
Grunert and Fehr Adv. Model. and Simul.

in Eng. Sci. (2016) 3:20

DOI 10.1186/s40323-016-0072-x

RESEARCH ART ICLE Open Access

Identification of nonlinear behavior with
clustering techniques in car crash
simulations for better model reduction
Dennis Grunert∗ and Jörg Fehr

*Correspondence:

dennis.grunert@itm.uni-

stuttgart.de

Institute of Engineering and

Computational Mechanics,

University of Stuttgart,

Pfaffenwaldring 9, 70569

Stuttgart, Germany

Abstract

Background: Car crash simulations need a lot of computation time. Model reduction

can be applied in order to gain time-savings. Due to the highly nonlinear nature of a

crash, an automatic separation in parts behaving linearly and nonlinearly is valuable for

the subsequent model reduction.

Methods: We analyze existing preprocessing and clustering methods like k-means

and spectral clustering for their suitability in identifying nonlinear behavior. Based on

these results, we improve existing and develop new algorithms which are especially

suited for crash simulations. They are objectively rated with measures and compared

with engineering experience. In future work, this analysis can be used to choose

appropriate model reduction techniques for specific parts of a car. A crossmember of a

2001 Ford Taurus finite element model serves as an industrial-sized example.

Results: Since a non-intrusive black box approach is assumed, only heuristic

approaches are possible. We show that our methods are superior in terms of simplicity,

quality and speed. They also free the user from arbitrarily setting parameters in

clustering algorithms.

Conclusion: Though we improved existing methods by an order of magnitude,

preparing them for the use with a full car model, they still remain heuristic approaches

that need to supervised by experienced engineers.

Keywords: Crash simulation, Nonlinear behavior, Black box identification, Spectral

clustering, K-means, Model reduction

Background

In the modern design process of cars, crash tests are simulated with highly detailed finite

element (FE) models on high-performance computing clusters. Spethmann et al. summa-

rize in [1] that in 1998 a simulation was much more cost and time efficient than building

a prototype, i.e., 5000 USD and weeks vs. 300.000 USD and half a year. There is reason

to believe that this great difference still exists today but with an increased quality of the

simulations. On the other hand, prototypes change rapidly nowadays. A major German

car manufacture has a database with around 7000 different prototypes for only one car

type, which again increases the total computation time. Each of them needs to be checked

for crash safety in an early development stage since major changes are impossible later

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

0123456789().,–: vol

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-016-0072-x&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 2 of 19

on. On top of that, the design engineers need fast feedback about whether the current

prototype is safe before they can continue with further modifications.

This raises theneed formodel (order) reduction (MOR) in the simulationprocess.Model

reduction simplifies the underlyingmathematicalmodel in such away that the dimension,

and thus hopefully the simulation time, is reduced while introducing only an acceptable

error. There exist a vast collection of model reduction methods, which can be separated

into two groups: linear and nonlinear methods. They differ on whether the underlying

differential equation is required to be linear or whether nonlinear terms are allowed. One

would expect that only nonlinear reduction techniques should be applied to a car crash due

to its highly nonlinear nature. But we will propose ideas to automatically separate the car

in one part with presumably linear and another part with presumably nonlinear behavior.

It is now possible to apply linear MOR to the first and nonlinear MOR to the second part

respectively, cf. [2]. This way, linear methods, which usually have a better ratio between

computation time-saving and introduced error, can be used for most parts of the vehicle

even though the crash in its entirety has nonlinear behavior. In addition, linearMOR tech-

niques arematurer in comparison to nonlinearMOR.Radermacher andReese successfully

used a similar approach by only reducing parts with elastic material behavior [3].

In this work, we analyze modern clustering techniques for their suitability in model

reduction. The clustering is not used as a way of model reduction but as a preprocessing

step to identify nonlinear behavior. As described above, the knowledge of this behavior

will then be used to combine linear and nonlinear model reduction methods in future

work that is not part of this article.

It can be seen that certain shortcomings exist with currentmethods to identify nonlinear

behavior in car crashes. Therefore, the major contribution of this work is an improved

clustering algorithm which addresses and solves these shortcomings. This is achieved by

either improving existing methods or developing new ones. Considering that the majority

of the simulations in automotive development concerns crash safety [1], we will focus on

car crash tests in this article.

In the next two sections, we introduce the industrial setting and provide an overview of

existingmethods to analyze crash behavior. The clusteringmethods needed in the follow-

ing are discussed in detail in the “Clustering” section. After this preparation, one modern

technique to separate linear from nonlinear behavior is presented in the “Preprocessing”

section together with measures which are used to assess the quality of the method in the

“Analysis of the preprocessing” section. The problems found in this analysis are solved in

the “Improvements” section. Finally, we conclude with a summary and outlook on further

research.

Setting

For the upcoming analysis, we are using the proprietary simulation software LS-DYNA [4]

by the Livermore Software Technology Corporation since it is widely used by the industry

for crash analysis.Additionally, itwouldbe too costly todevelop analternative software in a

research facility. As described in [5], LS-DYNA uses the following simulation procedure:

After the model is read from an ASCII file, the equilibrium equations in Lagrangian

formulation resulting from continuummechanics are transformed in their corresponding

weak form. The spatial dimensions are discretized via finite elements resulting in the

nonlinear equation of motions

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 3 of 19

M · q̈(t) + D · q̇(t) + f int(q(t), . . .) = f ext(t) (1)

with the symmetricmassmatrixM, dampingmatrixD, internal forces f int depending, e.g.,

nonlinearly on the generalized coordinates q and the external forces f ext. If the internal

forces f int(q(t), . . .) can be written as K · q(t) with a stiffness matrix K , then the system

is linear. The discretization of the time is accomplished with explicit central differences

or other discretization schemes, which are then solved by the built-in LS-DYNA solver. It

needs to be mentioned that our work does not rely on any specific features of LS-DYNA.

Thus, any other simulation tool can be used instead.

The finite element model of a 2001 Ford Taurus from the National Crash Analysis

Center [6] serves as an example. The model depicted in Fig. 1 consists of almost one

million (mostly shell) elements and was validated against actual hardware crash tests [7].

For simplicity, wewill focus our analysis of nonlinear behavior on the crossmember shown

in Fig. 2. It consists only of 3789 nodes and experiences large deformations as part of the

crumple zone which makes it a suitable candidate.

