibitors. The malaria specific trizolopyrimidine-based inhibitors bind 
to two different binding sites, the hydrogen-bond pocket and the hydrophobic pocket, within 
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the active site of PfDHODH. The trizolopyrimidine ring interacts with the hydrogen-bond 
pocket, forming hydrogen-bonds between His185 and the bridging nitrogen N1 and between 
Arg265 and the pyridine nitrogen N5. The ring is also largely surrounded by hydrophobic 
residues Val532, Leu172, Leu176, Cys184, and Gly181. The naphthyl (DSM1), anthracenyl 
(DSM2) and phenyl-trifluoromethyl (DSM74) interact with the hydrophobic pocket formed 
by residues Ile237, Leu189, Leu197, Met536, Phe227, and Phe188. In addition, there is an 
edge to face stacking interaction between Phe227 and Phe188, which contributes to the 
potent binding of the inhibitors. An ordered water molecule, W15, which was included in 
the structure used for docking, mediates a hydrogen-bond between the inhibitors and 
hydroxyl group of Tyr528. Based on this analysis, the hit compounds were filtered using the 
following criteria: (i) The compound should have at least one hydrogen-bond interaction 
with His185, Arg265 and W15 in the hydrogen-bond pocket; (ii) The compound should have 
a hydrophobic aromatic group facing towards the hydrophobic pocket. Of the 809 hits, 235 
compounds satisfied these criteria.

In order to ensure the identification of new and structurally diverse PfDHODH inhibitors 
and to probe the structural novelty of selected compounds, molecular similarity assessment 
and cluster analysis were performed for the 235 selected compounds and known PfDHODH 
inhibitors (Figure S3). Structurally diverse compounds that had a Tanimoto coefficient (Tc) 
similarity of ≤ 0.6 compared with known PfDHODH inhibitors were selected for further 
testing. Based on the binding orientation, structural diversity and availability of each sample 
from the NCI Chemotherapeutic Agents Repository, 39 compounds were initially shipped 
and tested for in vitro activity against PfDHODH and a chloroquine sensitive strain of P. 
falciparum (PfNF54) based on the parasite lactate dehydrogenase assay. The topological 
similarities (Tc) of the selected compounds compared with known inhibitors varied from 
0.59 to 0.09 and the average similarity was 0.23 (Tc of 1.0 indicates identical 2D structures). 
In addition, the selected compounds were compared to known 100 active compounds (Table 
S2) varied from the maximum similarities from 0.53 to 0.12 and the minimum similarities 
from 0.09 to 0.03 (Table S3). These analyses show that the selected candidates had new 
chemotypes.

3.2.3 In vitro testing against PfDHODH—The 39 virtual hits were evaluated in vitro 
using a colorimetric PfDHODH enzyme assay that measures DHODH activity by 
monitoring the reduction of 2, 6-dichloroindophenol. IC50 values were determined for 
compounds that showed at least 30% PfDHODH inhibition at a concentration of 10 μM in 
initial inhibition assays. DSM265, a clinical candidate with an IC50 value of 0.008 μM, was 
used as reference compound. Seven of 39 compounds resulted in 25-65% PfDHODH 
inhibition at a concentration of 10 μM (Table 4). Compound NSC332161 exhibited 65% 
inhibition at a concentration of 10 μM and had an IC50 of 5.1 μM. Compound NSC85749 
and NSC72405 showed 46 % and 30 % inhibition at a concentration of 10 μM, respectively, 
and had IC50 of >100 μM. NSC85749 was moderately active at concentrations above 30 μM. 
The remaining compounds were poor PfDHODH inhibitors displaying <25 % of inhibition 
at an inhibitor concentration of 10 μM (Table 5 and Tables S4 and S5).

To increase the structural diversity of the compounds, an additional 23 compounds with 2D 
similarity to NSC332161, NSC85749 and NSC72405 were obtained from the 235 hits of 
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structure-based virtual screening of NCI. The most active inhibitors within the new set of 
compounds were NSC336047 and NSC343533 which displayed 93% and 50% enzyme 
inhibition at a concentration of 10 μM and exhibited IC50 values of 0.38 and 20 μM, 
respectively (Table 4). NSC336047 was evaluated for species-selectivity against hDHODH: 
it displayed an IC50 value of >100 μM for hDHODH, indicating that it is highly species 
selective. A771726, a hDHODH specific inhibitor with an IC50 value of 0.45 μM, was used 
as the reference compound.

