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Summary. We propose a lag selection method for non-linear additive autoregressive models
that is based on spline estimation and the Bayes information criterion. The additive structure of
the autoregression function is used to overcome the ‘curse of dimensionality’, whereas the spline
estimators effectively take into account such a structure in estimation. A stepwise procedure is
suggested to implement the method proposed. A comprehensive Monte Carlo study demon-
strates good performance of the method proposed and a substantial computational advantage
over existing local-polynomial-based methods. Consistency of the lag selection method based
on the Bayes information criterion is established under the assumption that the observations
are from a stochastic process that is strictly stationary and strongly mixing, which provides the
first theoretical result of this kind for spline smoothing of weakly dependent data.
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1. Introduction

For virtually every time series modelling approach, there is a need to select significant explana-
tory lagged variables. The classic approach is to search for the optimal AR(p) model via criteria
such as the Akaike information criterion (AIC), final prediction error (FPE) or Bayes informa-
tion criterion (BIC); see, for instance, Akaike (1969, 1970). Although the AIC, FPE and BIC
are well-established criteria for selecting significant variables, their proper use is restricted to
data sets that closely follow some linear AR(p) structure. Many of the time series data that are
of practical interest, however, exhibit non-linearity.

Nonparametric methods have found significant applications in modelling non-linearity in
time series since the work of Robinson (1983). Gyorfi et al. (1989) and Bosq (1998) systemati-
cally extended the results of kernel-based smoothing to dependent data under various mixing
assumptions. The important issue of lag selection has also been addressed by using kernel-based
nonparametric extensions. Cheng and Tong (1992), Vieu (1994) and Yao and Tong (1994) used a
cross-validation approach, whereas Tjostheim and Auestad (1990, 1994a) used a nonparametric
version of the FPE criterion of Akaike (1969, 1970), all based on the Nadaraya—Watson esti-
mator. Tschernig and Yang (2000) and Yang and Tschernig (2002) introduced an FPE criterion
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with local linear estimators, with automatic bandwidth choice provided by the method of Yang
and Tschernig (1999).

All the aforementioned lag selection methods based on local polynomial kernels are computa-
tionally intensive owing to the local nature of kernel smoothing, and their ability to identify the
exact set of lags suffers from the ‘curse of dimensionality’. The curse of dimensionality refers
to the inaccuracy when estimating multivariate regression functions nonparametrically. This
limitation has led many researchers to consider an additive form for the regression function as a
compromise between the general nonparametric regression model and the simple linear model
(Stone, 1985; Hastie and Tibshirani, 1990; Yang et al., 1999). Chen and Tsay (1993) suggested
use of the adaptive backfitting BRUTO algorithm of Hastie (1989) to determine the order and
lags of an additive autoregressive model automatically. This method, however, lacks a theoretical
justification, and no systematic simulation study has been done to evaluate its performance.

In this paper we propose a method based on spline estimation and the BIC to select significant
lags in non-linear additive autoregression. The additive structure in the autoregression func-
tion is effectively taken into account through the use of polynomial spline global smoothing.
An extensive Monte Carlo study has demonstrated that our method is computationally fast
and has good accuracy in identifying significant lags. Compared with methods for lag selection
based on local polynomial kernels, our method is simple and easy to implement. Recently, Rech
et al. (2001) proposed a variable selection technique based on polynomial approximations which
shares the same simplicity as our method, although no theoretical justification was provided.
In contrast, the intuitive appeal of polynomial spline smoothing is enhanced in this paper by a
rigorous proof of the consistency of the BIC lag selection rule.

Lewis and Stevens (1991) used the multivariate adaptive regression splines (MARS) of Fried-
man (1991) to build adaptive spline autoregressive models. Although the MARS method can
perform variable selection automatically, its ability to identify the set of significant variables
(or lags) is unclear. In our simulation study, we find that the MARS as well as BRUTO algo-
rithms, using the default values of tuning parameters, tend to overfit, i.e. to select more variables
than necessary in the model. When we adjust the tuning parameters to penalize the degrees of
freedom as strongly as in the BIC (which is not as usually recommended), the performance of
the MARS and BRUTO algorithms improves but is still not as good as our proposed method.
These empirical findings explain in part the lack of theoretical justifications for the MARS and
BRUTO methods for variable selection.

The application of the method proposed is not restricted to non-linear autoregression. In fact,
the general framework of non-linear stochastic regression (Yao and Tong, 1994) is adopted in
this paper. Our method is applicable to selecting significant variables in regression models that
may include endogenous variables (lagged variables) as well as exogenous variables. The consis-
tency of the BIC is established under the assumption that the observations are from a stochastic
process that is strictly stationary and strongly mixing («-mixing). Stronger mixing conditions
(i.e. /-mixing) have been used to show the consistency of the cross-validation or FPE method
in the literature.

