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IDENTIFICATION OF NONLINEAR TIME SERIES FROM FIRST
ORDER CUMULATIVE CHARACTERISTICS

BY IaAN W. MCKEAGUE! AND MEI-JIE ZHANGY 2
Florida State University and Medical College of Wisconsin

A new approach to the problem of identifying a nonlinear time series
model is considered. We argue that cumulative lagged conditional mean
and variance functions are the appropriate “signatures” of a nonlinear time
series for the purpose of model identification, being analogous to cumula-
tive distribution functions or cumulative hazard functions in iid models.
We introduce estimators of the cumulative lagged conditional mean and
variance functions and study their asymptotic properties. A goodness-of-fit
test for parametric time series models is also developed.

1. Introduction. Currently, one of the most challenging problems in non-
linear time series analysis is to identify the class of model to which a series
{X:} belongs based on observation of part of the series, {X;,t=0,1,...,n}.
Techniques of nonparametric estimation have been applied to this problem by
Robinson (1983), who studied the large sample properties of kernel estima-
tors of lagged conditional means E(X;|X;_;) and E(X;|X;_;,X;_;) for various j
and k& values. Such estimators are useful for detecting nonlinearities graphi-
cally [see Tong (1990), page 12]. This approach has been further developed by
Auestad and Tjestheim (1990), who focused on kernel estimates of the one-
step lagged conditional mean and variance functions \Mx) = E(X;|X;_.; = x) and
~(x) = var(X;|X,_; = x) for the purpose of identifying common nonlinear models
such as threshold [Tong (1983)] and exponential autoregressive [Ozaki (1980)].

In the present paper we introduce an approach to this problem based on
estimation of cumulative versions of the conditional mean and variance func-
tions, A() = [ Mx)dx and T'(:) = [, y(x)dx, where a is an appropriately chosen
point in the state space. These estimators, denoted A and T, are obtained by
integrating Tukey regressograms for A and ~. The reason for considering cu-
mulative versions of the conditional mean and variance is that it is possible
to derive functional limit theorems, whereas available asymptotic results for
kernel or regressogram estimators of A\ and v are only useful pointwise. We
advocate A and T as natural “signatures” of a time series in preference to
estimates of A and ~.
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496 I. W. MCKEAGUE AND M.-J. ZHANG

We derive functional limit theorems for A and T under conditions that can
be readily checked when {X;} is a Markov chain. These results can be used
to construct confidence bands for A and I', which are more helpful than con-
fidence intervals in assessing plots. This is the chief benefit from estimating
cummulative conditional means and variances rather than A and v them-
selves. Another benefit is that A and T are relatively insensitive to variations
in bandwidth compared to the kernel or regressogram estimators.

We also consider the problem of testing whether the conditional mean func-
tion A has a specific parametric form. Klimko and Nelson (1978) developed con-
sistency and asymptotic distribution results for the conditional least square
estimator 6 of 6 for the parametric model Ax) = g(0,x), where g is a known
function and 6 is an unknown parameter. We construct a goodness-of-fit test
for this model based on a comparison of A and A = [ g(6,x)dx. Here A is the
natural estimator of A under the parametric model. We obtain a functional
limit theorem for the process /(A — A) and use it to derive a chi-squared test.
A particular application is a test for linearity of A. Our test is more power-
ful than Robinson’s [(1983), page 193] test based on estimates of A at finitely
many points, and it is preferable to tests constructed by arranging the linear
model to be nested within various larger parametric models [see Tong, (1990),
Section 5.2]—such tests are sensitive only to restricted classes of alternatives.

There are some connections between the present paper and cumulative haz-
ard function estimation in survival analysis; see the survey articles of Ander-
sen and Borgan (1985) and McKeague and Utikal (1990a). In fact A is closely
related to an estimator introduced by McKeague and Utikal (1990b). Martin-
gale techniques play an important role here, as they do in survival analysis.

Our asymptotic distribution results for A and T are given in Section 2. The
goodness-of-fit test for parametric submodels is discussed in Section 3. We in-
dicate how our results can be extended to lags of higher order in Section 4. The
results of a simulation study and some applications to real data are presented
in Section 5. Proofs are given in Section 6.

2. Estimation of A and I'. Assume that the conditional mean and vari-
ance of X; given X, X1, ...,X;_1 only depend on X;_;. This property holds, for
example, if {X;} is a Markov chain. In particular, it holds in the important
case of a nonlinear autoregressive process

(1.1) X = MXi_1) +0(Xs1)ess

where {¢;} are iid with zero mean and unit variance and v = o2. If the dis-
tribution of ¢y is symmetric, then process (1.1) is characterized by the triple
(A, v, distribution of ¢g). For us it is A and v that are of primary interest.

