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1 Introduction 

Identification of Nonlinear 
Vibrating Structures: 
Part Il-Applications 
A time-domain procedure for the identification of nonlinear vibrating structures, 
presented in a companion paper, is applied to a "calibration" problem which incor- 
porates realistic test situations and nonlinear structural characteristics widely en- 
countered in the applied mechanics field. The "'data" set is analyzed to develop 
suitable, approximate nonlinear system representations. Subsequently, a "valida- 
tion" test is conducted to demonstrate the range of validity of the method under 
discussion. It is shown that the procedure furnishes a convenient means for con- 
structing reduced-order nonlinear nonparametric mathematical models of 
reasonably high fidelity in regard to reproducing the response of the test article 
under dynamic loads that differ from the identification test loads. 

1.1 Background. In the study by Masri et al. (1987b), 
henceforth referred to as the "companion paper," the authors 
presented the formulation of a time-domain method for the 
identification of arbitrarily nonlinear multi-degree-of- 
freedom (MDOF) vibrating systems undergoing free vibra- 
tions or subjected to direct force excitations and/or support 
motion that is not necessarily uniform. This paper applies the 
identification procedure in the cited reference to a "calibra- 
tion" problem which incorporates realistic test situations and 
nonlinear characteristics. Subsequently, a "validation" prob- 
lem is considered to invesitgate the range of validity of the 
identification/prediction procedure. 

1.2 Scope. Section 2 of this paper defines the model con- 
figuration, the nonlinear (polynomial and hysteretic) element 
characteristics, and the exact system parameters corre- 
sponding to the "sman oscillations" range. 

Section 3 discusses a synthetic "experiment" meant to 
simulate a conventional "hammer-blow" test that is routinely 
used in contemporary experimental modal analysis pro- 
cedures. After describing the probing signal characteristics 
and input/output measurements, the data processing ap- 
proach under consideration is used to extract the linearized 
system inertia, damping and stiffness matrices. 

Section 4 is concerned with a simulated forced vibration test 
wherein the excitation (stationary, wide-band random) is not 
directly applied to the system but rather to its moving support 
points. By using the parametric identification results for the 
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linearized system parameters obtained in Section 3,  the time 
histories of the nonlinear forces involving all system degrees of 
freedom are obtained. Using the eigenvectors associated with 
the linearized system as basis functions to transform the 
"measured" nonlinear forces, the generalized nonlinear 
forces and corresponding generalized state variables are ob- 
tained. Applying the nonparametric identification procedure 
under discussion, and approximating analytical function in- 
volving a series expansion in terms of a set of orthogonal 
polynomials is obtained and shown to yield a good estimate of 
the presumably unknown nonlinear restoring forces of the 
system. 

Section 5 is concerned with the "validation" of the present 
identification procedure by using the identification results ob- 
tained in Section 4 to predict (estimate) the response of the 
"exact" nonlinear system, when the location of the distur- 
bance as well as its form is different from what was used for 
the probing signal in the identification phase discussed in Sec- 
tion 4. 

2 Model. Characteristics 

2.1 Example System Characteristics. To illustrate the 
application of the method under discussion, consider the 
hypothetical finite element model shown in Fig. 1. This one- 
dimensional (rectilinear horizontal motion) structure consists 
of three nearly equal masses m,, i =  1,2,3 that are intercon- 
nected by means of six truss elements anchored to an interface 
at three locations, thus resulting in a redundant system with 
three degrees of freedom. 

