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IDENTIFICATION OF NOISY LINEAR SYSTEMS WITH MULTIPLE ARMA INPUTS

by Harry H. Tigelaar

In this paper we give conditions for identifiability of the parameters

of a linear system that is disturbed by moving average noise, where the

inputs are generated by a multivariate ARMA-process. The identifiability

is based on finite samples from in- and output.

1. INTRODUCTION

IN ORDER to avoid messy notation we shall use the lag-operator L when

there is no impact on mathematical rigor. Consider the model

(1) A(L)yt - B(L)xt t C(L)Et (t ~ ~),

where {xt} is an m-variate weakly stationary (observable) process of in-

puts, {yt} is the (observable) scalar output process and {et} is a(non

observable) white noise sequence with Eet - 0 and E~,Eti2 - a2 ~ 0.

Furthermore, A(z) - F.k-~ akzk and C(z) - Eq-~ ckzk are scalar polynomials

with aU - c0 - 1 and B(z) - F'k-O zk is a lXm matrix of polynomials.

Usually the processes {xt} and {Et} are supposed to be independent, but

since we are mainly concerned with second-order properties, we shall only

assume orthogonality.

The integers p, q and r are supposed to be a priori known. We are in-

terested in second-order informative samples for (A(z), B(z), a2), (see

[4, Ch. 1] or LS]). If the samples (xa,xa}1,...,xb) and (Yc'yctl'-~-'yd)
are jointly second-order informative for a function ~ of the unknown pa-

rameters of the system, then we shall say that the Sampl2n~-SCheme

~ a,b';c,d ~ is second-order informative for ~.

Notice, that {xt} and {yt} are jointly weakly stationary processes since

{xt} and {et} are orthogonal. Therefore any sampling scheme admits a

shift in time .

Although we are only interested in identifiability with respect to finite

samples, our main tool wi11 be the analysis of spectral density matrices.

Therefore we can, without complicating de discussion, all variables and
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coefficients allow to take complex values, and we shall transposition of

a matrix or vector always combine with complex conjugation, denoted by an

asterisk.

2. PRELZMINARY RESULTS

Suppose that A(z) has no zeros on izl - 1.

Let f denote the spectral density matrix of the input process {xt}. Then
x

it follows from the orthogonality of the processes {xt} and {et} that

the joint spectral density matríx of the process {(yt,xt)} is

where

f x

~
B(1-ia)fXh) B (e-i ) Q2 ~C(e-i~)

(2) fy(~) - ~A(e-ia)I2 } zn IA(e-ia)

and

2

, (- ~ ~ a ~ T~)

(3) gxy(a) - lia B(e-ia)fx(a). (- n ~~ ~ n) .
A (e )

Before we can deal with the qeneral case with ARMA-inputs, we sha11 derive

an informative sampling scheme for the case that we have MA-inputs. Thus

we have

~
(4) fx(~) - Z~ Q(e-ia)~ Q(e-1 ), (- ~r ~ a ~~r),

where Q is a polynomial with Q(0) - I (the mXm unit matrix), and S2 is
m

some unknown, hermitian positive definite matrix. The degree of Q is a

priori known not to exceed some known integer w. It is well known that a

sample of size wtl from the process {xt} is second-order informative for

f and if det Q(z) is supposed to have no zeros in Izi ~ 1 it is also
x
second-order informative for (Q(z),S2) (see [4, th. 3.3.1]).
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LEhIMA 1: Let U(z) and V(z) be polynomials of degree u and v respectiveZy,

and V(O) ~ 0. Then the rationaZ funetion U(z)~V(z) is uniquely determined

by its first u t v f 1 Taylor coefficients.

PROOF: Suppose there exist U(z) and V(z) satisfying the conditions of

the lemma, such that U(z)~V(z) has the same first u t v t 1 Taylor

coefficients as U(z)~V(z). Then we can write

~
U(z) U(z) ~ ~ zJ
V(z) - V(z) - j-utvt1 J

for all z in some annuluso9 around the origin.

-u-v-1xence z [U(z)~V(z) - U(z)~V(z)] is holomorphic on~1i and so is

z-u-v-1[U(z)V(z) - U(z)V(z)].