3.2.4 In vitro testing against PfNF54—Antiplasmodial activities of all selected 
compounds were evaluated against a Chloroquine sensitive strain of P. falciparum NF54 
(PfNF54) based on the parasite lactate dehydrogenase assay (Supporting information) and 
[3H] hypoxanthine incorporation assay (Supporting information). Chloroquine and 
Artesunate, potent antimalarial drugs, was used as positive controls in both assays. 
Chloroquine and Artesunate showed IC50 values of 0.013 μM and 0.010 μM, respectively in 
the lactate dehydrogenase assay while IC50 values for Chloroquine and Artesunate were 
0.012 μM and 0.009 μM, respectively in [3H] hypoxanthine incorporation assay. 
NSC336047, NSC332161 and NSC343533 showed antiplasmodial activity with IC50 values 
of 26.28 μM, 23.37 μM and >35.29 μM, respectively (Table 4). In addition, thirteen 
compounds [nine compounds (Table S4) and four compounds (Table 5)] showed IC50 values 
of <50 μM against PfNF54 and other compounds showed IC50 values of >50 μM (Table S5). 
Amongst them, four compounds, which displayed very low activity in PfDHODH inhibition 
assays, exhibited inhibitory activities against parasite growth in the range of 5-12 μM (Table 
5) suggesting that they have a different mechanism of action. Further experimental work is 
required to elucidate the targets of these 4 compounds.

3.2.5 Binding mode of the hits—In order to gain insight into the binding mechanism of 
the three compounds identified, their binding modes in the active site of PfDHODH were 
investigated. The predicted binding modes of the three PfDHODH inhibitors are shown in 
Figure 7. The docking results showed that all three hit compounds adopt very similar 
orientations within the active site and engage in similar interactions. The dimethyl aniline of 
NSC336047 (IC50=0.38 μM), the benzodioxole of NSC332161 (IC50=5.1 μM) and the 
indole of NSC343533 (IC50=20 μM) fit well into the hydrophobic pocket, making favorable 
hydrophobic interactions with residues Phe188, Leu189, Leu197, Phe227, Ile237, Leu240 
and Met536 (Figure 7). In addition, there is likely an edge-to-face π-π stacking interaction 
between the Phe188/Phe227 and the phenyl ring of these three compounds, which could 
enhance the potency of the compound.

The hydrophilic part of carboxylic ethyl ester moieties occupies the hydrophilic site of 
PfDHODH, forming a hydrogen-bond interaction with residue Arg265. In addition, the ester 
moiety of both NSC336047 and NSC332161 forms hydrogen-bond with a crucial water 
molecule (W15) (Figure 7). NSC343533 does not interact with W15 as one of its carboxylic 
ethyl ester moieties is replaced with C≡N [Figure 7 (E) and (F)]. The bridging nitrogen 
atom in all three compounds forms an additional hydrogen-bond with His185. Interactions 
with the His185 have been shown to contribute to the species-selectivity of inhibitors for 
PfDHODH over hDHODH 26. Additionally, many residues around the inhibitor binding site 

Pavadai et al. Page 13

J Chem Inf Model. Author manuscript; available in PMC 2017 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



make hydrophobic contacts with the inhibitors as shown in Figure 7 (B), (D) and (F). The 
weaker PfDHODH activity observed for NSC343533, compared to the other two active 
compounds, may be due to the absence of a hydrogen-bond interaction with W15 and the 
lengthy linker between indole and NH. A comparison of three hit compounds with inactive 
compounds indicates that the bridging nitrogen is essential for both selectivity and activity 
for PfDHODH. The inactive molecules may be inactive because they do not adopt the same 
binding mode as the active compounds.