The absolute displacement of each m, is designated by x,,  
while the prescribed motion of the three support points are 
designated by si ( t ) ,  i =  1,2,3. The three excitation forces that 
directly act on the system components are denoted by F, ( t ) ,  
i = 1,2,3. Thus, in terms of the notation introduced in the com- 
panion paper, 
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Fig. 2 (a) Exact values of linearized system matrices corresponding to 
the small oscillations (infinitesimal) motion range. (b) Modal 
characteristics involving the matrices M, C, and K corresponding to 
fixed-base motion. 
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Fig. 3 Acceleration time history of the three masses in the nonlinear 
system under "hammer-blow" test applied to mass m2. The duration of 

Fig. 1 Model of example nonlinear 3DOF System: (a) configuration; (b) the impulsive excitation is approximately 0.18 of the system's fun- 
element characteristics; (c) generic element with polynomial non~ineari- damental period. (a) F(t); (b) i,(t); (c) f2(t); (d) *#). The Same amplitude 
ty; (Q generic element with bilinear hysteretic properties. xi(t) and time scale is used for all plots. Time span shown covers approx- 

designates the absolute displacement of mi, and si(t) designates the ab- imately 14 fundamental periods. 
solute displacement time history associated with the support DOFi. 

n, = 3  and n0=3. 
The arbitrary nonlinear elements, denoted by g,, that are in- 

terposed between the masses and between the support points 
are dependent on the relative displacement z and the velocity 
across the terminals of each element. In the case of polynomial 
nonlinearities, the elements assume that form, 

g, (z,  i) = P { ~ ) Z + P ~ ~ ) Z + P ~ ~ ) Z ~ ,  (4) 

where pfl) is the linear stiffness component, pi') is the linear 
viscous damping term, and pj') corresponds to the coefficient 
of the nonlinear (cubic) displacement term. Thus, depending 
on  the sign of p j l ) ,  the form of g, in equation (4) can be made 
t o  represent restoring forces with hardening or softening 
nonlinearities-a commonly encounterd type of nonlinearity 
in physical systems. 

The form of the nonlinearity expressed by equation (4) is a 
polynomial-type without cross-product terms. To illustrate the 
wide applicability of the present method, a hysteretic-type 
restoring force will be considered. Such a nonlinearity not on- 
ly involves cross-product terms of displacement and velocity, 
but is of course not even expressible in polynomial form. 
Hysteretic systems, widely encountered in all areas of applied 
mechanics (e.g., building and equipment systems, as well as 

Type 
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aerospace structures containing collapsible or retractable 
elements), are among the more difficult types of nonlinear 
properties to investigate and identify (Caughey, 1960, 1975; 
Iwan, 1965, 1966; Iwan and Lutes, 1968; Jennings, 1964; 
Lutes and Takemiya, 1974; Andronikou and Bekey, 1984). 

In the example structure under discussion, three elements 
(g,, g,, and g,) have hardening-type polynomial nonlinear 
properties, and the remaining three elements (g,, g,, and g,) 
have bilinear hysteretic properties characterized by the follow- 
ing parameters: 

pll) = k ,  = stiffness in the elastic range, 
pif) = c = viscous damping term in the linear range, 

pji) = k2 = stiffness in the nonlinear range, 

py) = c2 = viscous damping term in the nonlinear 
range, 

p j f )  = z, = yield displacement level. 

The magnitudes of the system masses as well as the material 
properties of the nonlinear model elements are tabulated in 
Fig. l(b). 

Notice that the structure of the model is not chain-like, con- 
sequently the linearized system stiffness matrix is not banded. 
The exact values of the system mass, damping, and stiffness 
matrices corresponding the an infintesimal ("small oscilla- 
tions") range of the motion in the neighborhood of the posi- 
tion of static equilibrium are shown in Fig. 2 together with the 
associated mode shapes, natural frequencies, and modal 
damping values correspondin& to a fixed-base configuration 
of the model. 
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Fig. 4 Parametric identification under impulsive direct force excita- 
tion. Formulation is for a full-order system with symmetric matrices 
under forced vibrations. Time segment used for identification is about 
two fundamental periods. 

3 Impulsive Excitations and Response Measurement 

3.1 Probing Signal. The method under consideration im- 
poses no restrictions on the nature of the excitation source to 
be used as a probing signal. It will be assumed in the present 
example that an impulsive excitation (resembling a "hammer 
blow" disturbance of the type widely used in modal analysis 
techniques) is applied to mass m,. 