This, however, is a contradiction since degree [U(z)V(z) - U(z)V(z)] ~

u t v.

We can now state the following theorem.

THEOREM. 1: Suppose A(z) ~ 0, ~z~ ~ 1 and Zet the inputs be generated by

an m-variante MA(~) process with a.e. positive definite spectral density

matrix. Then the sampZing scheme ~ O,~~O,t~frtp ~ is second-order in-

formative for the rationaZ function B(z)~A(z).

PROOF: Let the spectral density matrix of the input process be given by
,~

(4). Notice that fx(a) is the boundary value of the function Q(z)S2 Q(-)
z

and that zwQ(z)S: Q~`(1) is a(scalar) polynomial of degree ~ 2w.
z

We have

~
Tk'- E yt xt-k -

fn~ eik gx (a)da -
Y

1 -k-1-w B(z) w ~ 1
- 2~ri f z~ 1 z A(z) [z

Q(z)S2 Q(-) ] dz, (k E~).
~ 1- z

a

Since A(z) has no zeros for Iz~ ~ 1, the rational function
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~(z) - B(z)~A(z)[zwQ(z)~ Q~(1)) is holomorphic (component wise) on
z

Izl ~ p for some p~ 1 and so the sequence {Tk}k--w is the sequence of

Taylor coefficients of ~(z).

Hence, by lemma 1, ~(z) is uniquely determined by T-w,T-wti,...,iwtrt .P
Consequently, the sampling scheme ~ O,w~O,wtrtp ~ is second-order in-

formative for ~(z). On the other hand, the sampling scheme ~ O,wjO,wtrtp

is second-order informative for e-lw~f (a) i.e. the boundary value of
x

w ~ 1z Q(z)~ Q(-). But then it is also second-order informative for
z

i
B(e-1~~)~A(e-1 ) (because f~ 0 a.é.) and since B(z)~A(z) is uniquelyx
determined by its values on Izl - 1(since B(z)~A(z) is holomorphic on

~z ~ p), it follows that it is second-order informative for B(z)~A(z). o

For the next step we rewrite the model (1) as

(5) A(L)ut - C(L)et, (t C7L),

where

(6) ut - yt - A-1 (L) B(L)xt, (t .'. ~) .

Notice, that the expression A-1(L) only makes sense when A(z) is supposed

to have no zeros in ~zl ~ 1.

If the process {ut} were observable, a sample of size ptqtl would be

sufficient for identifying (A(z), C(z), a2) since we could apply the

theorem on ARMA (p,q) processes in [4, th. 2.5.3]. However, even if

B(z)~A(z) is identified, a finite sample from {ut} requires the obser -

vation of an infinite sequence of the process {xt},

Let ys - E ut ut-s, (t,s ~ TG).

LEMMA 2: Under the conditions of theorem 1, the sampZing scheme

~ O,max(~,pfqtr)~O,pfrfmax('r~,q) ~ is second-order informative for the

sequence {ys}.

PROOF: Let ut - yt - A-1(L)B(L)xt, (t ~ 7L),

where
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x if t ~ 0
t

Xt -

0 if t ~ 0

Then ut - ut t A-1(L)B(L)(xt - xt), (t ~~),

and ut - ut if t~ r. Hence for s- O,l,...,ptq

vt s- E ut ut-s - Ys,

if t~ ptqtr. Thus, if {ut} were observable, the sample (ur,ur}1,...,up}q}r)

would be second-order informative for (yg,yl,...,yp}q). But then it follows

that the sampling scheme ~ O,ptqtrlr,ptqtr ~ is second-order informative

for (y~,y1,...,Yptq) conditional on A-1(z)B(z) (see [4, p. 11], or [5]

where the concept of conditional identifiability is introduced).