We restrict attention to estimation of A and I" on a fixed interval [a, b]. It is
assumed throughout that {X;} is stationary with a marginal density denoted
f. The regressogram estimators X and 4 are defined as follows. Let Zy, ...,Zg,
be a partition of [a, b] made up of intervals of equal length w,, the bins of the
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regressogram, and denote Z, = Z; for x € Z;. Set
Nx) = (nwaf(x))~ ZI{X, 1 € L}X,,

A(x) = (nwaf (x))~ 1ZI{Xz 1 € LHX, ~ M))?,

t=1
where ? is the histogram estimator of f given by

-~

Pe) = (nawn) S I XKooy € ),

t=1

and I(-) is the indicator function. Regressogram estimators were introduced
by Tukey (1961) and have been studied recently by Diebolt (1990).
Introduce the estimators

AQ) = / A(x)dx and T()= / 3(x) d.

Although more-sophisticated estimators (e.g., kernel) will outperform re-
gressograms in_estimating A and +, there appears little to be gained from
using them in A and T since integration has such a strong smoothing effect.
In fact we shall see that A and I converge at rate Op(n—1/2), a rate that
does not even involve the bin width w,. Kernel estimators would be useful,
however, in extending our approach to higher-order models (see Section 4). In
practice, some care needs to be taken in choosing the interval [a,b] and the
bins to ensure that the regressogram estimates are not too unstable. Based
on Monte Carlo studies, we find that for good results the bin widths should
be of comparable size (we have taken them to be of equal length w, merely
for simplicity), and there should be at least five observations per bin.

We now state the main results of this section, giving the asymptotic dis-
tributions of A and T. It is assumed throughout that A, and f are twice
differentiable (although this can be relaxed to some extent). We also need
the following.

CONDITION A.

(A1) EX§ < oo

(A2) (Xo,Xt) has a bounded joint density f;, for all £ > 1, and the marginal
density f does not vanish on [a b];

(A3) var[f(x)] = o(w,) and var[é(x)] = o(1/n) umformly over x € [a,b],
where

Bx) = (o) ' S I{Kior € LY XKooy — ).

t=1
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THEOREM 2.1. Suppose that Condition A holds, nw? — co and nw? — 0 as
n — oo. Then /n(A — A) converges in distribution in Cla,b] to a continuous
Gaussian martingale with mean zero and variance function

H(z) = : % dx.

THEOREM 2.2. Suppose that the hypotheses of Theorem 2.1 hold, except that
EX® < co. Then /n(T' - T') converges in distribution in Cla, bl to a continuous
Gaussian martingale with mean zero and variance function [, v/f dx, where
v(x) = var([X; — Ax)1?|X;_, = x) is assumed to be Lipschitz.

2.1. Checking condition (A3). A sufficient condition for a stationary
Markov process {X;} to satisfy (A3) is that it is strong mixing with a geo-
metric mixing rate and nw? — co. This can be seen using arguments similar
to Auestad and Tjgstheim [(1990), pages 680, 681] which show that, under
the geometric mixing rate, var[ f(x)] = O(1/(nw,)) and var[5(x)] = O(w,/n) uni-
formly over [a, b] provided that f is bounded there. Note that the variance
of I{X;_, € Z.}(X;_; — x) is of order O(w3), which leads to the faster rate of
convergence for var[5(x)]. In a particular example it will be easier to check
geometric ergodicity [Nummelin (1984)], which implies strong mixing with a
geometric mixing rate. Geometric ergodicity is in turn implied by a readily
checkable condition of Tweedie (1983). A sufficient (but by no means neces-
sary) condition for geometric ergodicity of the nonlinear autoregressive process
(1.1) is that A and o are bounded on compact sets and there exists a constant
C such that

sup (A(x)l/le) <1, sup |o(x)] < oo.
Ix1>C t)>C

Another way of checking condition (A3), which is not restricted to Markov
processes, is to verify a mixing condition of Castellana and Leadbetter [(1986),
Theorem 3.3]. They considered the following dependence index sequence

b= sup 3 [h(x) - FEFG)]

x,y€la, bl ;C

and showed that

var[f(x)] = O(%’i) +0(—L),

nwy

uniformly in x. Similar calculations show that

var[3(x)] = o(‘ig;.{ﬂﬂ) +o(ﬁ),
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uniformly in x. Hence, if 8, = O(d,) and nw2 — oo, then conditions (A3) holds
(recall that d,, = 1/w,, is the number of bins). The moment condition (Al) can
probably be weakened, but it makes the results easier to prove.

We now mention some possible applications of these results.

2.2. Confidence bands. Condition (A3) implies that ? is uniformly consis-
tent (see the discussion at theAbeginninngf Section 6). Thus, using Theo-
rem 2.2, it can be shown that H(-) = [ 5/f dx is a uniformly consistent es-
timator of H. It follows from Theorem 2.1 that an asymptotic 100(1 — a)%
confidence band for A is given by

2 ~1/2F7(1\1/2 H (x)
A(x) + can-YV2H(B)Y <1+ A__) xeab),

H(b)

where ¢, is the upper o quantile of the distribution of sup,¢, 12 |B%(t)| and
B is a Brownian bridge [see Anderson and Borgan (1985), page 114]. Tables
for ¢, can be found in Hall and Wellner (1980). A confidence band for I'" can
be obtained in a similar way.