When the above-mentioned excitation is applied to the ex- 
ample structure, segments of the resulting acceleration time 
histories of the three mass locations would be as shown in Fig. 
3. The same scale is used for all locations to make relative 
magnitude comparison easier. The time duration shown cor- 
responds to about 15 system fundamental periods T , .  

3.2 Data Processing. By integrating the measured ac- 
celeration time histories shown in Fig. 3, the time histories of 
the corresponding velocities and displacments are obtained. 
From that, inter-element deformations z , ( t )  and velocities 
2, ( t )  can be determined. 

3.3 Parametric Identification. In what follows, the task 
of identifying the system matrices (determining the linearized 
system influence coefficients) will be referred to as the 
"parametric" identification phase of the procedure. Con- 
versely, the task of developing an approximating analytical 
representation for the nonlinear forces involved in the system 
motion will be referred to as the "nonparametric" identifica- 
tion phase of the current procedure. For convenience, a prefix 
A will henceforth be used to indicate that a referenced section, 
equation, or figure is in the companion paper mentioned 
above. 

With reference to the notation introduced earlier in the 
companion paper, the general parametric identification pro- 
cedure can be applied to the present case by noting that the 
problem i;s one in which the number of degrees of freedom is 
n, = 3, the number of support degrees of freedom is no = 0 
(i.e., no support motion), and the number of nonzero excita- 
tion force components is nf = 1 (since only F2 ( t )  f 0) 

By using the recursive weighted least-squares approach 
discussed in Section A2.2, the symmetric system matrices M,, , 
C , ,  , and K , ,  are identified and shown in Fig. 4. Comparing 
the elements of matrices M , , ,  C , , ,  and K , ,  shown in Figs. 2 
and 4 shows that, if all the response measures are used to iden- 
tify the dynamic system, then the identified results are ac- 
curate to within a few percent for all system parameters, in- 
sofar as the infintesimal range of motion is concerned. The 
small discrepancies are attributable to slight changes in the 
nonlinear elements. Further details regarding the application 
of the parametric identification procedure, under a variety of 
test situations, are available in the work by Masri et al. 
(1987a). 

4 Random Base Excitation Test 

4.1 Probing Signals and Response. The motion of the 

Fig. 5 Acceleration time history of the base motion s(t) and the 
response xi(t) of the three masses in the nonlinear system shown in Fig. 
1 under uniform base excitation applied to the three supports. Identical 
amplitude and time scales are used for all the plots. Time segment 
shown corresponds to approximately 14 fundamental periods of the 
linearized system. Input is stationary, wide-band random excitation with 
a flat power-spectral-density. 

Fig. 6 Phase-plane plots of the six elements in the form of force- 
deformation characteristics gi and zi involving the nonlinear system 
finite elements when subjected to the uniform stationary random base 
excitation shown in Fig. 5 

-4 00 

stucture discussed in Section 3 consisted of essentially small 
oscillations. In the present "test," the structure is assumed to  
be subjected to uniform, wide-band random support accelera- 
tions s ,  ( t ) ,  s2 ( t )  , and & ( t )  . This particular choice of excita- 
tion is intended to mimic a situation in which a structure with 
multiple load paths is subjected to a random support motion 
of the type furnished by shaking tables. 

lel -400 
If) 

4.2 Data Processing. For more realistic simulation, it 
will be further assumed that the only available 
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Fig. 7 Three-dimensional representation of the force deformation 
characteristics of the six finite elements of the system when subjected 
to wide-band random base acceleration 

"measurements" are those of the acceleration of the three 
supports, ( s , ( t ) ,  i= 1,2,3), and the acceleration of the three 
masses (x, ( t ) ,  i= 1,2,3): None of the system velocities or 
displacements are directly measured. A representative segment 
of each of the excitations (chosen, for simplicity, to be the 
same) and responses is shown in Fig. 5.  To facilitate com- 
parisons, the same amplitude scale is used for like response 
quantites at different locations. By processing the measured 
accelerations, the system velocities and displacements are 
obtained. 