We organize our paper as follows. In Section 2 we set up the proper stochastic additive regres-
sion model and formulate the lag selection problem. As necessary preparation, we describe in
Section 3 the polynomial spline estimator for additive regression. In Section 4 the selection of
significant variables (or lags) using spline estimation with the BIC is proposed and the con-
sistency of the BIC is established in Section 5. Section 6 describes an implementation of the
method proposed based on a stepwise procedure. Results of the Monte Carlo study are reported
in Section 7 and an application of the method proposed to quarterly US unemployment rate
time series is given in Section 8. All technical proofs are given in Appendix A.
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2. The model

We adopt the general framework of nonparametric stochastic regression. Let (X;,Y;), t =0,
+1,..., denote a (strictly) stationary time series with X, = (X,1,..., Xss) being R¢ valued
(d > 1) and Y; being real valued. In particular, X; may consist of lagged values of Y;. Let
w(x) = E(Y;|X,=x), x€ R¢, denote the regression function. Then we can write

Yt:M(Xt)+Sla t:Oa ila"'» (1)

with E(g;|X;) =0. When X, consists of lagged values of Y;, model (1) becomes a nonparametric
autoregressive model. The X, can also include some exogenous variables. In this formulation,
g; can be conditional homoscedastic (var(g;|X;) is a constant) or conditional heteroscedastic
(var(&;| X;) is not a constant).

The goal of this paper is to determine, without assuming that p is known, a proper subset
of variables {X,,i €s}, sC{l,...,d}, with the cardinality of s (denoted as #(s)) as small as
possible which provides (almost) the same information on Y; as X; = (X,1,..., X;), i.e.

E(Y;|Xy,ies)=EY:|X,), almost surely.

The variables selected are called significant variables. If X; consists of only lagged values of Y;,
the lags selected are called significant lags. Since we do not assume that the regression function
1 has a known parametric form, our method is nonparametric in nature. It is well known that
nonparametric estimation suffers from the curse of dimensionality. One way to overcome the
difficulty is to impose some structure on the unknown regression function. In this paper we shall
consider additive models. We assume that, for a collection of significant variables, an additive
model holds, and we want to determine the significant variables (or lags) from the data.

3. Additive spline estimation

To select significant variables or lags, we need some nonparametric techniques to estimate the

regression function E(Y;|X;;,i € s) for any candidate subset {X,;,i € s} of significant variables.

This section gives a description of the additive spline estimation method that is used in this paper.

This method has been studied theoretically by Stone (1985, 1994) and Huang (1998, 2001).
An additive model for the regression function p(x) = E(Y;|X; = x) assumes that

d

p(x) = po+ Y pi(x;), (2)
i=1

where p is a constant. For identification, we assume that E{u;(X;)}=0,i=1,...,d, in equa-

tion (2). To fit this model, we approximate each p;(x;) by a spline function and then use the least

squares method. To be specific, we can write

Ji
wi(x) = Y vji Bji(xi), (3)
j=1
where Bj;, j=1,...,J;, is a basis of the space of spline functions for a given degree and knot

sequence. Commonly used bases for spline functions are truncated power bases or B-spline bases
(see de Boor (1978)). Then, for a sample (X;,Y;), r=1,...,n, we minimize over {uo,vji, j=
I,...,Ji,i=1,...,d} the criterion

d J; 2
Z{Yz—ﬂo—z Z'in Bji(Xti)} . 4

t i=1 j=1
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Denote the minimizers as fip and 4j;, j=1,...,J;,i=1,...,d. The spline estimate of p is given
by
~ A d A
fx) = fio+ Y f1i(x) ®)
i=1
where

Ji
fii(x;) = Zl vji Bji(xi).
j=

The success of the spline method is because polynomial splines provide good approxima-
tions to smooth functions. Indeed, quite accurate approximations can be achieved in expression
(3) by increasing the number of knots, provided that y; satisfies some smoothness condition
(see, for example, chapter XII of de Boor (1978)). By letting the number of knots or, equiva-
lently, the number of terms in expression (3) increase with the sample size, the spline estimate
is consistent (Stone, 1985; Huang, 1998, 2001) in estimating any additive function with smooth
components.

This estimation method is very easy to implement. After the basis functions have been chosen,
operationally the problem reduces to a parametric linear regression problem. Standard efficient
algorithms (see Miller (2002)) for linear least squares regression can be employed for fitting the
additive model. The simplicity of this method is advantageous for our purpose, since variable
(or lag) selection requires fitting and comparing many candidate additive models. Alternative
methods for fitting additive models such as the backfitting algorithm (Buja et al, 1989) and
the integration method (Tjestheim and Auestad, 1994b; Linton and Nielsen, 1995; Masry and
Tjestheim, 1997; Mammen et al., 1999) can also be applied, but their use for variable selection
is not as straightforward as our simple spline method.

4. Selection of significant variables

Consider the variable (or lag) selection problem for additive models. We assume that, for some
index set so C {1,...,d}, the actual regression function u(x) = E(Y;|X; =x), x=(x1,...,Xq), IS
an additive function in x;,i € sg. If such an s exists, for any s satisfying so CsC {1, ....d}, u(x)
is also an additive function in x;, i € s. We thus assume that sy has the smallest cardinality among
sets with the specified property.

To give a more formal definition of the set of significant variables, we assume that the regres-
sion function is square integrable. For each s C {1,...,d}, let H; denote the space of all square
integrable additive functions of variables x;,i € s. We view functions in Hj as functions of x;,

.....

Definition 1. The index set so of significant variables is the minimal set s C {1,...,d} such
that u € Hy. The variables X, i € s, are called significant variables.