Overview of crash analysis

Model reduction in mechanics would usually substitute the equation of motion (1) by a

differential equation of smaller dimension, the so-called reduced system. Unfortunately,

this is not possible with the closed-source software LS-DYNA. The same is true for ana-

Fig. 1 Frontal crash of a 2001 Ford Taurus. The car has an initial velocity of 35mph perpendicular to a rigid

wall

Fig. 2 The crossmember is depicted in red before (left) and after the crash (right)

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 4 of 19

lyzing nonlinear behavior since there is no way to access the function f int. Instead we can

only use the simulation data resulting from q(t) for different simulation runs, which is

basically a black box approach. The import routine for the binary output of LS-DYNA to

MATLAB was written at the institute.

The overall goal consists of finding parts of the vehicle that most likely behave lin-

early or mostly nonlinearly during the crash. This leads to a separation of the generalized

coordinates

q =

(

ql

qn

)

into parts ql and qn corresponding to the linear and nonlinear behavior of the vehicle,

respectively. The car model can now be cut along the boundaries between the parts. Sev-

eral so-called substructuring methods or component mode synthesis (CMS) can be found

in [8]. This allows an independent reduction of each component, which is useful for fast

interchanging of specific components in the design phase of a carwithout the need to reap-

ply the model reduction to the complete car. Proprietary crash simulation codes like LS-

DYNA usually provide an interface to replace single components by their linearly reduced

counterparts, the so-called superelements. The nonlinear reduction of one component

insideLS-DYNAis still anopenquestionbutmaybe achievedwith co-simulations via user-

defined functions. For the sake of this paper, it can be assumed that the linearly behaving

part will be reduced with linearMOR and the nonlinearly behaving part not reduced at all.

In [2], several methods of separation, reduction techniques and the need for an additional

interface reduction are described exemplarily on a model of a go-kart. The classification

of linear behavior in the go-kart was performedmanually by an engineer. The intention of

this paper is to automate this decision asmuch as possible. A subsequentmodel reduction

as described in [2] is not part of this article but the subject to current and future work.

Several ways to analyze the crash behavior were published for different needs: Running

the same simulation twice can result in different outputs due to round-off errors in parallel

computing. In 2005 and 2008, Mei and Thole published an algorithm to detect areas

with this scatter [9,10], which was implemented in the software Diff-Crash. Since the

complete algorithm is not accessible to the authors, it will not be considered in this article.

The Simdata-NL project [11,12], on the other hand, used similar techniques to detect

bifurcations and to group similarly behaving nodes. None of themwere directly developed

to separate a model for subsequent model reduction but they can be accommodated to

our needs. Only nodal positions were used in the aforementioned publications. Thus, we

will also restrict ourselves to this assumption in order to allow a fair comparison to our

improvements.

Clustering

All aforementioned publications use either self-developed or known clustering methods

such as k-means or spectral clustering. Therefore, it is vital to explain what clustering is.

Clustering is the process of grouping a large data set by similarity into so-called clusters.

It is a subclass of unsupervised learning since there do not exist any predefined categories.

The area of application is huge: genome analysis, image segmentation, social networks

and consumer analysis, to name only a few.

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 5 of 19

Despite its broad use, clustering is no Swiss army knife for data classification. In fact,

[13] describes many pitfalls: First, there is no exact definition of what a cluster should look

like. This lies in the eye of the beholder. Imagine for example all the books in a library

as data set. One could group them by genre, by age, by the second letter of the authors

family name, by their position in the shelf, by their physical dimensions, etc. Another

example is the famous ambiguous optical illusion “My Wife and My Mother-in-Law” by

William Ely Hill: Some see a young woman, and others see an old lady. The same is true

for clustering algorithms that try to identify structure in data. Each algorithm has “its

own view” on the data which does not necessarily lead to the same result as the user of

the algorithm expects. Additionally, most of the real world data does not constitute of

natural clusters, which need to be identified by a clustering algorithm. Instead there are

many possible ways to categorize data and all of them have their own right to exist. Thus,

clusters are not identified but created by the algorithms. Even in randomly distributed

data, clustering algorithms will return a grouping since they enforce structure on the data

instead of recognizing natural clusters or deciding if there are any clusters at all. This can

also be a pitfall for experienced users. There are not only a large quantity of algorithms to

choose from but they usually have several parameters which need to be defined and only

have a heuristic meaning. Even the number of clusters needs to be specified most of the

time in advance. In fact, there cannot be one algorithm satisfying three simple properties

as shown in [14].

For consistent notation in the further description of the algorithms, we assume that n d-

dimensional datapointsX = {xi}
n
i=1 ⊆ R

d are given.Aclustering algorithm is supposed to

group these points into K disjoint clusters C = {Ck}
K
k=1

. C is—mathematically speaking—

a partition of X , i.e., Ck �= ∅ for all k ,
⋃

k Ck = X (particularly Ck ⊆ X for all k) and

Ck ∩ Ck ′ = ∅ for all 1 ≤ k < k ′ ≤ K .

K-means clustering

K-means is indisputably one of the most used clustering algorithms dating back to 1955.

It iteratively defines the clusters as areas around the cluster centers

zk =
1

|Ck |

∑

x∈Ck

x (2)

of the last iteration, c.f. Algorithm 1 taken from [15]. This way it converges to a local

minimum of the overall squared error, which is defined as

min
C

K
∑

k=1

∑

x∈Ck

‖x − zk‖
2, (3)

i.e., the clusters tend to be as dense as possible. But due to the assignment in line 4 of

Algorithm 1, the clusters are always lying in convex subsets of R
d , which restricts the

ability of k-means to identify only these types of clusters. Not only does the user have

to set the number K of desired clusters in advance but the random initial assignment in

line 1 also makes the algorithm indeterministic. In order to implement the algorithm, one

has to specify the stop criterion in line 6 and repeat it with different initial assignments to

hopefully find a global and not only local minimum of (3).