2.3. Testing simple hypotheses. A test of the simple hypotheses, A = Ag
and ~ = vy, where )y and -y, are specified, can be made by checking whether
the above confidence bands contain Ay and Ty. A rather different approach
has been taken by Diebolt (1990), who developed a test based on a piecewise
constant version of

va /,, F)Rx) - rolx)) dx.

In the special case of the autoregressive model (1.1), Diebolt obtained a func-
tional limit theorem for the above process, and a similar one designed to test
v = 7o (7 specified) when A is known.

2.4. Testing for a difference between two conditional mean functions. Con-
sider the “two-sample problem” of testing whether two independent time se-
ries have identical conditional mean functions A. Denote the various functions,
sample sizes, estimators and so on associated with the two series by using a
subscript 1 or 2, as in );, j = 1,2. Let n = ny + ny. Then, if nj/n — p; > 0,
for j = 1,2, and the conditions of Theorem 2.1 are satisfied for the two series,
v/n{A; — Ag) converges in distribution in Cla, b] to a continuous Gaussian mar-
tingale with mean zero and variance function

-1 "Yl(x) 1 '72(’5)
Py o« fi(x) o« fa(x) @

provided that A; = A2 on [a, b]. Confidence bands for A; — Ay are constructed
as above. Some plots of such bands are given in Section 5.

dx +pg
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3. Goodness-of-fit tests for parametric models. In this section we con-
sider the problem of testing whether A belongs to a given parametric family
{g(0,): 0 € ©}. Here g is a known deterministic function, and © is a closed,
bounded subset of RP. Our test is based on a functional limit theorem for
vn (A — A), where A() = f g(6,x) dx and 0 is the conditional least squares
estimator § = argmingcg v (X - g(6,X; 1))

First we state a version of the consistency and asymptotic normality result
of Klimko and Nelson (1978) that is adapted to our present setting, taking
the opportunity to simplify their approach a little. We assume that {X;} is
an ergodic process and E(XX; — g(0,X,))? has a unique minimum at the true
parameter value 6y, which is assumed to be in the interior of ©.

For a matrix Y and a vector y, write Y| = sup; ;|Y;|, |yl = sup; |y;| and
¥®% = yyT. It is assumed that g(6,x) is twice differentiable w.r.t.  and the
corresponding partial derivatives are denoted g’ and g".

CONDITION B.

(B1) There exists a function o such that ||g”(0,x) — g"({,%)|| < J(x)6(8 — ¢),
where J(X;) has a finite second moment, and lim,_,y §(c) = 0.

(B2) There exists a function K such that ||g"(6,x)| < K(x), where K(X;) has
a finite fourth moment.

(B3) g(6y,Xp) and y(Xj) have finite second moments, and all the components
of g'(0y,X,) have a finite fourth moment.

(B4) The matrices

V =E[g’'(60,X0)%?],
S = Elg’ (60, X0)®%7(Xo)]

are positive definite.

- THEOREM 3.1. Under Condition B, § — 6, a.s., and \/7—7,(5— 6y) —p N(O,
V-18v-1).

We now state the main result of this section.

THEOREM 3.2. Suppose that Conditions A and B hold and () = g(6y, -). If
nw? — oo and nwi — 0, then \/n (A — A) converges in distribution in Cla, b] to

[ Vr@ire) awe) -v() [ & 60x)\ 1)) aw ),

where
ve) = [ &) dx v,

and W is a Brownian motion.
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A chi-squared goodness-of-fit test for the parametric model is now easily
constructed. Let Ji,...,J; be a partition of [a, b] consisting of intervals. De-
note the increment of /(A — A) over J; by A. It can be checked that A = (A;)
converges in distribution to a Gaussian random vector with mean zero and
covariance matrix having rith entry

H(J.0 %) +¥(7)S%()" - $(F)Hy(F) - $(T)H(F),

where H is defined in Theorem 2.1 and
Hi(z) = / & (60,%)(x) da.

Let G be the natural estimate of this covariance matrix obtained by replacing
the unknown 6, f and - by their estimates. Then, under the parametric model,
the Wald test statistic ATG~1A has a limiting chi-squared distribution with q
degrees of freedom, provided that the limiting covariance matrix of A is of full
rank and the conditions of Theorem 3.2 hold. A test for a parametric model of
v can be developed in a similar way.

4. Extension to higher order lags. It is possible in principle to extend
our approach to higher order lagged conditional means and variances, but this
will be curbed in practice by the “curse of dimensionality”—the data become
sparser at an exponential rate as the dimension increases. However, there are
some extremely long time series in some fields in which nonlinearity is of in-
terest and the approach may be helpful. We briefly indicate how to handle the
case of a secondorder lagged conditional mean Mx,y) = E(X;|X;_1 = x,X;_o = ).
This mostly amounts to a recasting of our original notation.