Logically it is possible that for two subsets so and s;, of {1,...,d} with so Z s, and s, ¢ so we
have 1€ Hy, and peH 5 If this is so, sg in the above definition is not unique. The following
result rules out such a possibility.

Lemma 1. Assume that X; = (X,1,..., Xsg) has a joint density relative to the Lebesgue
measure. Then the index set s of significant variables is uniquely defined.

There are three possible outcomes for a variable selection method.
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Definition 2. Let s be the index set of variables selected. We say that s correct fits if s =59, we
say that s overfits if s D sy but s #sg, and we say that s underfits if 5o ¢ s.

In words, ‘overfitting’ means that the set of selected variables includes other variables in addi-
tion to the significant variables; ‘underfitting’ means that the set of selected variables does not
include all the significant variables.

To define the variable selection criterion for additive models, we need, for each s C {1,...,d},
an estimate of the regression function pretending that the index set of significant variables is s.
Specifically, let G, denote the space of functions having the form

9@®)=go+>_gi(xi),
€S
with gg a constant and g; € G;, where G; is a space of spline functions, defined on the range of
X,;, with degree g; and J; interior knots. Then the dimension of G; is N;=1+4+¢; + J;,i=1,...,n.
Taking into account the identifiability constraints, it is easily seen that the dimension of Gy is
Ny=1+4X;es(g; + J;). The spline estimate corresponding to the index set s is

n
fis =arg min{Z{Yt—g(X,)}z]. (6)
geGy  Lr=1
Here, we view each function in G; as a function of x;,i=1,...,d, and thus have G; C Gy C
Gyy,..ay for sCs’C{l,...,d}. For each subset s of {1,...,d}, define the mean-squared error
of [iz as
1 2 R
MSE, = - 3 {¥; = (X))}, @)
=1
and the BIC as

Ny
BIC; =log(MSE;) + — log(n).
n

The BIC was first proposed in Schwarz (1978) for the selection of parametric models for inde-
pendent and identically distributed data.

We make the following variable selection rule: select the subset § C {1,. .., d} with the smallest
BIC value.

5. Consistency of the variable selection rule

In this section we show that, under appropriate assumptions, the variable selection rule that was
defined in the previous section is consistent.

It is difficult to obtain a reliable nonparametric estimate of the regression function at the tail
of the distribution of X; owing to sparseness of data. Thus we focus on the estimation of y; on
a compact set in our theoretical analysis below. Let C; be a compact interval contained in the
range of X;; and let C be the Cartesian product of C;, i=1,...,d. We require that C; contains
all the interior knots for splines in G;, i=1,...,d. We modify equations (6) and (7) slightly to

n
fis =argmin| S {¥, — g(X)}> I(X; €C)
geGy  Lt=1
and

1 n
MSE, = 3 {¥, - fis(X)}? I(X, € C),

=1
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and modify the BIC accordingly. We simply choose C; to be the range of the data in our numerical
implementation.

We next introduce some additional notation and assumptions. For two sequences of positive
numbers a, and by, let a,, < b, mean that a, /b, is bounded and a, < b, mean that a, <b, and
b, S ap. The a-mixing coefficient of the process {(X;, ¥;)} is defined as

a(m)=sup{P(BNC)— P(B)P(C):Bea({(Xy,Yy),t' <t}),
CGU({(Xt’s Yt’)a t/ >t+n})}’

where, for an index set 7, 0({Z;,t € 7}) denotes the o-field that is generated by the random
variables {Z;,7 € 7 }. Note that the right-hand side of the above equation does not depend on ¢
because {(X;, ¥;)} is stationary.

Recall that each G;,i=1,...,d, is a space of splines with J; knots. Suppose that the ratios of
the differences between consecutive knots are bounded. Let J, =n7 for 0 <+ < 1. Assume that
JixJ, fori=1,...,d. Recall that s is the set of significant lags. Set py, :ianEGSO(Hg — ttlloo)-
The quantity py, measures the best obtainable approximation rate for using functions in Gy, to
approximate .

We make the following assumptions on the data-generating process.

(a) sup,ec{E(|Y:"|X=x)} < oo for some v>2.

(b) For some positive constants ¢; and c¢;, the a-mixing coefficient of {(X;, ¥;)} satisfies
an) <cin=O/P70=1 and a(n) < cyn~ 2/ =2,

(c) The density px, of X is bounded away from 0 and oo on C.

(d) lim,— o0 (ps,) =0 and lim supn_)oo{pfo/(Jn/n)} < 00.

A moment condition as in (a) is commonly used in the literature. It follows from (a) that the
conditional variance of Y¥; given X, =x is bounded on x € C. Assumption (b) requires that the
a-mixing coefficient decays algebraically to 0. Stronger conditions involving (-mixing coeffi-
cients have been used in Yao and Tong (1994), Tjestheim and Auestad (1994a) and Tschernig
and Yang (2000) to show consistency of a certain lag selection criterion.