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 6 of 19

Strictly speaking k-means refers to the optimization problem (3), which is NP-hard [16,

17]. Therefore, the above described Llyod’s algorithm 1 is used to approximate the exact

solution and is meant when referring to k-means in the remainder of this article. The

computational complexity of Algorithm 1 isO(n ·K ·d ·ω) withω the number of iterations

until satisfactory convergence is achieved in line 6. Even thoughω can grow exponentially

in n [18], it is in average (via smoothed analysis) polynomial in n [19]. For real data, it

often can be observed that ω does not grow that fast and is considered proportional to n.

Algorithm 1 K-Means Clustering
Input: n data points xi, number of clusters K

1: Randomly assign each x i to one of the K clusters Ck

2: Compute cluster centers zk according to (2)
3: repeat
4: Reassign each xi to the cluster Ck corresponding to the nearest center z k
5: Recompute cluster centers zk according to (2)
6: until (3) converges

Output: clusters Ck

Spectral clustering

A more advanced clustering algorithm is spectral clustering, which dates back to 1973.

There are several variants like [20] or [21] but we will only describe the so-called unnor-

malized form as described in [22].

Spectral clustering combines graph and spectral theory. Each data point xi is viewed as

a vertex of an undirected graph G = (V, E). The existence and weight of the edges are

calculated from the pairwise defined, symmetric similarities sij ≥ 0 of all pairs of nodes

(xi, xj). The greater sij , the higher is the similarity between nodes xi and xj . Since we define

similarity in R
d by proximity, a good choice is the Gaussian similarity function

sij = e
−

‖xi−xj‖
2

2σ2

for a parameter σ > 0.

The weight wij ≥ 0 of each edge (xi, xj) can now be defined in several ways with wij = 0

meaning that xi and xj are not connected. The resulting, weighted graph G is then called

similarity graph. Some types of similarity graphs are listed below:

• The ǫ-neighborhood graph weights edges only if the corresponding nodes xi and

xj have a distance below ǫ > 0. Since all remaining edges have a similar distance

(below ǫ), they can be weighted with 1 instead of sij . This results in the weights

wij =

⎧

⎨

⎩

1 if ‖xi − xj‖ < ǫ,

0 if ‖xi − xj‖ ≥ ǫ.

• In the l-nearest neighbor graph (l ∈ N), edges are weighted only if one of the nodes

is among the l-nearest neighbors of the other node, i.e.,

wij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sij if |{1 ≤ î ≤ n : ‖xî − xj‖ < ‖xi − xj‖}| < l

or |{1 ≤ ĵ ≤ n : ‖xi − xĵ‖ < ‖xi − xj‖}| < l,

0 otherwise.

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 7 of 19

• Themutual l-nearest neighbor graph is a variant of the (non-mutual) l-nearest neigh-

bor graph. The only difference is that both nodes need to be one of the l-nearest

neighbors of the other node, i.e.,

wij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sij if |{1 ≤ î ≤ n : ‖xî − xj‖ < ‖xi − xj‖}| < l

and |{1 ≤ ĵ ≤ n : ‖xi − xĵ‖ < ‖xi − xj‖}| < l,

0 otherwise.

Eitherway, the result is aweighted graph (G,W)with the symmetric,weighted adjacency

matrix W := {wij}
n
i,j=1. This matrix contains not only information about all weights but

also whether there is an edge between two nodes (wij �= 0) or not (wij = 0), therefore,

replacing the set of edges E.

The similarity graph can be considered as preprocessing for the actual spectral cluster-

ing. As with all preprocessing, the right choice can make the difference. There can be no

best choice for the parameters σ , ǫ and l for every use case, as discussed in the beginning

of the “Clustering” section, but [22] gives some hints (“rules of thumb”) that try to ensure

the connectivity of the resulting graph meaning that there is a sequence of edges between

every two arbitrary nodes:

• l in the l-nearest neighbor graph chosen around log(n) satisfies connectivity in the

limit n → ∞ for random data points {xi}
n
i=1.

• For ǫ in the ǫ-neighborhood graph, the length of the longest path in a minimal

spanning tree of the (fully connected) graph is always a valid choice by definition.

Recall that a minimal spanning tree connects all vertices with the least amount of

edges. Since Prim’s algorithm [23] for calculating such a tree has complexity O(n2),

this step can take a significant amount of time.

It is also considered goodpractice to chooseσ as the length of the longest path in aminimal

spanning tree as it was described for choosing ǫ. As emphasized in [22], there does not

exist any rule of thumb for choosing the parameters that is based on a firm theoretical

ground.

After this preparation, the algorithm focuses on the (graph) Laplacian matrix

L = D − W

with the degree matrix

D = {dij}
n
i,j=1

dij =

⎧

⎨

⎩

∑n
r=1 wir if i = j,

0 otherwise.

A new matrix U is defined with the help of L by taking K linearly independent vectors

u1, . . . ,uK of the eigenspaces corresponding to the K smallest eigenvalues (counted with

multiplicity) and taking them as the columns of U ∈ R
n×K . The last step consists of

clustering the n rows yi ∈ R
K of U with the k-means algorithm into K clusters. Since

each row yi corresponds to a data point xi, this induces a clustering of X .

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 8 of 19

The transformation of the data points xi to yi allows the identification of non-convex

clusters like rings. At first glimpse, it is not clear how this approach should work at all.

Luxburg motivates it as the solution of a relaxed graph cut problem and finds analogies to

a random walk as well as perturbation theory [22]. Though we can only rigorously prove

some theorems like the relation of zero-eigenvalues of L to the number of connected

components in G, spectral clustering seems to be a valid clustering technique.

The eigenvalue decomposition is the main factor regarding the computation time and

renders this approach useless for very large data sets. A thin eigenvalue decomposition

of a large matrix is usually computed with an iterative method like the Lanczos algo-

rithm [24]. Its computational complexity depends on the number of iterations needed

during the iterative procedure which again depends on the gap between the eigenvalues

of the matrix [25]. Though no computational complexity can be given for spectral clus-

tering in general, it takes at least as long as k-means discussed in the “K-means clustering”

section—since k-means is the last step in the algorithm—but should be much higher in

practice due to the eigenvalue decomposition. Parallelization of the algorithm [26] and

out-of-sample treatment via the Nyström method [27] on sparse grids [28] are newer

approaches to reduce the computational complexity. The memory consumption can be

another drawback since W is only a sparse n × n matrix if the parameters ǫ and l are

chosen small enough in the creation of the similarity graph.