Since the sequence {ys} is uniquely determined by (Y~..--~Yptq) (see [4,

th. 2.5.2]) it follows that the sampling scheme ~ O,ptqtr~r,pfqtr ~ is

second-order informative for {y } conditional on A-1(z)B(z). Since the
s

sampling scheme ~ O,w~O,wtrtp ~ is second-order informative for A-1(z)B(z)

by theorem 1, it follows by the conditional identification theorem ([4,

th. 1.2.3]) that the sampling scheme ~ O,max(w,pfqtr)IO,ptrtmax(w,q) ~

is second-order informative for {ys}. a

THEOREM 2: Let the conditions of theorem 1 be satisfied, and suppose

C(z) ~ D, ~z~ ~ 1. Then the sampling scheme ~ O,max(w,prqfr)~O,ptrtmax(~,q) ~

is second-order í.nformative for (a2,C(z)~A(z)).

PROOF: From ( 5) we see that {ut} is an univariate ARMA ( p,q) process with

spectral density

f (~) -
a2 ~C(e-ia)

u 2n IA(e-ia)

2

( - ~r ~ a ~ n ) .

By lemma 2 we know that the sampling scheme is second-order informative

for the covariance function {Ys} and so it is also second-order informa-

tive for f. Since A(z) has no zeros in ~z~i ~ 1, the function C(z)~A(z)
u
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is holomorphic on Iz~ ~ p for some p~ 1. But then f determinesu
Q C(z)~A(z) uniquely (see [4, lemma 2.1.1]) and since C(0) - A(0) - 1,

both a2 and C(z)~A(z) are uniquely determined by fu. This proves the

theorem. o

THEOREM 3: Let the conditions of theorem 2 be satisfied, and suppose

(A(z),Bíz),C(z)) ~ 0 for aZZ z. Then the sampZing scheme

~ O,max(~,pfqfr)~O,ptrtmax(r~,q) ~ is second-order informative for

(a2,A(z),B(z),C(z)).

PROOF: From theorems 1 and 2 we obtain, that the samplíng scheme given in

the theorem is second-order informative for (a2,B(z)~A(z),C(z)~A(z)).

Since (A(z},B(z),C(z)) ~ 0 for all z, it follows that A(z) cannot

have a factor in common with all components of (B(z),C(z)). This

implies that A(z) can be determined uniquely from (B(z)~A(z),C(z)~A(z)),

and so it is identified. But then also B(z) and C(z) are identified and

the theorem is proved. o

3. ARMA INPUTS

Let the m-variate input process be generated by

(7) P(L)xt - Q(L)rit (t E7L),

~
where {nt} is m-variate white noise with ~n - E kt nt '~- The mxm matrix

polynomials P(z) - En P zk and Q(z) - Ew Q z are unknown, the in-
k-0 k k-0 k

tegers n and w are known. Although we are primarily interested in the

system (1), we shall suppose that a sample of size N from the process {xt}

is second-order informative for P(z). For sufficient conditions and the

determination of N we refer to [4, Ch. 3]. In the special case of m in-

dependent univariate ARMA inputs, the conditions are simpler and N can be

smaller; see [4, Ch. 2]. Strictly spoken it is not necessary to have

identifiability of Q(z); compare the case with MA-inputs.

Put zt - P(L)xt, (t E~). Then, clearly {zt} is not observable since P(z)

is unknown. However, if a sample of size np from {zt} were second-order
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informative for some unknown parameter, then a sample of size n0 t n

from {xt} is second-order informative conditional on P(z) for that para-

meter. On the other hand, a sample of size N from {xt} was supposed to

be second-order informative for P(z) and so, by the conditional identi-

fication theorem ([4, th. 1.2.3]) a sample of size max(N,n~tn) of {xt}

is secon3-order informative for that parameter. Thus we may consider {zt}

as observable, but we must keep in mind, that the sampling scheme

~ a,blc,d ~ for {zt,yt} corresponds to ~ a-n,b~c,d ~ for {xt,yt}.

The discussicn above enables us to reduce the problem with ARMA-

inputs to the problem with MA-inputs. Before we state and prove the final

theorem, we sha11 list the restrictions on unknown parameters, which will

be used to identify the system (1) with inputs generated by (7).