Assumption (c) is a mild condition on the marginal density of X, (note that X, is station-
ary). It is usually assumed that px, is continuous or continuously differentiable in asymptotic
analysis of the local polynomial method; see, for example, Tschernig and Yang (2000). In (d),
the quantities p,, and J,, /n measure respectively the magnitude of the bias and variance for i,
(see lemma 4). Thus (d) requires that the squared bias is not asymptotically dominated by the
variance of the estimator (i.e. there is no oversmoothing). Assumption (d) can be replaced by a
smoothness condition of the regression function and a requirement on the number of knots. To
be precise, write

px)=po+ > pilxp),

i€sg

where E{u;(X;, )} =0, i €sy. Recall that we require that the number of knots satisfies J,, <xn?,
O<y<l.

Lemma 2. Suppose each p;, i € sg, has bounded second derivative. In addition, suppose that
the degree of splines is 1 or bigger. Then a sufficient condition for (d) is that v >1/5.

Here is our main theoretical result.

Theorem 1. Suppose that assumptions (a)—(d) hold. The variable selection rule consistently
selects the set of significant variables, i.e. lim, oo { PE=1s9)} = 1.
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Observe that the consistency of the variable selection rule holds for a wide range of choices for
the number of knots J,,. If each p;, i € 59, has bounded second derivative, and splines of degree 1
or bigger are used, then it is sufficient to have J,, <xn? with v > 1/5. It is worthwhile to point out
that, if J, <n'/3, then ||fis, — ptll = O p(n=*/3), which is the optimal rate of convergence (Stone,
1985).

There has been an extensive study on variable selection for parametric linear models (Miller,
2002). Many consistent variable selection criteria have been suggested; see Rao and Wu (1989)
for a survey. It would be interesting to point out the difference between theorem 1 and existing
consistency results for parametric models. In our setting, adding a variable to the model corres-
ponds to adding a function. If the function is approximated by a spline function, then adding
a variable corresponds to adding a set of spline basis functions. In addition, for the spline esti-
mate to be consistent, it is necessary to let the number of knots (or the number of spline basis
functions for each variable) increase with the sample size.

6. Implementation

In actual implementation of the method proposed, we first decide on a set of candidate
variables to be selected. The candidate variables can be the lagged variables of a time series
and/or some exogenous variables. Since a full search through all possible subsets of vari-
ables is in general computationally too costly, we propose a stepwise procedure. The pro-
cedure consists of three stages: a forward stage, a backward stage and a final selection
stage.

In the forward stage, we start from the null model (i.e. Y; = uo + &;, where pg is a constant),
add one variable at a time to the current model, choosing between the various candidate vari-
ables that have not yet been selected by minimizing the mean-squared error (see Section 4).
This addition process stops when the number of variables selected equals some prespecified
number, say, Smax. The constant Spax is the maximal number of variables that are allowed in
the model.

The backward stage follows the forward stage. In this stage, we start with the maximal set
of variables selected in the last step of the forward stage, delete one variable at a time by also
minimizing the mean-squared error and stop when no variable remains in the model. After the
forward and the backward stages, we obtain a collection of ‘good’ models. The final model is
chosen from this collection by minimizing the BIC.

Let d denote the total number of candidate variables to be selected from. It is necessary to
require that Spax <d. If d is not very big, we can set Symax =d and the forward stage of our
procedure is not necessary.

For each step in the forward or backward stage, we fit an additive spline model. In our imple-
mentation, the knots are equally placed between the 5% and 95% sample quantiles of the data.
Let |x] denote the smallest integer that is bigger than or equal to x. Partly motivated by the
asymptotic result, the number of knots is set to [ (kn)!/3| for linear splines and [ (kn)'/3| —1
for quadratic and cubic splines, where k is a tuning constant whose default value is 2 in our
implementation. It has been observed in our simulation study that the lag selection results are
not very sensitive to the choice of tuning constant.

Similar stepwise procedures have been used for variable selection in linear regression. There
are, however, noteworthy differences between our method and the method for linear regression.
For our method, adding or deleting one variable corresponds to adding or deleting an addi-
tive component of the model that consists of a linear combination of several (B-spline) basis
terms.
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7. Simulation study

We have conducted Monte Carlo simulations to evaluate the performance of the method pro-
posed and to compare with other methods. In particular, our proposed method of spline fitting
with the BIC is compared with spline fitting with the AIC or generalized cross-validation (GCV).
For an index set of variables s C {1,...,d}, these criteria are defined as

Ny
AIC;=log(MSEy) +2—,
n 8
MSE;
(1= Ns/n)?

When N, /n is small, which is usually the case, it can be seen from the approximation 1/(1 —x)? ~
1 + 2x that the AIC and GCV are similar. Our method is also compared with the local linear FPE
method of Tschernig and Yang (2000), MARS (Friedman, 1991) and BRUTO (Hastie, 1989).

In our simulation study, we considered eight additive autoregressive processes with some
autoregression functions being linear and some non-linear. Six of these processes (AR1-AR3
and NLARI-NLAR3) were used in Tschernig and Yang (2000) to evaluate their lag selection
method. We also considered two other processes (NLAR1U2 and NLAR1U?2), each with one
significant lag in our simulation study. The dynamics of these processes are described by the
equations given in Table 1, where &; are independent and identically distributed N(0, 1) random
variables.