Methods to predict the number K of clusters exist—both for general clustering algo-

rithms and spectral clustering in particular. They are summarized in [22]. As discussed

in the introduction of the “Clustering” section, the structure of the data which should be

identified by a clustering algorithm depends on the expectation of the user. Thus, there

cannot exist any general rule for how to choose K .

Preprocessing

In [11,12], amethodwas developed to cluster (finite element) nodes with differentmoving

patterns and intensity across several simulations with small variations in the thickness of

the sheet metal. In the end, the clusters were used to analyze the presence of bifurcations.

We will present their method in a slightly new setting, define some quality criteria, judge

the current approach and improve it.

Let there be R simulation runs with small variations in the parameters of a model with

N nodes. The position of node n at time t in simulation r is depicted as p
(r)
n (t) ∈ R

3. After

choosing an appropriate time frame [t0, t1], the displacement of node n in simulation r is

defined as

d(r)n := ‖p(r)n (t1) − p(r)n (t0)‖ (4)

and collected in the vector

xn :=
(

d(1)n , . . . , d(R)n

)

(5)

for each node n. Therefore, a vector xn ∈ R
R is assigned to each node n. The nodes can

now be grouped by clustering the corresponding set X = {xn}
N
n=1 with an algorithm of

choice like k-means or spectral clustering, which are both described in the “Clustering”

section.

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 9 of 19

This method is applied to the frontal crash described in the “Setting” section. For a

better understanding, we first consider a simplification shown in Fig. 3: A beam consisting

of four nodes impacts a rigid wall, which is rotated by an angle of α compared to an

orthogonal contact. This simulation is repeated two times (R = 2) with angles α(1) = 20◦

and α(2) = −15◦ and the displacements d
(r)
n plotted for each simulation in Fig. 3c.We will

call such a plot displacement plot in the following. The red node has a higher displacement

in the first simulation due the larger angle. Hence, it is located below the diagonalRe with

e = (1, 1) in the displacement plot.

Quality of clusters and nonlinear behavior

There needs to be a criterion to judge the quality of the clustering after the preprocessing

described above. In [11], model reduction was applied to each cluster. Since no new simu-

lations were done with a reduced system, this approach can be seen as data compression.

Thus, the reconstruction error resulting from the projection on the subspace spanned by

each cluster was a valid criterion to judge the quality in that case. This is, however, not

true in our case. In this article, the clustering should be used for the model reduction of

subsequent simulation runs with other parameters that were not part of the training data.

Therefore, the real error resulting from themodel reduction can only be judged after sim-

ulating the reduced model. Otherwise, there would not be any new data but only training

data to assess the quality of the clustering and reduction. Error estimators or error bounds

can also be useful, though they are not available for every reduction method.

So-called objective measures only rely on the data itself to rate the quality of a cluster,

see [29,30] for examples. Usually structural data like the cluster density or the separation

between clusters is taken into account. While objective measures can be useful for assess-

ing the quality of clusters in general, they are likely not equivalent to the expectations of

the user since these expectations can vary a lot as discussed in the “Clustering” section.

The other group of cluster indicators are subjective measures that take a specific user

expectation into account. In the next section, we define several new subjective measures

to assess the nonlinear behavior of a crash.

Before defining the measures, it is of importance to know the sources of nonlinear

behavior. According to [31], the reasons for nonlinearities in mechanics lie in the

t = t0

υ

r = 1 , α = 20◦

t = t1

r = 2 , α = −15◦

t = t1
d
(1)
n

d
(2
)

n

α

(a) (c)(b)

Fig. 3 a A simplified crash scenario of a beam against a wall rotated by an angle of α. b Two simulation runs

for different angles. c Resulting displacement plot for the two simulations

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 10 of 19

• Geometry, e.g., large deformations, bifurcation or snap-through;

• Physics (material laws), e.g., plasticity;

• Boundary conditions, e.g., contact.

We will only focus on the first source of nonlinear behavior since it is most accessible for

our data-driven approach.

Measures

In order to quantify the nonlinear behavior, we definemeasures based on the deformation

and scatter of the nodes. It has been seen that the diagonal of the displacement plot

represented by the vector e := (1, . . . , 1) ∈ R
R plays a fundamental role in the analysis.

With simple geometry, the deformation

D(x) :=
〈x, e〉

‖e‖

of a vector x ∈ X can be defined as the length of the orthogonal projection onto the

diagonal Re. This definition of deformation is motivated by the mechanical analog but is

not equivalent, as can be seen later. Throughout this article, it is assumed that only the

data p
(r)
n (t0) and p

(r)
n (t1) is available for every node n and simulation run r.

The distance from x to its orthogonal projection is called (absolute) scatter since it

reflects the difference across the simulation runs. It can be calculated by

Sabs(x) :=
√

‖x‖2 − D(x)2.

The higher Sabs(xn), the more the displacement of node n differs in each of the R simula-

tions.

The relative scatter Srel, i.e., the absolute scatter divided by the deformation, is more

important. Since all relative measures tend to be sensitive when the denominator is rela-

tively small, we only define the relative scatter for nodes with a deformation above 2 % of

the maximum deformation in the overall model:

Dmax(Y) := maxx∈YD(x) for Y ⊆ X

Srel(x) :=

⎧

⎨

⎩

Sabs(x)
D(x)

if D(x) ≥ 2
100Dmax(X),

0 if D(x) < 2
100Dmax(X).

These measures can now be applied for all nodes in one cluster by averaging. Themean

deformation of a cluster Ck is given as

Dmean(Ck) :=
1

|Ck |

∑

x∈Ck

D(x)

and themean relative scatter Srelmean as

Srelmean(Ck) :=
1

|Ck |

∑

x∈Ck

Srel(x).

A cluster with highDmean represents nodes with large deformation which can be a sign of

nonlinear behavior as discussed above. If a cluster has a high relative scatter Srelmean, then

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 11 of 19

the nodes in this cluster have different displacements throughout all R simulations which

is an indication of chaotic behavior.