To explore the structural basis for the observed species selectivity of NSC336047, the 
compound was docked into the active site of hDHODH (PDB: 1D3G)51 using the Glide XP 
and Prime/MMGBSA protocols and aligned to the docked PfDHODH-NSC336047 inhibitor 
complex [Figure 8 (A)]. The binding affinity of NSC336047 to PfDHODH was high with a 
Glide XP docking score of −9.1 kcal/mol and Prime/MM-GBSA binding energy of −88 
kcal/mol (Table 4), while it showed slightly decreased affinity towards hDHODH with a 
Glide XP docking score of −8 kcal/mol and Prime/MM-GBSA binding energy of −75 kcal/
mol, suggesting that the NSC336047 favorably binds to PfDHODH than to hDHODH. The 
better docking score and binding energy for the PfDHODH-NSC336047 is due to the amino 
acid replacements in the binding site. As shown in Figure 8 (A), the carboxylic ethyl ester 
moiety of NSC336047 binds to both PfDHODH and hDHODH in a similar manner. 
However the dimethyl aniline binds in a completely different position in hDHODH from 
PfDHODH. The differential binding conformation of dimethyl aniline in hDHODH is 
because Leu172, Phe188, Leu240 and Met536 in PfDHODH are replaced by Met43, Ala59, 
Met111 and Pro364 in hDHODH. The bridging nitrogen atom of the compound forms a 
hydrogen-bond with Ala55 in hDHODH instead of a hydrogen-bond with His185 as 
observed in the PfDHODH. An additional hydrogen-bond was also observed between 
Arg136 (corresponding Arg265 in PfDHODH) and the carbonyl group of NSC336047. The 
comparison suggests that the amino acid replacements, the absence of a hydrogen-bond of 
His185 and π-stacking interaction of Phe188/Phe227 with NSC336047, provides a basis for 
the weak inhibitory activity against hDHODH..

In addition, PfDHODH-NSC336047 complex was compared to the crystal structures of 
PfDHODH bound to the human-specific inhibitor A771726 (PDB ID: 1TV5)50 and malaria-
specific inhibitor triazolopyrimidine DSM1 (PDB ID: 3I65)26 [Figure 8 (B)]. The 
superimposition shows that all three classes of inhibitors nicely overlap in the hydrogen-
bond pocket that forms hydrogen-bond interactions with His185 and Arg265. NSC336047 
interacts with the hydrophobic pocket in the same manner as the triazolopyrimidine (DSM1) 
and also forms a likely stacking interaction between NSC336047 and Phe188/Phe227 
[Figure 8 (B)], as in the case of DSM1, which has been suggested to contribute to the strong 
binding of inhibitors.26 However, A771726 occupies a different hydrophobic pocket owing 
to the altered conformation of Phe188 [Figure 8 (B)], explaining the poor activity of A77 
1726 against hDHODH.50

To further investigate the species selectivity of NSC336047, the docked complex of 
PfDHODH-NSC336047 was aligned to the crystal structure of hDHODH bound to 
brequinar (PDB ID: 1D3G)51, a hDHODH specific-inhibitor [Figure 8(C)]. The alignment 
suggests that the selective binding of NSC336047 to PfDHODH is due to the previously 
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mentioned amino acid replacements Met43, Ala59, Met111 and Pro364 in hDHODH for 
Leu172, Phe188, Leu240 and Met536 in PfDHODH as shown in Figure 8 (C). The replaced 
residues, Phe188 and Met536 in PfDHODH, block access of brequinar into the binding 
pocket, thus hindering binding to the PfDHODH structure17, 26 and providing the structural 
basis for the poor inhibitory activity of brequinar against the malarial parasite enzyme.