IDENTIFIABILITY CONDITIONS

(A) A(z) ~ 0, ~z~ ~ 1,

(B) C(z) ~ C, Íz~~ ~ 1,

(C) (A(z),B(z),C(z)) ~ 0, z E ~,

(D) det P(z) ~ 0, ~~z~', ~ 1,

(E) Any set of conditions guaranteeinq a sample of size N from {xt}

to be second-order informative for P(z)

~
(F)

Q(e-i.~)~ Q ( e-i ) ~ 0 a.e.

We can now prove

TNEONEM 4: Under the conditions (A)-(F) the samplin,q scheme

~ -n,max(N-n-Z,t~,pfqfrfn(3m-I)~O,ptrfn(2m-1)fmax('rv,qtnm) ~ is second-

order informative for (A(z),B(zJ,C(z),a2).

PROOF: Let Adj P(z) denote the adjoint matrix polynomial of P(z),
-1

Adj P(z) - P (z)det P(z). Since its elements are determinants of
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(m-1)X(m-1) sub-matrices of P(z), it follows that

degree[Adj P(z)] ~ (m-1)n.

Put T(z) - det P(z). Then degree [T(z)] ~ mn and substituting zt - P(L)xt

we can write

(8) T(L)A(L)yt - B(L)Adj P(L)zt t T(L)C(L)Et, (t E~)

Put A(z) - T(z)A(z), degree [A(z)] - p

B(z) - B(z)Adj P(z), degree [B(z)] - r

C(z) - T(z)C(z), degree [C(z)] - q.

We have p ~ ptnm, r ~ rt(m-1)n and q ~ qtnm. Furthermore, {zt} is a

m-variate MA(w) process, which may be considered as observable by the

discussion given above. Since also Á(z) ~ 0, ~iz~ ~ 1 by conditions (A)

and (D), we can apply theorem 1, which for the process {zt,yt} implies

that the sampling scheme ~ O,wlO,wtrt(m-1)ntptnm ~ is second-order in-

formative for B(z)~A(z). Hence, for the process {xt,yt} the sampling

scheme ~-n,max(N-n-l,w)IO,wtrtptn(2m-1) ~ is second-order informative

for B(z)~A(z) and so, by condition (E) for B(z)~A(z).

In a similar way it follows from theorem 2 that (for the process {xt,yt})

the sampling scheme

~ -n,max(P:-n-l,w,ptqtrtn(3m-1)~O,ptrtn(2m-1)tmax(w,qtnm} ~

is second-order informative for (aZ,C(z)~A(z)) -(c2,C(z)~A(z)). Since it

includes the sampling scheme obtained for B(z)~A(z), it follows that it

is also second-order informative for (a2,B(z)~A(z),C(z)iA(z)). But then,

by condition (C), it follows as in theorem 3, that it is second-order

informative for (cZ,A(z),B(z),C(z)). o

REMARK: For n- 0, also N- 0 and the result of theorem 3 is obtained.
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In particular we shall consider the case n~ 1, where

N- wt(mtl)n, which is the informative sample size for the parameters of

the input-process obtained in [4, p. 93]. In that case we have

w ~ N-n-1 - wtmn-1. If w ~ qtnm then also N-n-1 ~ qt2mn-1 ~ p}qtrtn(3m-1)

and the sampling scheme reduces to

~ -n,ptqfrtn(3m-1)j0,pfqtrtn(3m-1) ~

Thus, roughly speaking one can say that under the conditions ( A)...(E),

for {xt,yt} the sample size ptqtrt3nmtl is second-order informative for

the system.

4. DISCUSSION

There are several ways of generalizing the model given by (1). We shall

discuss three of them in a nutshell. At first, we can a11ow for errors in

the variables. Such models were treated by MARAVALL [3] in 1979, who gives

conditions for local identifiability based on infinite samples. Except for

C(z) and o2, there seems to be no real problem in obtaining global results

for finite samples. Second, we can allow more general inputs, e.g. non-

stationary inputs. Generally, difficult problems may arise, but the re-

sults in this paper can easily be generalized to the case of ARIMA inputs.

Finally, consider the multivariate analogue of (1). The infinite sample

case was treated by HANNAN [1] in 1971, and some results on local identi-

fiability were given by KOHN [2] in 1980. However, the finite sample case

presents some problems requiring further research.
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