Phase-plane plots of all the elements' force-deformation 
curves are shown in Fig. 6 .  Unlike the results obtained under 
impulsive excitation, it is clear from the inspection of Fig. 6 
that elements g,,  g,, and g, have a hardening-spring 
characteristic, while elements g, and g, are undergoing 
hysteretic behavior. A three-dimensional representation of the 
resistance characteristics of each of the elements is shown in 
Fig. 7. 

4.3 Parametric Identification Procedure. In the most 
general case for the example under discussion, the parametric 
identification procedure can be used to determine the elements 
of the six matrices M I , ,  C,,  , and K,, , each of order n ,  x n,  , 
and matrices M,,, Clo,  and K,,, each of order n, xn,, where 
n, = 3 and no = 3 and nf=O (since no direct excitation is ap- 
plied). However, to further demonstrate the flexibility of the 
present method, the previously determined system matrices in 
Section 3, based on the "small oscillations" response, will be 
used as is (i.e., not recomputed). Thus, the remaining system 
matrices to be identified are MI,, C,,, and K,,. Furthermore, 
for simplicity, it will be assumed that the system mass matrix is 
diagonal. This implies that MI,  is a null matrix. 

With the above assumptions in mind, the parametric iden- 
tification procedure can be expressed as: 

The superscripts (1) and (e) attached to the definition of the 
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Fig. 8 The evolution of the element values of the identified matrices as 
a percentage of the exact value of the corresponding "infinitesimal mo- 
tion range" 
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Fig. 9 Time history of the three components of the nonlinear residual 
force vector fN(t) obtained from the equation of motion by subtracting 
the contribution of the identified linear inertia, damping, and stiffness 
forces. The same amplitude and time scale is used for all plots. The 
amplitude scale matches the corresponding scale used in Fig. 5 to plot 
the time history of the system accelerations. The time scale used covers 
approximately 14 fundamental periods T I .  

system matrices appearing above designate "infinitesimal- 
motion range" and "equivalent linear," respectively. 

Notice that, in the present case, the number of independent 
support motions is equal to unity since the motion of the three 
support points is uniform. Gonsequently, nl =3, no= 1, 
nf= 0, q,, = 2n0 = 2, and the total number of unknown 
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(a) hl coefficients 

(b) hz coefficients 

Fig. 10 Phase-plane plots of the "modal" state variables ui and ui and 
the three generalized nonlinear residual forces hi with respect to the 
corresponding generalized displacement ui. Identical horizontal and 
vertical scales are used for all plots. Note from plot (b) the clear 
evidence of the hysteretic behavior involved with the first mode. 

parameters to be identified at this stage is q, =n,q,, = 6 .  The 
results of the procedure are shown in Fig. 8. 

The evolution of the magnitude of the identified system 
matrices C[g)and Kfg'with time, obtained through the recur- 
sive algorithm discussed in the companion paper, is also 
shown in Fig. 8. For convenience, the magnitude of the or- 
dinate of the plotted parameters have been normalized by the 
"exact" value of the corresponding "infinitesimal-motion 
range" parameters. The abscissa of the curves appearing in 
Fig. 8 have been normalized by T I ,  the system fundamental 
period in the "small oscillations" range. Consequently, the 
ordinate of Fig. 8(a) covers a range * 50 percent relative to the 
unity value of the ratio c,*. = (c,$@/c$)), j =  1,2,3 where c,$) 

J J J  

andct'is the single element in row j  of the column matrix 
Cfg) and cfb), respectively. Similarly, the ordinate of Fig. 
8(b) covers a range *2.0 percent relative to the unity value 
of the ratio k,*, = (kh:)/k@), j =  1,2,3 where kd~)  and k p ,  is 

J J  

the element idrow j  of column matrix K,($ a i d  Kfg, reipec- 
tively. The abscissa of the plots in both parts (a) and (b) in Fig. 
8 covers a range of about 25Tl. 

It is worth noting from Fig. 8 that the spread of the results 
(i.e., dimensionless ordinate scales of the two plots) pertaining 
to the damping and stiffness influence coefficients differ by 
more than an order of magnitude (a factor of about 50). This 
behavior is consistent with the fact that, in the example under 
discussion, the relative contribution of damping-related forces 
and stiffens-related forces is nearly inversely proportional to 
the above-mentioned spread. 