3.2.6. Novelty analysis—The structural similarity of the nine compounds in Table 4, the 
four compounds in Table 5 and nine compounds (Table S4) identified in this study were 
analyzed using SciFinder (SciFinder; American Chemical Society, 2015) and compared to 
known PfDHODH inhibitors in ChEMBL. 53 These databases contain compounds that are 
annotated based on patents and primary scientific literature. SciFinder indicated that all 
these compounds have not been reported as either PfDHODH inhibitors or antimalarial 
compounds. The results of the analysis with ChEMBL showed varying degrees of 
similarities with Tc values ranging from 0.67 to 0.15 (Supplemental Table. S6). The three 
PfDHODH inhibitors, NSC336047, NSC332161 and NSC343533, had maximum Tc 
similarities of 0.67, 0.59 and 0.47, and minimum similarities of 0.04, 0.06 and 0.04, 
respectively when compared with previously reported PfDHODH inhibitors in ChEMBL 
(Table S6). While the novelty analysis indicates that these compounds share structural 
similarity with known PfDHODH inhibitors, these compounds have not previously been 
reported as PfDHODH inhibitors. The four PfNF54 inhibitors (Table 4) and nine inhibitors 
(Table S4) had maximum Tc similarities of 0.61 and 0.59, with minimum similarities of 0.03 
and 0.03, respectively when compared with ChEMBL PfDHODH compounds 
(Supplemental Table S6). This analysis shows that these compounds have also not been 
previously reported as antimalarial compounds.

4. Conclusions

Over the past decades, there have been several advances in the treatment and control of 
malaria. Nevertheless, there is still an urgent need for the discovery and development of 
potent antimalarial drugs that are able to circumvent parasite resistance. The PfDHODH has 
emerged as a promising selective target for the development of novel therapeutics for 
malaria as it plays an essential role in de novo pyrimidine biosynthesis. However, limited 
effort has gone into the development of more effective and selective inhibitors for 
PfDHODH. To address this we have identified new PfDHODH inhibitors using a 
combination of pharmacophore and structure-based approaches to screen the NCI database. 
3D QSAR pharmacophore models were developed for PfDHODH dihydrothiophenone 
inhibitors and the top validated model was used as a virtual screening filter. The hit 
compounds were further prioritized using docking studies and MMGBSA binding free 
energy calculations. The virtual screening resulted in the identification of nine hit 
compounds that inhibited PfDHODH by >25% at a concentration of 10 μM, three of which 
had IC50 ≤ 20 μM. The most active compound showed the species-selective inhibition for 
PfDHODH (IC50 = 0.38 μM) over hDHODH (IC50 ≥ 100 μM). Thirteen compounds 
inhibited growth of the Pf NF54 parasite with IC50 values of <50 μM, of which four had 
IC50 values between 5-12 μM. To the best of our knowledge, these compounds have not 
been reported previously as PfDHODH and P. falciparum parasite growth inhibitors.
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This study demonstrates that the adopted virtual screening strategy is capable of scaffold 
hopping of already known chemotypes into previously unexplored regions of chemical 
space. Therefore, the presented virtual screening approach may be used in the hit 
identification rather than lead optimization. In addition, it could be expected that the 
systematic SAR analysis of identified hit compounds in the study may be useful for the 
identification and development of more potent PfDHODH and parasite growth inhibitors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Species selective inhibitors of PfDHODH with submicromolar activity.
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Figure 2. 
The 3D-spatial relationship and geometric parameters of the Hypo1 model. Distance 
between pharmacophore features is reported in angstroms. Features are color-coded with 
green for hydrogen bond acceptor (A), light-blue for hydrophobic aliphatic (H) and orange 
for ring aromatic (R).
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Figure 3. 
(A) Hypo1 mapping with the most active compound 7 (IC50=6 nM). (B) Hypo1 mapping 
with the least active compound 25 (IC50=39450 nM) from the training set. Pharmacophore 
features are color-coded with green for a hydrogen-bond acceptor feature (A), light-blue for 
a hydrophobic-aliphatic feature (H) and orange for a ring-aromatic feature (R).
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Figure 4. 
Comparison of Hypo 1 with 19 randomly generated hypotheses at the 95 % confidence level. 
The Hypo1 has a significantly lower cost value than all random models.
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Figure 5. 
Schematic representation of virtual screening strategy adopted in this study.
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Figure 6. 
Superimposition of docked pose (pink color) and crystal bound pose (cyan color) of DSM1 
inhibitor in the active site of PfDHODH. The conserved water molecule (W15) which 
mediates a hydrogen bond between the ligand and the binding site is shown as stick model. 
These figures were prepared using PyMOL (http://www.pymol.org/).52