These processes differ in the shape of the conditional mean function and the lag vector. We
used the computing software S-PLUS for all our simulations with the same initial random
seed. The S-PLUS functions mars() and bruto() in the ‘mda’ library contributed by Trevor
Hastie and Robert Tibshirani were used for the MARS and BRUTO simulations (the mda library
was downloaded from StatLib: http://1ib.stat.cmu.edu/). For sample sizes n = 100,
200, 500, realizations of size n + 400 were generated and the last n observations were taken as
the observed time series. This, together with the form of the conditional mean function, ensures
that the realizations behave like strictly stationary and geometrically §-mixing, thus more than
fulfilling our assumption (a). We generated 100 replications for each of the above processes
and carried out lag selection for each replication. The lags were searched from {1,..., 10} for
all methods. In implementing the method proposed, we set the maximum number of variables
allowed in the model to be Smax = 10. We have documented the overfit, correct fit and underfit
frequencies for all the processes in Table 2 for the spline fitting with the BIC and AIC and in
Table 3 for the MARS and BRUTO algorithms. Here underfitting refers to the selection of the

GCV=

Table 1. Dynamics of the time series in the simulation study

Model Function

ARI1 Yt :O.SYt7] +04Yt,2+0]£[

AR2 Y;=—-0.5Y,_1+0.4Y,_,+0.1&

AR3 Y, =—0.5Y,_¢+0.5Y,_19+0.1¢

NLARI1 _—04(3 Y2 1)/<1+1/2 D+0.6{3—(¥;_,—0.5) }/{1+(Y, 2 —0.5)4140.1¢

NLAR2 —{0.4—2exp(— 50Y2 ) }Y,—6 +{0.5—0.5exp(—50Y2 | )}Y;_19+0.1&

NLAR3 ={0.4—2cos(40Y;_ 6) exp( 30Y7 ) }Y;—+{0.55— 05551n(40Y, 10) exp(— 10Y2 100}
xY;_10+0.1&

NLARIU1 Y =-04G-Y2 )/(1+Y> )+0.1&

NLAR1U2 Yi=0.6{3 = (¥, 2= 0.53 /{1 + (¥, 2 — 0.5} +0.1¢,
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Model n Results for the BIC Results for the
AIC, degree=1
degree=1 degree =2 degree =3
AR1 100 69 28 3 69 28 3 85 15 0 92 8 0
200 18 82 0 19 81 0 32 68 0 0 0 100
500 0 100 0 0 100 0 0 100 0 0 0 100
AR2 100 52 41 7 50 47 3 70 29 1 83 16 1
200 10 90 0 11 89 0 27 73 0 0 0 100
500 0 100 0 0 100 0 0 100 0 0 0 100
AR3 100 10 87 3 9 89 2 23 77 0 26 74 0
200 0 100 0 0 99 1 2 97 1 0 0 100
500 0 100 0 0 100 0 0 100 0 0 0 100
NLARI1 100 0 83 17 0 92 8 0 99 1 0 27 73
200 0 95 5 0 99 1 0 100 0 0 34 66
500 0 8 15 0 100 0 0 100 0 0 9 91
NLAR2 100 33 64 3 38 59 3 62 37 1 12 14 74
200 2 97 1 4 96 0 11 89 0 0 32 68
500 0 100 0 0 100 0 0 100 0 0 43 57
NLAR3 100 21 73 6 19 75 6 27 72 1 8 22 70
200 1 99 0 0 100 0 3 97 0 0 35 65
500 0 100 0 0 100 0 0 100 0 0 36 64
NLAR1U1 100 0 97 3 0 95 5 0 100 0 0 40 60
200 0 99 1 0 99 1 0 100 0 0 46 54
500 0 100 0 0 100 0 0 100 0 0 54 46
NLAR1U2 100 0 97 3 0 98 2 0 100 0 0 34 66
200 0 99 1 0 98 2 0 100 0 0 37 63
500 0 100 0 0 100 0 0 100 0 0 43 57

FFor each set-up, the first, second and third columns give respectively the numbers of underfitting, correct fitting

and overfitting over 100 simulation runs.

correct variables, not to the number of variables in the model. For instance, at n =100, the
92 underfits for the AIC with spline fitting for the first autoregressive model often included
more than two lagged variables, but they missed at least one of the correct lags of t — 1 and

t—2.

Now we summarize our simulation results.

(a) The selection procedure based on spline fitting with the BIC (referred to hereafter as the
method proposed) performs very well and is robust for all processes. When the sample size
increases from 100 to 200 and 500, the frequency of correct fitting (the middle number in
the triplets in Tables 2 and 3) increases to 100 or close to 100 in all situations simulated.
This corroborates the asymptotic consistency result.

(b) For the method proposed, using linear, quadratic or cubic splines gives similar results,
except that cubic splines give slightly worse results for models AR1, AR2 and NLAR2
for a sample size n =100.