Write X; = (X;,X;_;) and assume that the conditional mean and variance
of X; given X, Xj, ...,X;_1 are AMX;_;) and v(X;_1), respectively. Set A=
Ll X dx dy, where X is the regressogram

Xxy) = (nw?f(x,9)) 1Y X1 € Ty},

t=2
Ty=Z. xI, and

flxy) = 1Zl{xt 1 € Ty}

t=2

is the histogram estimate of the density of Xj.

In order to obtain the asymptotic distribution of A we need new versions of
conditions (A2) and (A3). In (A2) f; becomes the joint density of X; and X;. In
(A3) we need the stronger condition var[ f (x, )1 = o(w?) and also var[ 5., =
o(1/n), where

Bu(5.9) = () S I{Kes € T} (Ko — ),

t=2
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and similarly for 3;, in which X;_; — x is replaced by X;_s — y. The use of a
kernel estimator in place of the regressogram p) may be desirable here because
of the faster rate of convergence needed for var[f].

Let Cla, b]? denote the space of continuous functions on [a, b]* provided with
the supremum norm. Our earlier results now extend as follows.

THEOREM 4.1. Suppose that the second order version of Condition A holds,
nw? — oo and nwt — 0. Then /i(A — K) converges in distribution in Cla, b} to
a two-parameter Gaussmn martingale with mean zero and variance function

given by [ [ ~/f dx dy.

THEOREM 4.2. Suppose that the hypotheses of Theorem 4.1 and the extended
version of Condition B hold and X\ = g8y, - ,-). Then /n (A — R) converges
in distribution in Cla,b} to a process which has the same form as the lim-
iting process in Theorem 3.2 except that the integrals are with respect to a
Brownian sheet.

5. Numerical results and examples

5.1. Simulation study. We have carried out simulations using three model
examples found in Auestad and Tjgstheim (1990):

Model 1. linear autoregressive, X; = 0.8X;_; +¢;;
Model 2. threshold autoregressive,

X, = —0.3Xt_1 + &¢, if Xt—l < 0,
t= 0.8Xt_1 + &, if Xt—l > 0;

Model 3. exponential autoregressive,
= {0.8 — 1.1 exp(—50X?7 )} X;—1 +&:.

Here ¢, is Gaussian white noise with mean zero and standard deviation
0.1. Auestad and Tjgstheim checked geometric ergodicity and stationarity for
these examples. Inspection of the proofs of our results shows that the differen-
tiability conditions imposed on A (f and <) can be weakened to hold piecewise,
so they also apply to the threshold model.

We restricted estimation of A to the interval [—0.3,0.3]. The bin width was
taken as w, = 0.05 [as in Auestad and Tjgstheim (1990), who plotted point
estimates of A for these three models]. Inspecting the plots of Ain Figure 1,
we find that the three models are easily distinguishable, even for sample size
as low as 250. The parabolic shape of the linear autoregressive model and the
“squashed” parabola of the exponential autoregressive are especially distinct.

Figure 2 shows plots of differences between the estimates of the cumulative
conditional mean functions in the two-sample problem, for various pairs of
the above models. In the first plot in each row, the two series are generated
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- TABLE 1
Observed levels and powers of goodness-of-fit test for linear autoregressive model at nominal level
of 5%; bin width w, = 0.05;9¢ =4

Sample size

Observed series 100 250 500 1000 1500 2500

Linear 0.3096 0.0728 0.0590 0.0628 0.0588 0.0740
Threshold 0.9690 0.9996 1.0000 1.0000 1.0000 1.0000
Exponential 0.6762 0.9498 09992 1.0000 1.0000 1.0000

Note: The data were generated using the Gaussian random number generator of Marsaglia and
Tsang (1984). The number of samples in each run was 5000.

using the linear model and the zero function is contained within the band,
so our test would correctly conclude that the conditional mean functions are
identical. In the other plots, the zero function is well outside the bands and
the test correctly concludes that the conditional mean functions are different.

Table 1 gives observed levels and powers of the chi-squared goodness-of-fit
test for the linear autoregressive model X; = 0X;_; +¢;, when the time series is
generated by eachAmodel. At small sample sizes (less than 250), the covariance
matrix estimator G sometimes failed to be positive definite and the chi-squared
statistic value was negative. The percentage of negative chi-squared statistics
was 8 and 0.2% for sample sizes of 100 and 250 with the linear model; 29
and 6% with the threshold model; 25 and 6% with the exponential model. We
rejected the linear model when the chi-squared statistic was negative. This is
reasonable since G is consistent under the null hypothesis so that a negative
chi-squared statistic is evidence in favor of the alternative. The observed levels
are very close to their nominal 5% values and the powers are close to 100%
(except for n = 100) under the threshold and exponential models.