Pavadai et al. Page 26

J Chem Inf Model. Author manuscript; available in PMC 2017 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.pymol.org/


Figure 7. 
Predicted binding modes and schematic 2D interaction representation are shown for 
NSC336047 (A&B), NSC332161 (C&D), and NSC343533 (E&F) bound to PfDHODH. 
Binding poses were obtained by Glide XP. The bound inhibitors are shown in green sticks 
and residues close to the inhibitors are shown in cyan color in A, C and E. The hydrogen 
bonds are shown by red dashed lines. For 2D interaction map (B, D and F), the residues 
involved in positive and negative charge interactions are represented by red and blue-colored 
circles, respectively. The residues involved in hydrophobic and polar interaction are 
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represented by green and cyan circles, respectively. Hydrogen-bond interactions with amino 
acid side chains are represented by a pink dashed line with an arrow head directed toward 
the electron acceptor. Figures (A), (C) and (E) were prepared using PyMOL (http://
www.pymol.org/).52
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Figure 8. 
Comparison of the PfDHODH-NSC336047 complex with structures of hDHODH-
NSC336047, PfDHODH-DSM1 (PDB: 3I65), PfDHODH-A771726 (PDB: 1TV5) and 
hDHODH-Brequinar (PDB ID: 1D3G) complexes. (A) PfDHODHD-NSC336047 (green) 
aligned with hDHODH-NSC336047 (pink). (B) PfDHODH-NSC336047 (green) aligned 
with the crystal structures of PfDHODH-DSM1 (cyan) and PfDHODH-A771726 (orange). 
(C) PfDHODHD-NSC336047 (green) aligned with hDHODH-Brequinar (wheat). Residues 
close to the bound inhibitor are displayed. The hydrogen bonds are shown by red dashed 
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lines. Inhibitors are displayed as stick. These figures were prepared using PyMOL (http://
www.pymol.org/).52
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Table 1

Information and predictive power presented in cost values calculated in bits for ten pharmacophore hypotheses 
generated by the HypoGen for PfDHODH inhibitors.

Hypothesis no
a

Training set

Test set correlation (r)
d

Total cost Cost difference
b RMS (Å) Features

c
Correlation (r)

d

Hypo1 87.759 110.978 1.385 AAHR 0.935 0.933

Hypo2 87.840 110.897 1.387 AAHR 0.935 0.909

Hypo3 89.419 109.318 1.361 AAHR 0.938 0.865

Hypo4 90.271 108.466 1.433 AAHR 0.930 0.901

Hypo5 109.474 89.263 2.081 AAHR 0.845 0.906

Hypo6 109.949 88.788 2.085 AAHR 0.844 0.899

Hypo7 111.768 86.969 2.131 AAHR 0.836 0.863

Hypo8 111.897 86.840 2.138 AAHR 0.835 0.899

Hypo9 114.552 84.185 2.203 AAHR 0.824 0.772

HypolO 115.501 83.236 2.227 AAHR 0.820 0.876

a
Pharmacophore hypotheses generated from PfDHODH inhibitors and ranked according to HypoGen cost criteria.

b
Cost difference between the null and the total cost. The null cost, the fixed cost, and the configuration costs for 10 hypotheses are 198.737, 68.274 

and 11.991, respectively. All cost units are in bits.

c
Abbreviations used for features: A, Hydrogen bond acceptor; H, Hydrophobic aliphatic; R, Ring aromatic.

d
The correlation coefficient values between the estimated bioactivities and the bioactivities of the training set and test set compounds.
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Table 2

Experimental and predicted activities of the training set compounds based on the pharmacophore model Hypo 
1.