(c) Spline fitting with the AIC overfits, i.e. very often it chooses more variables than are in
the true model. We have also observed that the GCV criterion behaves similarly to the
AIC (the results are not shown). This is not surprising in light of the similarity of the two
criteria as explained after equation (8).
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Table 3. Simulation results for lag selection using the MARS and BRUTO algorithms¥

Model n Results for MARS Results for BRUTO
a=2 a=log(n) a=2 a=log(n)
AR1 100 17 29 54 27 6l 12 6 35 59 18 68 14
200 0 31 69 0o 79 21 0 21 79 0 75 25
500 0 22 78 0 68 32 0 10 90 0 79 21
AR2 100 22 21 57 30 56 14 4 26 70 14 61 25
200 1 2475 1 71 28 0 16 84 0 71 29
500 0 19 81 0 67 33 0 13 87 0 66 34
AR3 100 4 32 64 5 74 21 2 53 45 8 86 6
200 0 20 80 0o 72 28 0 50 50 0 98 2
500 0 17 83 0 71 29 0 58 42 0 99 1
NLARI 100 0 29 7N 0 65 35 0 48 52 1 85 14
200 0 25 75 0o 78 22 0 52 48 0 89 11
500 0 26 74 0 62 38 0 34 66 0 93 7
NLAR2 100 12 23 65 33 45 22 16 61 23 94 6 0
200 0 16 84 0 65 35 0 60 40 6 93 1
500 0 18 82 0 56 44 0 47 53 0 96 4
NLAR3 100 5 14 81 10 55 35 4 37 59 11 78 11
200 0 16 84 0 65 35 0 49 51 0 93
500 0 21 79 0 65 35 0 49 51 0 98 2
NLARI1U1 100 0 35 65 0o 77 23 0 7 93 0 33 67
200 0 19 81 0 66 34 0 1 99 0 38 62
500 0 11 89 0 66 34 0 0 100 0 25 75
NLARI1U2 100 0o 27 73 0 68 32 0 0 100 0 0 100
200 0 22 78 0 62 38 0 0 100 0 0 100
500 0 12 88 0 46 54 0 0 100 0 0 100

tFor each set-up, the first, second and third columns give respectively the number of underfitting, correct fitting
and overfitting over 100 simulation runs. The constant a specifies the cost per degree-of-freedom change.

(d) The method proposed almost always outperforms the local linear FPE method of Tscher-
nig and Yang (2000) (see pages 472-473). The only exceptions are cubic spline fitting for
models AR1 and NLAR?2 for a sample size n = 100. Moreover, we note that the method
proposed is computationally much faster than the local linear FPE method. Running 100
simulations with the method proposed takes less than 10 min on a Pentium computer for
a sample size as large as n = 500, whereas it took days to run 100 simulations of n =100
with the local linear FPE method of Tschernig and Yang (2000). For this comparison,
we recoded our method using the same software as the local linear method of Tschernig
and Yang (2000) was originally coded in. In addition to having an advantage in com-
putation speed, the method proposed is also much easier to programme because of its
simplicity.

(e) MARS uses modified GCV to select models (see Friedman (1991) for details). Inmars(),
there is a tuning parameter (denoted a) that specifies the cost per degree-of-freedom
change. The default value of a is 2, corresponding to a model selection criterion that is
similar to AIC. It has been recommended to use 2 < a <4 (Friedman, 1991; Stone et al.,
1997). The results for a=2 and a =log(n) are reported in Table 3. We see that using a =2
(an AIC type of penalty) always yields substantial overfitting. It is interesting to see that
even when we change the cost parameter a to log(n) (a BIC type of penalty), a value much
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higher than what is usually recommended, MARS still overfits for about a third of the
simulations for all processes. The performance of MARS for a =3 or a =4 is between
that for a=2 and a =log(n) (the detailed results are not reported).

(f) The BRUTO algorithm combines backfitting and adaptive smoothing parameter selec-
tion and uses modified GCV for model selection (see Hastie (1989) for details). Chen and
Tsay (1993) used it to select automatically the significant variables for additive models.
In bruto(), there is a tuning parameter (denoted a) that specifies the cost per degree-
of-freedom change. The default value a =2 corresponds to a penalty that is similar to that
in the AIC. We observe that, similarly to the MARS method, when the cost parameter
a=2, BRUTO tends to overfit. When the cost parameter is set to a =log(n), BRUTO
performs quite well for some processes, but very badly for other processes (i.e. NLAR1UI
and NLAR1U2).

8. Real data example

In addition to the Monte Carlo evidence of the effectiveness of the proposed variable selection
method, we further illustrate the practical usefulness of the method for building a parsimonious
additive autoregressive model for quarterly US unemployment rate time series. We also carry
out an out-of-sample forecasting exercise based on the identified additive autoregression model.

The data set that is analysed here is the non-seasonally adjusted quarterly series of US unem-
ployment rate from the first quarter of 1948 to the first quarter of 2003, denoted {R,}tzﬁ 11 It was
obtained from the US Bureau of Labor Statistics and covers unemployed people (in the labour
force) 16 years old and older of all ethnic origins, races and sexes, without distinction between
industries or occupations. The fourth difference of the data is taken to eliminate seasonality.
The resulting difference series is denoted {Y; ,2;71, Yi=Riya— Ry, t=1,...,217. We leave out
the last 10 periods of the data (i.e. {Yt}tzfzog) for the forecasting exercise and use the rest of the
series for model building.