5.2. Canadian lynx data. The classic Canadian lynx data set consists of
the annual numbers of Canadian lynx trapped in the Mackenzie River district
of north-western Canada for the period 1821-1934. Various parametric time
series models have beén proposed to-fit these data; see Tong (1990) for an
extensive review. Moran (1953) fitted a second order linear autoregressive
model, after first transforming by log,,, to obtain

X;=1.05+141X,_1 - 0.77X;_o + &4,

where ¢; ~ N(0,0.046). However, many authors, including Bartlett (1954),
Hannan (1960), Campbell and Walker (1977) and Tong (1977), have judged
this model to be inadequate compared with some other parametric models.
We carried out our goodness-of-fit test for the second order linear model
(having three parameters) using d, = 5,6, ..., 10, and 4 (2 by 2) and 9 (3 by
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FIG. 3. 95% confidence band for Ay — Ay, IBM stock price data; d, = 10; A, = period I,
Ay = period II.

3) degrees of freedom. The bins were arranged to cover the whole range of the
data and to contain, as closely as possible, equal numbers of data points. All
our tests indicated an extremely strong departure from the linear model.

5.8. IBM stock price data. Consider the set of IBM daily closing stock
prices from late 1959 to mid-1960 (period I) and mid-1961 to early 1962 (pe-
riod II) given in Tong (1990). The daily relative change in price appears to be
stationary and is used in place of the raw data. Tong (1990) tested for linear-
ity and decided that period I is linear and period II is nonlinear. In order to
apply the two-sample test we need to assume that the two subseries are in-
dependent (or approximately so); this is not unreasonable since periods I and
II are well separated in time. Figure 3 gives a plot of the difference between
the estimates of the cumulative conditional mean functions in the two peri-
ods, along with the 95% confidence band, using d, = 10. The confidence band
does not contain the zero function, so we conclude that the one-step lagged
conditional means for the two periods differ significantly from one another.

6. Proofs. Recall that the intervals Z; partition [a,b]. We write them ex-
plicitly as Z; = (xj_1,%;], j=1,...,d,. In what follows we need f to be uni-
formly consistent for f on [a,b]. This holds under conditions {A2) and (A3)
since

E( sup [f(x) - f* x)|)2<2varij) dno(w,) — 0,

x€la,b)

and, by stationarity, o) = E?(x) =w;! fr f(w) du — f(x), uniformly on [a, b].

Note that uniform consistency of f and (A2) allow us to divide by f (whlch
we often do) when proving the asymptotic results. Also note that & =
MX;_1) is a martingale difference with respect to the natural filtration }} =
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ocXo, ..., X3).

PROOF OF THEOREM 2.1. We begin by splitting X into two parts, the first
of which turns out to be close to A and the second of which involves the mar-
tingale differences &;:

A(x) = % + [nw,f(x)] gl{Xt_l € L},
where
a(x) = [nw,] 1> H{X, 1 € LINX-).
t=1

Upon integrating,
vi(A = A)(2) = M(n,")(2) + Ri(2) + Ra(2),

where

L(z)

M(k,z) = Zfbe 1ZI{X,IGI}&, k=1,...,n,

Ri(2) = \/r—llwn /a [fb(ix))fb{x) ] ;I{Xt 1 € I }& dx,

Rae) = v | i [;ET) _ )\(x)] s,

and, given a function ¢ defined on [a,b], ¢ is the piecewise linear approxima-
tion to ¢ that agrees with ¢ at each x;. Here, L(z) is the integer part of (z—a)/w,
and M(%, 2) is defined to be zero when L(z) = 0. To complete the proof, we need
to show that the remainder terms R; and R; converge uniformly in probability
to zero and M(n,-) —p m, where m denotes the Gaussian martingale given
in the statement of the theorem; Lemma 4.1 of McKeague (1988) then implies
that M(n,-) —p m.

Now M(.,2) is an F; martingale for each fixed z. We shall use the martin-
gale central limit theorem [see, e.g., Theorem A.2 of Aalen (1977)] to show
that all finite-dimensional distributions of M(n, -) converge to those of m. The
predictable variation process of M(-,z) evaluated at & = n is given by

L(z)

(M(-,2)), -—Zf"(x,) ZI{XHeI}v(Xt 1)

J=1

i} [v(x)+0(wn)]f(x) +00(1) —n H(z
_/a S p(1) —p H(2).
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Next we check the Lindeberg condition:

Lz

L,= % Z (%)~ 2ZI{X,_1 € Z;}
Jj=1 t=1
(S o)l

converges in probability to zero for all ¢ > 0. By the conditional Cauchy-
Schwarz and Chebyshev inequalities, and since f* is bounded away from zero
on [a, b], the conditional expectation in L, is bounded above by

1/2 1/2
{B(e170)} " {[Vref? ()] P E(HKcs € TYEHFo) )
-0 75 ) B(EHF-) i € T (Xect)
Now (A1), stationarity of {X;} and )\ Lipschitz imply that sup, E¢} < oo, so

again using the Cauchy-Schwarz inequality, (A2), boundedness of f and -y and
nw? — oo, we have

E(L) <0 I)Z}:(EI{XHeI})W O( ) —

Jj=1 t=1

so the Lindeberg condition holds. By the martingale central limit theorem, the
one-dimensional distributions of M(n,-) converge to those of m. The above ar-
gument readily extends to all finite-dimensional distributions of M(n, -) using
the fact that increments of M(-,z) over digjoint intervals in z are orthogo-
nal martingales.