Analysis of the preprocessing

While the quality of the clustering was only judged with the experience of engineers

in [11], we are now able to assess the simulation scenario described in the “Setting”

section for the Taurus with the measures Dmean and Srelmean defined above. We choose

[t0, t1] = [100, 1000]ms as the smallest time interval covering the complete crash. The

Taurus has an initial velocity of 56 km/h (35mph). It is approaching a rigid wall that has

an angle α of 5◦, 6◦ or 7◦ to the perpendicular axis in each of R = 3 simulations. The crash

scenario is the same as shown in Fig. 3a butwith the full Taurusmodel instead of the beam.

R > 3 is of course possible and recommended but would prevent a visual analysis of the

R-dimensional displacement plot. For the purpose of this article, it is more important

to see properties of the different methods in the plots instead of choosing a higher R.

High relative scatter resulting from these small parameter variations is an indicator for

chaotic, therefore, nonlinear behavior. For now, we will choose k-means as clustering

algorithm with K = 3 clusters for simplicity. This is already enough to show some major

disadvantages, which can be seen in Fig. 4 in the displacement plot. The corresponding

clustering of the crossmember (as a snapshot of the simulation for t = t1 and r = 1) is

shown in Fig. 5. The crossmember will always be shown for t1, i.e., after the crash. Each

color represents a cluster and the red line in the displacement plot shows the diagonal Re

already known from Fig. 3c. Units on the axes of the displacement plot and the view of

the crossmember are always in mm.

First of all, all entries d
(r)
n of every vector xn are above a lower bound of 899 mm. This

can be explained with the rigid body movement of the car. Even though the first time step

t0 was chosen to be the beginning of the crash, i.e., the car is in contact with the wall,

the crossmember still has some distance to the wall, see Fig. 2 on the left. Therefore, the

norm in Eq. (4) is dominated by the x-component, the driving direction of the car. The

0
200

400
600

0

500 0

500

d
(1)
n

d
(2)
n

d
(3)
n

Dmean [mm]

1103

1172

1239

Fig. 4 Original method from [11] (displacement plot). All nodes have a high d(r)n caused by rigid body

movement

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 12 of 19

−500

0
250

−500

0

500

0

250

x

y

z

Dmean [mm]
1103
1172
1239

Fig. 5 Original method from [11] (crossmember)

displacements in the other two directions have no significant influence on d
(r)
n . Since this

error is introduced in the beginning of theworkflow, it persists in the clustering algorithm,

which clusters the nodes by rigid body movement instead of (mechanical) deformation.

Figure 5 also supports the hypothesis that the clustering of the nodes only depends on the

x-coordinate: The nodes in the rear of the crossmember belong to the cluster with the

highest deformation since their movement is decelerated the least.

Another problem lies in the distribution of the vectors x. They do not form any natural

clusters in Fig. 4, hence clustering algorithms uncontrollably divide the nodes in three

more or less connected sets. This questions the purpose of clustering as explained in the

“Clustering” section and asks for alternatives.

In this example, we have arbitrarily chosen K = 3. There are a few techniques to guess

the number of clusters beforehand, but only if there exist any (natural) clusters in the data

which is not the case here. Choosing K = 2 and just assuming that one cluster represents

linear and the other nonlinear behavior will not suffice. Additionally, the mapping of the

clusters to the (non)linear area is unclear without any of the measures that are proposed

in this article.

Improvements to all these disadvantages will be given in the following.

Improvements

After preliminary work of more theoretical nature and notation, it is now possible to

describe and analyze some improvements developed by the authors.

Elimination of rigid bodymovement

By choosing [t0, t1] = [100, 1000]ms as the smallest time interval covering the complete

crash in the “Analysis of the preprocessing” section, we have already reduced the impact

of the rigid body movement. Bohn et al., instead, looked at different time steps including

the full simulation, cf. [11].

In order to eliminate the rigid body movement as much as possible, a reference node is

chosen in the back of the crossmember where the least deformation is expected. Let pR(t)

be the position of this node for every time t. The definition (4) of the displacement is now

substituted by

d(r)n :=
∥

∥

∥

(

p(r)n (t1) − p(r)n (t0)
)

−
(

pR(t1) − pR(t0)
)

∥

∥

∥ (6)

for the remainder of this article. All following and former terms like (5) will use this new

definition from now on.

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 13 of 19

Applying the new definition of displacement to the crossmember leads to much better

results depicted in Fig. 6. The bending of the two arms of the crossmember in z-direction

is identified correctly by assigning these nodes to the cluster with the highest mean defor-

mation.Dmean is now one order of magnitude smaller, representing the actual mechanical

deformation of the respective cluster much better.

One could think that shifting the nodes in Fig. 4 to the origin would lead to the same

result as subtracting the rigid bodymovement. This is not true since the above subtraction

mostly effects the x-coordinate of p as the major direction of the rigid body movement

resulting in an equal weighting of all three spatial coordinates in (6). Therefore, not only

the position of the nodes in the left of Fig. 6 moved to the origin, but the formation

of the nodes also changed significantly. On top of that, a simple translation of the nodes

would not have influenced the k-means clustering algorithmanyway since only the relative

positions are important for k-means.

With this improvement, it is now worth a try to replace k-means by the presumably

superior spectral clustering. Figure 7 was created with the l-nearest neighbor graph with

σ chosen as the length of the longest path in a minimal spanning tree and l = log(N)

respectively as described in the “Spectral clustering” section. In comparison with k-means

in Fig. 6, it can be seen that spectral clustering is not restricted to convex sets. Thus,

the cluster with the smallest mean deformation in the displacement plot of Fig. 7 now

includes the “small arm” on the right. From a mechanical point of view, it is doubtful

whether this is an improvement. In general, spectral clustering should be superior to

k-means clustering but the increased number of input parameters like σ , ǫ, l leads to a

greater spectrum of possible results. Simply changing σ to 1 in the above example results

in an unusable clustering. This again shows that clustering algorithms like k-means and

spectral clustering should only be used in the presence of natural clusters. The calculation

time of spectral clustering is 2 s (additional 10 s for the minimal spanning tree) compared

to only 70ms for k-means using MATLAB R2015b on a desktop computer (Intel Xeon

E31245 with 16GB RAM). The new methods presented in the next section do not suffer

from these disadvantages.