Using the method proposed (spline fitting with the BIC) and the MARS and BRUTO algo-

rithms (both with a BIC-type penalty), we construct an additive autoregression model
Yt = fi] (thil ) +...+ fik(thik) + &1,

where the significant lags {i{,. .., it} are chosen from {1,...,8}. We also use the BIC to choose
a linear autoregressive model, which constrains each of the f;; in the above equation to be
a linear function. The selected significant lags from using various methods are presented in
Table 4. We see that the method proposed, with linear, quadratic or cubic splines, always picks

Table 4. US unemployment data: results on model selection and out-of-sample prediction

Results from the method proposed Results from the following methods:

degree=1 degree=2 degree =3 MARS BRUTO Linear autoregression

Selected lags 1,2 1,2 1,2 1,2,4,5 1,2,4,5,8 1,2,4,5,8
R? (in sample) 0.876 0.874 0.878 0.892 0.864 0.864
MSPE 0.023 0.031 0.031 0.024 0.057 0.058

MAPE 0.122 0.125 0.128 0.132 0.159 0.161
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a parsimonious model with lags 1 and 2, whereas the MARS and BRUTO methods and BIC
for linear autoregression all pick more lags.
The fitness of the models selected is measured by the coefficient of determination

207 A 207 _
RP=1-3% (Yt—Y,)z/ > (Y —Y),
=11 =11
where Y, is the fitted value at time period r and ¥ = 232711 Y;/196. The R>-values are high for all
the models selected, suggesting that all models fit the data well. The fitted models are used for
producing one-step-ahead out-of-sample forecasts for time periods 208-217. The forecasting
performance is measured in terms of MSPE (the mean-squared prediction error) and MAPE

(the mean absolute prediction error), which are defined as

| 217 R
MSPE= — Z (Yt_Yl‘)za

0 ;508

1 217 X
MAPEzi E IYf_Yfls

10,5508

where Y, are forecasts that are produced by the model selected. From Table 4 we see that the
forecasting performance of models selected by the method proposed using splines of degree 1,
2 or 3 is comparable with that of the MARS model and is superior to the BRUTO model and
the linear autoregressive model. However, the model that is selected by our method, which has
significant lags 1 and 2, is easier to interpret than the more complicated MARS model which has
1, 2, 4 and 5 as the significant lags. Note that the BRUTO model and the linear autoregressive
model also use many lag variables in spite of their relatively poor forecasting performance.

In conclusion, for the quarterly US unemployment rate, we have found evidence that our
proposed method can identify a parsimonious non-linear additive autoregression model with
good forecasting performance. This conclusion does not depend on what degree of splines we
use in estimation. The results of the out-of-sample forecasting exercise also suggest that non-
linear models (identified by the method proposed or MARS) provide better descriptions of the
dynamics of the quarterly US unemployment rate time series than linear autoregressive models
do.
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Appendix A: Proofs

In this appendix, we provide the proofs of all the technical results.

A.1. Proof of lemma 1

Suppose that /L(X) = s (xso) = Mg (xs('))' Write sy (xx()) = Ho + Eiesu Hi (xi) and /be(xs(')) = Ho + Zi’exb i (xi):
where E{u;(X,;)} =0 and E{u gX,,[)} =0. Using the same argument as in the proof of lemma 3.2 of
Stone (1994), we can show that i should have a unique representation as an element of Hy . 4y. There-
fore, pi;, = s} 5 almost surely.

.....
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A.2. Proof of lemma 2
Set p,,i =1inf e, (||g Hilloo) for i € s9. Then py, < Z,QO pn.i- According to theorem XII.1 of de Boor (1978),
page 170, p,; <J 2 =n"%7, i €9, and thus Pso Sn72. As a result, if v > 1/5, then assumption (d) holds.

A.3. Proofs of lemma 5 and theorem 1
We now state some useful results to facilitate our proof of theorem 1. Let us first introduce two inner
products as in Huang (1998). Define the theoretical inner product by

(f.9)=E{fXDg(XI(X,€C)}

for square integrable functions f and g and denote the theoretical norm by | g||> = (g, ). Similarly, define
the empirical inner product by

1
- Z [f(XDg(XDI(X, € O)]

Tn o

and denote the corresponding empirical norm by ||g||> = (g, g).. Let Y(-) denote a function on C inter-
polating the observed values (X, ¥;), i.e. it satisfies Y(X;) =Y. Then the least squares estimate fi, is the
orthogonal projection of Y(-) on G; relative to the empirical inner product. Let Proj, , and Proj, denote
respectively the orthogonal projection onto G, and H; relative to the theoretical inner product. Denote
p, =Proj, ,pand p¥ =Proj . Set Ny=dim(G;) and p, =inf g, (Ilg — 127 | ). The following results are
proved in Huang (1998, 2002).

Lemma 3. Under assumptions (b) and (c), SUDyeGy, oy Mgl /gl =1l =o0p(1).

Lemma 4. Under assumptions (a)=(c), [lfzs — 1, I + I fte — p, | = Op{/(Ns/m) } and ||, — o |10 +
s, — 131l = OCpy).

We now give a formal characterization of underfitting. For se {1,...,d}, denote c(s, u) = || Proj,u — .
Since 1 € Hy,, Proj; 1=y and thus c(so, 1) =0.

Lemma 5. If s underfits, then c¢(s, p) > 0.

A.3.1.  Proof of lemma 5

Underfitting means that sy ¢ s or equivalently s N sg 7 so. We consider two cases.