The next step is to show that {M(n,-): n > 1} is tight in Dla, b]. By a slight
extension of Theorem 15.6 of Billingsley (1968), it suffices to show that

EM(n,y) - M(n,x)"|M(n,2) - M(n,y)* < C(z — x)* +0(1),

for a <x <y <z < b, where C is a generic positive constant. Indeed, by the
Cauchy—-Schwarz inequality it suffices to show that

(6.1) EM(n,y) - M(n,x)* < C(y —x)% +0(1).

Using Rosenthal’s inequality [Hall and Heyde (1980), page 23], the left-hand
side of (6.1) is bounded by

e s x((Careg®) )]

=1

+CY S E (I{"f‘f;f(xz)}f‘) ,

Jj t=1

(6.2)
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where the summation over j runs from L(x) + 1 to L(y). By (A2), the first term
of (6.2) is bounded by

( )Z}:E I{Xt-lez})“fo( )ZZE(I{X-IE L, X1 € Tn})
j gk st
-o( )<y %) +0(1)(y - 2)?

<C(y-x)?+0(1),
and the second term of (6.2) is bounded by

O(n_12) Zi(EI{Xt—l € Z,}) V2 (EeP) V2
Jj ot=1

< O(n 1wn>(y_x) —0,

since nw2 — co. So (6.1) holds.

Next we show that R; converges uniformly in probability to zero. Since ?
is a uniformly consistent estimator of f, which is bounded away from zero on
[a, b], it suffices to show that

—sp 0.

1 &
6.3) 7 ,2-1: I () = 7° ()]

> X,y € L}
t=1

By the Cauchy—Schwarz inequality and (A3), the expectation of (6.3) is bounded
by

fz (var[f(x;) )W{ZE X e TYE)

d
= So(wn)!/20(mun)1/* — 0,

proving (6.3).

Finally, we need to show that Ry converges uniformly in probability to zero.
First note that Taylor expanding A about x inside each term of & gives & =
M+ N8+ Op(w?), where ) is the first derivative of . Thus

X(6 - ), Ne
f

where 6°(x) = Eé(x) = w;! Jz.(u — 2)f () du. We need to show that the integral

from a to z of each term on the rhs is of order Op(n—%) uniformly in z. For the

first term,
' b
/ X(6 - 6) g
a f

& _a= 0
3 - +0p(w}),

sup
z

< 0p(1) / |6 — 8"| dx = op(n~%%),
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since f is uniformly consistent for f (which is bounded away from zero) and
b b N
E/ |6 — 6 dx < / (var[5(x)])V2 dx = o(n~1/%)
a a
by condition (A3). For the second term, Taylor expanding )\’ and f about the

midpoint of each interval Z;, noting that f is constant over each interval and
fI fI(u x) du dx = 0 leads to

Z /&b
(6.4) / A’,f dx = Op(w?),

. . . . 1 .
uniformly in z, which is of order op(n~2) since nwt — 0. O

PROOF OF THEOREM 2.2. Since ) and v are Lipschitz, and f uniformly con-
verges in probability to f, which is bounded away from 0,

F(x) = [nw,f (x) ZI{Xt 1€ L)

2
Y l{Xi-1 € LY
" [ o EiI{Xi—ll €I} +0P(wn)} .

Let 7 = &2 — v(X;_1) and define 7(x) to be @(x) in the proof of Theorem 2.1,
but with A replaced by ~. Then, expanding the above expression from 7, we
obtain

f(I‘ I)(2)= 1 2y IH{Xi 1 €T} dx

\/—wn a ?(x)
+\/—/|: :3 'y(x)] dx
iy 2
+0p () | [gf{xt_l ezx}at} x
+op(ﬁ)/ S X, _1 € T}& dx +Op (vawd),

G =1

(6.5)

uniformly in z. The first term in (6.5) has the same form as the leading term
in the decomposition of /7A(A — A) except that r; replaces &. Note that ; is a
martingale difference and E(r?|X;_; = x) = v(x). Also, the condition EX}® < co
implies that sup, E(7#) < co. Therefore, the first term of (6.5) converges to the
desired limiting distribution by the proof of Theorem 2.1. The second term in
(6.5) has the same form as R; in the proof of Theorem 2.1, so it converges
uniformly in probability to zero. The third term in (6.5) is uniformly bounded
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by

1 dn n 2
OP(;zg/z—w;) 21: {ZI{Xt—l € Ij}&]
Jj=

t=1

- op(ns/i . )op(nw,,) = 0p( \/r%) —p0,

since nw2 — oco. The fourth term in (6.5) is uniformly bounded by

or(42) 5[5

J_

Y KX 1€ L}

t=1

1
< Op(\/r_L)Op(\/nwn) —p 0.
This completes the proof. O

PROOF OF THEOREM 3.1. Define @,(0) = 37 ,(X; — g(6,X;_1))? and q(8) =
E(X; — g(0,X,))%. Note that

hl‘(Q"() @ (0)) = ZX, (¢ Xe-1) —£(0,X,-1)]