Though the subtraction of the rigid body movement with the help of a reference node

already improves the clustering significantly, it can still only identify parts by their defor-

0
50

100

0
50

100 0

100

d
(1)
n

d
(2)
n

d
(3)
n

displacement plot

−500

0
250

−500

0

500

0

250

x
y

z

crossmember

Dmean [mm]: 49.18 114 .5 174 .5

Fig. 6 Elimination of the rigid body movement with a reference node and clustered with k-means

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 14 of 19

0
50

100

0
50

100 0

100

d
(1)
n

d
(2)
n

d
(3)
n

displacement plot

−500

0
250

−500

0

500

0

250

x
y

z

crossmember

Dmean [mm]: 53.64 129 .1 186 .7

Fig. 7 Spectral clustering with l-nearest neighbor graph. Default parameters for σ and l were selected

mation behavior. But we are also interested in other sources of nonlinear behavior as

described in the “Quality of clusters and nonlinear behavior” section.

Simple alternatives for clustering

With themeasures defined in the “Measures” section, it is not only possible to judge exist-

ing methods but invent new approaches that use these measures for cluster optimization.

This will ensure that the clustering algorithms fit to the measures that are used to assess

the quality. We will present several new clustering techniques in the following.

For a general approach, letM : X → R≥ 0 be an arbitrary function on X representing

a measure like the deformation D or relative scatter Srel. We can then define the equal

clustering with respect to M as C = {Ck}1≤k≤K with

α := min{M(x): x ∈ X },

β := max{M(x): x ∈ X },

γk := α + k ·
β − α

K
, k = 0, . . . , K,

Ck := {x ∈ X : γk−1 ≤ M(x) < γk}, k = 1, . . . , K − 1,

CK := {x ∈ X : γK−1 ≤ M(x) ≤ γK }.

This clustering method simply splits the nodes evenly with respect to M into K clusters

Ck .

The results for the choiceM = D are presented in Fig. 8. In comparison to the clustering

depicted in Fig. 6, the border between the clusters with medium and high deformation

moved upwards, resulting in a larger cluster with medium deformation. This small dif-

ference seems more reasonable to the authors but the judgement what constitutes good

clustering will always remain an opinion as stated in the “Clustering” section.

The calculation time of 30ms is more than halved in comparison to k-means (70ms)

applied directly onX since equal clustering has linear time complexity inn. Onemay argue

that even the 2 s computation time of spectral clustering is negligible in a preprocessing

step in model reduction since the simulation time of a reduced model is higher by several

orders of magnitude. As discussed in the “Spectral clustering” section, the computational

complexity of spectral clustering scales nonlinearly in n.While k-means can scale linearly,

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 15 of 19

0
50

100

0
50

100 0

100

d
(1)
n

d
(2)
n

d
(3)
n

displacement plot

−500

0
250

−500

0

500

0

250

x
y

z

crossmember

Dmean [mm]: 49.26 125 .7 189 .7

Fig. 8 Equal clustering with respect to D

0
50

100

0
50

100 0

100

d
(1)
n

d
(2)
n

d
(3)
n

displacement plot

−500

0
250

−500

0

500

0

250

x
y

z

crossmember

Srelmean [%]: 8.4 37.8 61.5

Fig. 9 Equal clustering with respect to scalar Srel

it is however not guaranteed. A full model of a car has at least 1000 times more nodes

than the crossmember discussed as an example in this contribution. Thus, the guaranteed

linear time andmemory scaling of equal clustering contributes to the overall goal of giving

a design engineer fast feedback.

The caseM = Srel depicted in Fig. 9 is more interesting since it is the firstmethod that is

able to identify areas with higher sensitivity between the simulation runs—another source

of nonlinearity. This method allows us to identify the left front part of the crossmem-

ber as highly sensitive to small changes in the crash angle. The cluster with the highest

sensitivity even has a relative scatter of 61.5 % as can be seen in the changed legend of

Fig. 9.

While equal clustering of the scalar relative scatter gives valuable insight in the nonlinear

behavior of the crossmember, it can be useful to view the scatter as a vector, i.e., the

direction of the orthogonal projection of x on Re relative to the deformation D(x):

Sabs(x) := x −

〈

x,
e

‖e‖

〉

e

‖e‖
∈ R

R

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 16 of 19

Srel(x) :=

⎧

⎨

⎩

Sabs(x)
D(x)

if D(x) ≥ 2
100Dmax(X),

0 if D(x) < 2
100Dmax(X).

Notice the different notations: Srel for the scalar and Srel for the vectorized relative scatter.

It is now possible to cluster the vectors {Srel(x) : x ∈ X } with common clustering algo-

rithms like k-means, see Fig. 10. Two almost symmetric clusters can be observed in the

displacement plot: One representing mostly nodes with d
(1)
n < d

(2)
n and another cluster

representing mostly nodes with d
(1)
n > d

(2)
n . In contrast, the scatter vector Sabs(x), i.e., the

information about the dominance of one specific simulation is lost with equal clustering

with respect to Srel, see Fig. 9.

Grouping

Although we have achieved a strong improvement over the original method described in

the “Analysis of thepreprocessing” section, it is still anopenquestionwhich clusters belong

to the presumably linearly and nonlinearly behaving areas and how large the number K

of clusters should be chosen. We solve both problems at once by grouping the clusters.

The idea consists of choosing a high number of clusters K , selecting an appropriate

measureM from the “Measures” section likeM = Dmean orM = Srelmean and then grouping

all clusters Ck whose measure M(Ck) is below or above a threshold τ , respectively. The

threshold τ is calculated by

Mmin := min
1≤k≤K

M(Ck),

Mmax := max
1≤k≤K

M(Ck), (7)

τ := Mmin + δ(Mmax − Mmin)

after choosing a parameter 0 ≤ δ ≤ 1. The groups are then defined as

Glin =
⋃

{Ck : M(Ck) < τ },

Gnonlin =
⋃

{Ck : M(Ck) ≥ τ }

0
50

100

0
50

100 0

100

d
(1)
n

d
(2)
n

d
(3)
n

displacement plot

−500

0
250

−500

0

500

0

250

x
y

z

crossmember

S rel
mean [%]: 7.0 28.0 31.2

Fig. 10 Clustering of vectorized Srel with k-means

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 17 of 19

0
50

100

0
50

100 0

100

d
(1)
n

d
(2)
n

d
(3)
n

displacement plot

−500

0
250

−500

0

500

0

250

x
y

z

crossmember

S rel
mean [%]: 9.7 49.6

Fig. 11 Grouping of ten clusters generated by k-means with threshold δ = 0.7. Glin is shown in green and

Gnonlin in red

with the two groupsGlin andGnonlin consisting of the nodes that are behaving presumably

linearly or nonlinearly, respectively. The parameter δ controls the border between these

two groups whereupon δ = 0 leads to Glin = ∅. The higher δ, the more vectors x will be

in Glin.