Compound no. Experimental IC50 (nM) Predicted IC50 (nM) Error
a

Fit Value
b

Experimental scale
c

Predicted scale
c

7 6 20.47 3.41 9.63 +++ +++

8 18 24.47 1.36 9.56 +++ +++

9 20 39.12 1.96 9.35 +++ +++

10 33 57.61 1.75 9.18 +++ +++

11 65 85.85 1.32 9.01 +++ +++

12 79 42.18 −1.87 9.32 +++ +++

13 92 37.01 −2.49 9.38 +++ +++

14 142 54.35 −2.61 9.21 +++ +++

15 227 1017.34 4.48 7.94 +++ ++

16 256 265.38 1.04 8.52 +++ +++

17 392 248.26 −1.58 8.55 +++ +++

18 1238 6180.89 4.99 7.15 ++ ++

19 3662 11238.60 3.07 6.89 ++ +

20 4159 1309.96 −3.17 7.83 ++ ++

21 5733 4465.80 −1.28 7.29 ++ ++

22 13210 13445.60 1.02 6.82 + +

23 19114 14680.10 −1.30 6.78 + +

24 35572 3989.74 −8.92 7.34 + ++

25 39450 21685.30 −1.82 6.61 + +

a
The ratio between the predicted and experimental values. ‘+’ indicates that the estimated IC50 is higher than the experimental IC50; ‘−’ indicates 

that the estimated IC50 is lower than the experimental IC50; a value of 1 indicates that the predicted IC50 is equal to the experimental IC50.

b
Fit value indicates how well the features in the pharmacophore overlap the chemical features in the molecule.

c
Experimental activity scale: +++, IC50 < 1000 nM (most active); ++, 1000 nM ≤ IC50 < 10,000 nM (moderately active); +, IC50 ≤ 10,000 nM 

(least active).

J Chem Inf Model. Author manuscript; available in PMC 2017 March 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pavadai et al. Page 33

Table 3

Statistical parameter from pharmacophore-based virtual screening using Hypol

Parameter Values

Total molecules in database (D) 246577

Total number of actives in database (A) 100

Total Hits (Ht) 50,211

Active Hits (Ha) 95

% ratio of actives [(Ha/A) × 100] 95

Enrichment factor (EF)
a 4.66

a
EF = [Ha × (D+A)] ÷ (Ht × A)62
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Table 4

Nine new compounds that showed >25 % inhibition against PfDHODH, and their inhibitory activities (IC50) 

against PfDHODH and PfNF54, Glide XP, MM-GBSA and pharmacophore fit scores.

NCI ID Structure

% 
PfDHODH 
Inhibition 
at 10 µM

PfDHODH IC50 (µM) PfNF54 IC50 (µM)

Scores

XP (kcal/mol) MM-GBSA (kcal/mol) Fit value

NSC336047
* 93 0.38

26.28
a −9.07 −88.41 9.83

NSC332161 63 5.1
23.37

a −10.32 −80.19 9.70

NSC343533
* 50 20

>35.29
a −8.98 −78.19 9.55

NSC85749 46 >100
>34.51

a −8.43 −69.65 9.67

NSC72405 30 >100
42

b −10.39 −78.45 9.65

NSC85231 28
ND

c
54

b −7.51 −51.66 9.64

NSC87887 28 ND
>285

b −10.32 −54.41 9.84

NSC58504 26 ND
>482

b −8.46 −52.51 9.10

NSC89636 26 ND
>295

b −11.07 −44.13 9.69

*
Compound obtained by similarity analysis

a
Screening method based on the [3H] hypoxanthine incorporation assay

b
Screening method based on the parasite lactate dehydrogenase assay

c
ND: not determined
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Table 5

Four new compounds that showed <12 μM (IC50) against PfNF54, and their % PfDHODH inhibition, Glide 

XP, MM-GBSA and pharmacophore fit scores.

NCI ID
* Structure

% 
PfDHODH 
Inhibition 
at 10 µM

PfDHODH IC50 (µM) PfNF54 IC50 (µM)
a

Scores

XP (kcal/mol) MM-GBSA (kcal/mol) Fit value

NSC 116824 3
ND

b 5.07 −9.84 −74.03 9.34

NSC165287 11 ND 6.18 −8.71 −58.87 9.20

NSC137121 0 ND 11.34 −9.48 −90.69 9.69

NSC340225 3 ND 12.03 −9.84 −74.03 9.78

*
Compound obtained by similarity analysis

a
Screening method based on the [3H] hypoxanthine incorporation assay

b
ND: not determined
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