+= LS (0. Xecr) +£(¢, Kol (0, Xecr) — £(c. Ko

By condition (B1), we have that
l2(6,x) —2(¢,x)| < [CK(x) + g’ (60, %) I]116 — C]I-

Hence, under the moment conditions in (B1) and (B3) and by the ergodic
theorem,

~|@n(6) - @u ()| s clo-cil

where C is finite almost surely. It follows that {n~1Q,(-)} is equicontinuous.
Again by the ergodic theorem, n=1Q,() — q(0) (< o0), a.s., which implies
that {n~1Q,(")} is pointwise bounded almost surely. It follows by the Arzela—
Ascoli theorem that this family of functions is almest surely relatively compact
in the space of continuous functions on ©. Thus n~1@,(-) converges uniformly
to g(-) on © almost surely. Since g(6) has a unique minimum at 6, € ©, and 6
minimizes §,(#), we conclude that 6 is consistent.
Next, Taylor expanding @, about 6y, we can write

V(6 = 60) = Va(6*) " Un,

where U, = U™,
LS
U(n) =0 g,(GO)Xt—l)gt, k= 17 Y
\/,_L t=1

Va(0) = 5-Q1(0)
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and 6* is on the line joining 6, and 6. Since U}a") is a martingale in %, the
martingale central limit theorem can be used to show that U, —p N(0,S)
under the moment conditions in (B3). To complete the proof, we need to show
that V,,(6*) —p V. Routine algebra gives that

1 n
Va(67) = > & (60, X,-1)®"

t=1

1 n
+- > g (6%, X-1)%2 — &' (60, X,-1) %]
t=1

n

+ %Z[g(G*,Xt_l) —&(60,X;-1)]g" (6", X,-1)

t=1

1 n
= > &g (60,Xi1)
t=1

1 n
+ Z[Xt —8(00,X,-1)1[g" (60, X;-1) —g" (6", X;-1)].
t=1

By (B3) and the ergodic theorem, the first term converges to V almost surely.
Using 6* — 6, a.s., conditions (B1)~<(B3) and the ergodic theorem, it can be
shown that the second, third and last terms above converge almost surely
to zero. A strong law of large numbers [see Hall and Heyde (1980), Theo-
rem 2.19], (B2) and (B3), and the martingale difference property of &, give
that the fourth term also converges almost surely to zero. We conclude that
Vo(0*) — Vas 0O

PROOF OF THEOREM 3.2. By Taylor expanding g(-,u) about 8, for each
fixed u,

ViR -0 = ([ #(6:0) dv) VA@-00)

where 62 lies on the line joining 6, and 6. Since § is a consistent estimator of
6y, and g’ is continuous,

2 2
/ g (02, %) dx —p / g (60,%) d.
a a

From the proof of Theorem 3.1, \/5(5 ~6p) = VU, +0p(1), so using the proof
of Theorem 2.1,

V(R = A)(2) = M(n, ) (z) - ¥(2) Un +0p(1),
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uniformly in z. By a Dla,b] x R version of McKeague {(1988), Lemma 4.1] it
suffices to show that (M(n, -), U,) converges in distribution to (m(-), U,,), where

m(z) = [V aw(e)
U, = /_ Zg'(eo,x)\/'y(x)f(x) dW(%).

The proofs of Theorems 2.1 and 3.1 give that M(n,.) —p m and U, —p U.
It only remains to show that the finite-dimensional distributions of (M(n, -), U,,)
converge to those of (m(.), Uy). This is done by applying the martingale cen-
tral limit theorem to the vector-valued martingale consisting of U™ and in-
crements of M(-,z) over disjoint intervals in 2. In particular, note that

L(z) n

M(,2),U™), = %Zf"(xj)“IZI{X,_l € T}g' (60, Xe-1)7(Xi-1)
=1 t=1
1 (%18 (60,x)7(x) + O(wn)
nw,,/a [ - f*(x) ]
X ZR:I{X,_I € .} dx + op(1)

t=1

e / " & (80,%)(x) dx = Cov(m(z), Us).