Figure 11 shows the result of such a grouping. First, the crossmember is clustered with

k-means like in Fig. 6 but this time into K = 10 clusters. The relative scatter of all

10 clusters is measured withM = Srelmean.Mmin = 3.3 % is the lowest andMmax = 66.1 % is

the highest relative scatter out of the 10 values. A parameter δ = 0.7 leads to a threshold

of τ = 47.3 % according to (7). Thus, the clusters with the two highest relative scatter

values Srelmean of 48.8 % and 66.06 % are grouped to Gnonlin since their measure is above

τ , and the remaining eight clusters are merged into Glin. The result can be examined in

Fig. 11. It should be mentioned that the grouping method found almost the same area

of high scatter as equal clustering with respect to Srel, see Fig. 9, even though a different

clustering method was used.

Choosing an appropriate δ and judging the resulting two groups is still a job that can only

be done by an experienced engineer but the measures from the “Measures” section help

a lot to automate this part of the workflow. The engineer can first look at the measures of

each cluster and get an idea of their range. He can then for example decide that most of

the clusters have only a low measure—which is a sign for linear behavior—and choose a

high δ like 0.9. Another option would be that every cluster with a relative scatter higher

than 10 % should be considered to be behaving nonlinearly. Choosing δ by solving (7) for

τ = 10 % will lead to that clustering. Dividing the nodes into Glin and Gnonlin would be

impossible without the measures from the “Measures” section since the clusters from any

clustering algorithm do not have any meaning. They are not sorted or labeled in any way.

Only the measures from the “Measures” section give them a meaning like “area with high

deformation”.

Summary and outlook

It was observed that black box identification of nonlinear behavior can only be solved by

heuristics. First, measures were defined to quantify the deformation and scatter, which

correlate to nonlinear behavior. With these measures it was possible to judge improve-

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 18 of 19

ments of existing methods. The subtraction of the rigid body movement is necessary in

the preprocessing. New methods like equal clustering, which clusters with respect to a

measure, are more robust and faster. Additionally, they can guarantee that the clustering

fits to the measures that a user wants to optimize without the need to choose any para-

meters like in spectral clustering. An optional grouping eliminates the need to estimate

the number of clusters. Overall, they all proved to be a valuable contribution in raising

the quality of the identification and matched with the experience of engineers.

The algorithms are almost ready to be applied to a full car model. The guaranteed linear

time scaling of equal clustering allows the direct application on a full car model. But this

can result in clusters that are scattered all over the model. For a later model reduction, it

is necessary that the size of the interface between linearly and nonlinearly reduced areas is

as small as possible, see [2]. Thus, the geometry of the car needs to be taken into account

during the clustering, e.g., all clusters should be connected sets.

The resulting clustering can now be used to apply certain model reduction methods

to the clusters in future work. Parts of the model that are considered to behave nonlin-

early should be reduced with nonlinear model reduction techniques, the rest with linear

methods. This approach is deemed to be advantageous over using only one reduction

method. If a crash simulation is only reduced linearly, the error would be higher since

nonlinear behavior cannot be reproduced. If nonlinear model reduction is used for the

full carmodel, it would lead to higher computation times due to the usually more complex

nonlinear algorithms. This needs to be proven with experiments in future work.

In this paper it was assumed that only the nodal positions are available. If the user

has access to more output data like strain or stress, the aforementioned methods can be

extended to this new data. It should also be beneficial to combine the results based on

deformation and scatter in order to take both sources of nonlinearity into account.

Authors’ contributions

DG analyzed and improved the existing methods. JF had the idea to separate linearly from nonlinearly behaving parts

and implemented most of the import functions from LS-DYNA to MATLAB. Both authors read and approved the final

manuscript.

Acknowledgements

The authors like to thank Anne-Kathrin Zeile for preliminary work. Additionally, they would like to thank the German

Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology

(EXC 310/1) at the University of Stuttgart. The 2001 Ford Taurus model has been developed by The National Crash

Analysis Center (NCAC) of The George Washington University under a contract with the FHWA and NHTSA of the US DOT.

Competing interests

The authors declare that they have no competing interests.

Received: 19 February 2016 Accepted: 11 May 2016

References

1. Spethmann P, Thomke SH, Herstatt C. The impact of simulation on productivity and problem-solving in automative

R&D. Technical report, Technische Universität Hamburg-Harburg; 2006.

2. Fehr J, Holzwarth P, Eberhard P. Interface and model reduction for efficient simulations of nonlinear vehicle crash

models. Accepted by Mathematical and Computer Modelling of Dynamical Systems.

3. Radermacher A, Reese S. Model reduction in elastoplasticity: proper orthogonal decomposition combined with

adaptive sub-structuring. Comput Mech. 2014;54(3):677–87. doi:10.1007/s00466-014-1020-6.
4. LS-DYNA Product Home Page. http://www.lstc.com/products/ls-dyna/. Accessed 2 Feb 2016.

5. Livermore Software Technology Corporation. LS-DYNA theory manual. Livermore: Livermore Software Technology

Corporation; 2006.

6. National Crash Analysis Center. http://www.ncac.gwu.edu/ncac/. Accessed 2 Feb 2016.

7. Marzougui D, Samaha RR, Cui C, Kan C-DS. Extended validation of the finite element model for the 2001 ford taurus

passenger sedan. In: Technical report NCAC 2012-W-004, The National Crash Analysis Center, The GeorgeWashington

University, 45085 University Drive, Ashburn; 2012.

http://dx.doi.org/10.1007/s00466-014-1020-6
http://www.lstc.com/products/ls-dyna/
http://www.ncac.gwu.edu/ncac/

Grunert and Fehr Adv. Model. and Simul. in Eng. Sci. (2016) 3:20 Page 19 of 19

8. Craig R. Coupling of substructures for dynamic analyses: an overview. In: Proceedings of the AIAA dynamics specialists

conference, Paper-ID 2000-1573. Atlanta; 2000.