(a) Case (i), sNsp=s:itis necessary that s C sy and s#so. If c(s, p) = || Proj, i — ]| =0, then p=Proj,u €
H;, which contradicts the minimal property of sy. Thus c(s, p) > 0.

(b) Case (ii), sN sy #s: note that sN sy C 5o and s Nsp # 5. If c(s, 1) = || — Proj ]| =0, then p=Proj,u e
Hy N Hy, = Hjny,, which contradicts the minimal property of 5. Thus c(s, ) > 0.

A.3.2. Proof of theorem 1
We show that, for any s such that s # sy, lim,_, o { P(BIC, > BIC,)) } = 1. By the law of large numbers for
stationary processes,

1 n
- SHY, — (X))} I(X, € C) — 02 = E[{Yo — u(Xo)}* I(X, € O)], n— 00.
t=1
It follows from lemma 4 and assumption (d) that || fi,, — pll, =0p(1). Hence,

1 n
MSE,, =~ g{Y, — fiy (X))} I(X, €C) =03 {1 +0p(D)}.

A.4. Overfitting
We first consider overfitting. Suppose that s D sy and s s9. Using the orthogonal projection proper-
ties of i, and ji,, and applying lemma 3, MSE,, — MSE, = ||i; — fis, 2 = Il fis — fis, I’ {1 + 0p(1)}. Since
/’l’:k = /’L:) =p and Gs B} Gxoa Ps :inf‘qer(”g - /'L:k loo) < inngGJO (lg— /14:) loo) = Psg - Note that Ny =< J, <N,

S0°
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It follows from lemma 4 and assumption (d) that ||f, — fis | < |fts — 251l + 11 2y — ,u;'; | =O0p{/(Ju/n)}.

Thus, (MSE,, — MSE,)/MSE,, = Op(J,/n) =0p(1). Therefore,
MSE,; — MSE; N; — N,
BIC, — BIC,, =1 1 : 0 |
C, Cy, og( + MSE, ) +— og(n)
_ MSE, - MSE

N,—N
{1 4op()} 4 0]
MSE, U oD e

Jn Jn
—OP(—) + — log(n).
n n

Consequently, lim,,_. . { P(BIC, — BIC,, >0)} =1.

A.5. Undeffitting
It is necessary that s N sy # so for underfitting. According to lemma 5, c(s, u) > (. We consider the two cases
in Apendix A.3.1. We shall show that, for both cases, MSE, — MSE,, > ¢ 2(s, 1) +op(1). As a consequence,

MSE, - MSE, \ N,—N,
BIC, —BIC,, = log(l + - 0 ) + % Jog(n)
n

MSE;

2
c (‘”‘)j"P(”}+0P<1),

> log{ 1+
9o

which implies that lim,_, . { P(BIC,; — BIC,, >0)} =1.

A.5.1. Case (i): sNsg=s

Suppose that s N sy #so and s Nsp=s. Thus s C sp. Usmg the orthogonal projection propertles of ji; and
fts, and applying lemma 3, MSE; — MSE,| = || i, — i, 2 =1lfs — ftg, I? {1 +op(1)}. Recall lh . =Proj. . pt
and € Hy,. It follows from lemma 4 and assumptlon (d) that || s — i l=0p(1) and || 1, — pll = 0p(1).
Thus, by the triangle inequality, || fx; — fig | > 1227, — pll = | fts — 2,1l — Il oy — pell = I, — pll —op(1). Since
G, CH,. ll%, — ull = IProj, , 1o — pll = | Projypu — pull = c(s,p1) > 0. Hence, MSE, — MSE,, > c(s.1)* +0p(1).

A.5.2. Case (ii): sNso#£s

Suppose that sNsy#so and sNsy#s. Let sNso=s". By the properties of the orthogonal projections,
MSE, — MSEy = — || i, — fiy || and MSEy — MSE,, = || iy — fi, ||ﬁ. Combining these two equations and
applying lemma 3 we obtain that MSE, — MSEVO =|lfoy — fus, I? ||,&Y Ly |)* +op(1). By lemma 4 and
assumption (d), ||/ — 12, | —Op(l) oy — 1, || =op(1) and ||u50 uro L —0p(1) Thus, it follows from the
triangle inequahty that ||,ng N’V ” < “,LLA n N’_s n” + ”N’T /’LA n” + ”/'Lﬁ /’Ls n” ”/‘Ls n_ M_s n” +0P(1) and
ity — gl = 1 = 1 1= e = g2, 1= g = g, 1> N2, — ¥, | — 0p(1). Therefore

MSE, — MSE,, > llpd , — s P = 1, =, 117 +0p (D). ©)

Since ;LS " us . and ;L, are orthogonal projections onto Gy, Gy, and Gy respectively, || ;LA " H:),,ZHZ

=l P == i 12 and ¥, — g 12 = N — i, 12 =l — us *,17. Thus
ek = e WP = N = g1 1P = = 1P = N = N1 (10)
Since G, C Hy,
i = 1l = [l = Projg, pll = llpo = Projpull = c(s, ). (11
However, ||u— ps(, =o0(1) by condition (d). Therefore, combining assumptions (a)—(c), we obtain

that MSE, — Ms:ﬁvo >c (5. 1) + 0p(1).
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