The Lindeberg conditions involving increments of M(-,z) have been checked
in the proof of Theorem 2.1, and those involving the p components of U™, in
the proof of Theorem 3.1. O

PROOF OF THEOREM 4.1. The proof runs along the lines of the proof of
Theorem 2.1, except that X; replaces X, I, replaces Z,, double integral (sum-
mation) replaces single integral (summation) and ¢ is the piecewise linear
approximation to ¢ determined by cells I,,. Note that nw? — oo is used in
checking the Lindeberg condition, and tightness can be checked by using a
two-dimensional time parameter version of Theorem 15.6 of Billingsley (1968)
given in Bickel and Wichura (1971). The analogue of (6.4) is

21 22 VIR
(6.6) / / )\xE&x dx dy = Op(w?)
a Jo f
(uniformly in 2;,2;) along with a similar property for \) and Egy Here )\, and

A, are the partial derivatives of A with respect to x and y; (6.6) is obtained by
Taylor expanding )\, and f about the midpoint of each cell. O
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PROOF OF THEOREM 4.2. The proof is similar to that of Theorem 3.2 and is
omitted. O

REFERENCES

AALEN, O. O. (1977). Weak convergence of stochastic integrals related to counting processes.
Z. Wahrsch. Verw. Gebiete 38 261-277.

ANDERSEN, P. K. and BoreaN, @. (1985). Counting process models for life history data: A review.
Scand. J. Statist. 12 97-158.

AUESTAD, B. and TJgsTHEIM, D. (1990). Identification of nonlinear time series: First order char-
acterization and order determination. Biometrika 77 669—687.

BARTLETT, M. S. (1954). Problémes de 'analyse spectrale des series temporelles stationaires. Publ.
Inst. Statist. Univ. Paris 3 119-134.

BICKEL, P. J. and WICHURA, M. J. (1971). Convergence criteria for multiparameter stochastic
processes and some applications. Ann. Math. Statist. 42 1656-1670.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

CAMPBELL, M. J. and WALKER, A. M. (1977). A survey of statistical work on the Mackenzie River
series of annual Canadian lynx trappings for the years 1821-1934, and a new analysis
(with discussion). J. Roy. Statist. Soc. Ser. A 140 411-431; 448-468.

CASTELLANA, J. V. and LEADBETTER, M. R. (1986). On smoothed probability density estimation for
stationary processes. Stochastic Process. Appl. 21 179-193.

DieBOLT, J. (1990). Testing the functions defining a nonlinear autoregressive time series. Stochas-
tic Process. Appl. 36 85-106.

HaiL, P. and HEYDE, C. C. (1980). Martingale Limit Theory and Its Applications. Academic, New
York.

HarL, W. J. and WELLNER, J. A. (1980). Confidence bands for a survival curve from censored data.
Biometrika 67 133-143.

HANNAN, E. J. (1960). Time Series Analysis. Methuen, London. ,

KLMKO, L. A. and NELsoN, P. I. (1978). On conditional least squares estimation for stochastic
processes. Ann. Statist. 6 629-642.

MARSAGLIA, G. and TsaNGg, W. W. (1984). A fast easily implemented method for sampling from
decreasing or symmetric unimodal density functions. SIAM J. Sci. Statist. Comput. &
349-359.

MCKEAGUE, 1. W. (1988). A counting process approach to the regression analysis of grouped sur-
vival data. Stochastic Process. Appl. 28 221-239.

McKEAGUE, I. W. and UTIRAL, K. J. (1990a). Stochastic calculus as a tool in survival analysis: A
review. Appl. Math. Comput. 38 23-49.

MCKEAGUE, I. W. and UTIKAL, K. J. (1990b). Identifying nonhnear covariate effects in semimartin-
gale regression models. Probab. Theory Related Fields 87 1-25.

MoraN, P. A. P. (1953). The statistical analysis of the Canadian lynx cycle, I: Stnicture and
prediction. Australian Journal of Zoology 1 163-173.

NUMMELIN, E. (1984). General Irreducible Markov Chains and Non-negative Operators. Cam-
bridge Univ. Press.

Ozaki, T. (1980). Non-linear time series model for non-linear random vibrations. J. Appl. Probab.
17 84-93.

RoBINSON, P. M. (1983). Nonparametric estimators for time series. J. Time Ser. Anal. 4 185-207.

Tong, H. (1977). Some comments on the Canadian lynx data—with discussion. J. Roy Statist.
Soc. Ser. A 140 432-436; 448—468.

Tong, H. (1983). Threshold Models in Non-linear Time Series Analysis. Lecture Notes in Statist.
21. Springer, New York.

TONG H. (1990). Non-linear Time Series: A Dynamical System Approach. Clarendon, Oxford.

TUKEY, J. (1961). Curves as parameters and touch estimation. Proc. Fourth Berkeley Symp. Math.
Statist. Probab. 1 681-684. Univ. California Press, Berkeley.



514 I. W. MCKEAGUE AND M.-J. ZHANG

TWEEDIE, R. L. (1983). Criteria for rates of convergence of Markov chains, with application to
queueing theory. In Papers in Probability, Statistics and Analysis (J. F. C. Kingman
and G. E. H. Reuter, eds.) 260-276. Cambridge Univ. Press.

DEPARTMENT OF STATISTICS INTERNATIONAL BONE MARROW
FLORIDA STATE UNIVERSITY TRANSPLANT REGISTRY
TALLAHASSEE, FLORIDA 32306-3033 MEDICAL COLLEGE OF WISCONSIN

P.O. Box 26509
MILWAUKEE, WISCONSIN 53226