9. Mei L, Thole CA. Clustering algorithms for parallel car-crash simulation analysis. In: Bock H, Phu H, Kostina E, Rannacher

R, editors. Modeling, simulation and optimization of complex processes. Berlin: Springer; 2005. p. 331–40.

10. Mei L, Thole CA. Data analysis for parallel car-crash simulation results and model optimization. Simul Model Pract

Theory. 2008;16(3):329–37.

11. Bohn B, Garcke J, Iza-Teran R, Paprotny A, Peherstorfer B, Schepsmeier U, Thole C-A. Analysis of car crash simulation

data with nonlinear machine learning methods. Procedia Comp Sci. 2013;18:621–30.

12. Griebel M, Bungartz H-J, Czado C, Garcke J, Trottenberg U, Thole C-A, Bohn B, Iza-Teran R, Paprotny A, Peherstorfer

B, Schepsmeier U. SIMDATA-NL – Nichtlineare Charakterisierung und Analyse von FEM-Simulationsergebnissen für

Autobauteile und Crash-Tests. Final report (in German), Bundesministerium für Bildung und Forschung. 2014. http://
publica.fraunhofer.de/dokumente/N-326423.html. Accessed 16 Feb 2015.

13. Jain AK. Data clustering: 50 years beyond k-means. Pattern Recog Lett. 2010;31(8):651–66.

14. Kleinberg JM. An impossibility theorem for clustering. In: Becker S, Thrun S, Obermayer K, editors. Advances in neural

information processing systems, vol. 15. Cambridge: MIT Press; 2003. p. 463–70.

15. Jain AK, Dubes RC. Algorithms for clustering data. Upper Saddle River: Prentice-Hall Inc; 1988.

16. Aloise D, Deshpande A, Hansen P, Popat P. NP-hardness of euclidean sum-of-squares clustering. Mach Learn.

2009;75(2):245–8. doi:10.1007/s10994-009-5103-0.
17. Dasgupta S, Freund Y. Randomprojection trees for vector quantization. IEEE Transact Inform Theory. 2009;55(7):3229–

42. doi:10.1109/TIT.2009.2021326.
18. Vattani A. K-means requires exponentially many iterations even in the plane. Discrete Comput Geom. 2011;45(4):596–

616. doi:10.1007/s00454-011-9340-1.
19. Arthur D, Manthey B, Röglin H. Smoothed analysis of the k-means method. J ACM. 2011;58(5):1–31. doi:10.1145/

2027216.2027217.
20. Ng AY, Jordan MI, Weiss Y. On spectral clustering: analysis and an algorithm. In: Advances in neural information

processing systems, vol 14. MIT Press: Cambridge; 2001. p. 849–56.

21. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transact Pattern Anal Mach Intell. 2000;22(8):888–905.

22. von Luxburg U. A tutorial on spectral clustering. Stat Comput. 2007;17(4):395–416. doi:10.1007/s11222-007-9033-z.
23. Prim RC. Shortest connection networks and some generalizations. Bell Syst Tech J. 1957;36(6):1389–401. doi:10.1002/

j.1538-7305.1957.tb01515.x.
24. Lanczos C. An iterationmethod for the solution of the eigenvalue problemof linear differential and integral operators.

J Res Natl Bur Stand. 1950;45(4):255–82.

25. Kuczyński J, Woźniakowski H. Estimating the largest eigenvalue by the power and lanczos algorithms with a random

start. SIAM J Matrix Anal Appl. 1992;13(4):1094–122. doi:10.1137/0613066.
26. Zheng J, Chen W, Chen Y, Zhang Y, Zhao Y, Zheng W. Parallelization of spectral clustering algorithm on multi-core

processors and GPGPU. In: Computer systems architecture conference, 2008. ACSAC 2008. 13th Asia-Pacific. 2008.

p. 1–8. doi:10.1109/APCSAC.2008.4625449.
27. Bengio Y, Paiement J-F, Vincent P, Delalleau O, Roux NL, Ouimet M. Out-of-sample extensions for LLE, isomap,

MDS, eigenmaps, and spectral clustering. In: Thrun S, Saul LK, Schölkopf B, editors. Advances in neural information

processing systems, vol. 16. Cambridge: MIT Press; 2004. p. 177–84.

28. Peherstorfer B, Pflüger D, Bungartz H-J. A sparse-grid-based out-of-sample extension for dimensionality reduction

and clustering with Laplacian eigenmaps. In: Wang D, Reynolds M, editors. Advances in artificial intelligence 2011,

vol. 7106. Lecture notes in computer science. Berlin: Springer; 2011. p. 112–21.

29. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl

Math. 1987;20:53–65. doi:10.1016/0377-0427(87)90125-7.
30. Stein B, Meyer zu Eissen S, Wißbrock F. On cluster validity and the information need of users. In: Hanza MH, editor.

3rd international conference on artificial intelligence and applications (AIA 03). Anaheim, Calgary, Zurich: ACTA Press;

2003. p. 216–21

31. Wriggers P. Nonlinear finite element methods. Berlin: Springer; 2010.

http://publica.fraunhofer.de/dokumente/N-326423.html
http://publica.fraunhofer.de/dokumente/N-326423.html
http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1109/TIT.2009.2021326
http://dx.doi.org/10.1007/s00454-011-9340-1
http://dx.doi.org/10.1145/2027216.2027217
http://dx.doi.org/10.1145/2027216.2027217
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://dx.doi.org/10.1137/0613066
http://dx.doi.org/10.1109/APCSAC.2008.4625449
http://dx.doi.org/10.1016/0377-0427(87)90125-7

	Identification of nonlinear behavior with clustering techniques in car crash simulations for better model reduction
	Abstract
	Background
	Setting
	Overview of crash analysis
	Clustering
	K-means clustering
	Spectral clustering

	Preprocessing
	Quality of clusters and nonlinear behavior
	Measures
	Analysis of the preprocessing

	Improvements
	Elimination of rigid body movement
	Simple alternatives for clustering
	Grouping

	Summary and outlook
	Acknowledgements
	Acknowledgements
	References