4.4 Determination of Nonlinear Forces. Using the 
available measurements and the previously identified system 
matrices, the nonlinear system forces can now be computed 
from 

f ~ ( t )  = f l  ( t )  - (Mf';) iil + Cfi) + KfI)xl + Cfg)io + Kf$xo 

(6) 

( c )  ha coefficients 

Fig. 11 Nonparametric identification results. Note that the indicated 
coefficients correspond to the normalized Chebyshev polynomials. 

With that, the time history of the nonlinear force vector 
f, ( t )  components can be determined and are shown in Fig. 9. 
For convenience, identical scales are used for the three plots. 

At this stage of the identification procedure, the "best" (in 
least-squares sense) equivalent linear model has been deter- 
mined in the form of the identified matrices. Thus, if for the 
purposes of a particular application the norm of the residual 
error, Ilf, ( t )  II, as computed from equation (6) is sufficiently 
small, then the identification task can be terminated. For more 
demanding situations, additional processing is required to 
more accurately identify the residual forces that have been 
determined. 

As pointed out earlier, if there is a need to augment the 
parametric identification results with additional results from 
the nonparametric phase of the data processing, one can pro- 
ceed directly to develop approximating analytical representa- 
tions, for as many of the components of fN(t )  as warranted, 
in terms of a series expansion involving suitable generalized 
coordinates. However, when the order of the dynamic system 
is relatively large, dealing with a transformed set of nonlinear 
forces may lead to a faster rate of convergence of the ap- 
plicable series. 

A convenient and natural transformation to use with 
realistic dynamic systems is the one expressed by equation 
(A33): 

where 

and @ is the modal matrix associated with MjjlKl,. Although 
the linear modal transformation of equation (8) does not lead 
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Fig. 12 (a), (c), and (e): Three-dimensional representation of the varia- 
tion of each of the three generalized nonlinear forces hi with the cor- 
responding state variables ui and tii; (b), (d), and (f): three-dimensional 
plots of the estimated (identified) generalized nonlinear forces hi as a 
function of the corresponding state variables. For better resolution, dif- 
ferent scales are used for each of the three plots. 

-4 00 

to a decoupled set of equations in this nonlinear case, it has 
been found in many examples to lead to an increased rate of 
convergence of the series representation of the nonlinear force 
vector fN ( t ) .  The time history of the "modal" state variables 
u( t )  and ti ( t )  as well as the "modal" nonlinear forces com- 
puted in accordance with the above equations, are shown in 
the form of phase plots in Fig. 10. 

The plots of the estimated modal restoring forces versus 
their corresponding modal displacement in Fig. 10 clearly in- 
dicate the presence of hysteretic components in the system. 

la) 

4.5 Nonparametric Identification Procedure. Using 
Chebyshev polynomials in accordance with equation (A41) to 
obtain two-dimensional fits for the surfaces of the modal 
restoring functions will yield the typical identification results 
tabulated in Fig. 11. Three-dimensional representation of the 
transformed nonlinear forces in terms of their corresponding 
state variables are shown in Fig. 12 together with the approx- 
imating functions hN , j = 1,2,3. 

It is clear from thk Tables of Fig. 11 that determining the 
optimum least-squares fit for the data associated with the 
hysteretic system does involve many cross-product terms in 
displacement and velocity. It also requires a relatively larger 
number of terms in the series (six used in the present example) 
for a good estimate. 

The preceding is a good illustration of the need to use two- 
dimensional surface fits rather than the uncoupled one- 
dimensional series to estimate the system properties. Whether 
cross-coupling is significant or not is a decision that need not 
be made a priori when following the method presented 
here-the system will effectively "decide" by its own response 
(signature) the extent and relative dominance or contribution 
arising from various powers of T, ( u )  T, (ti). 

Examination of the projections of h, on u, indicates negligi- 
ble modal coupling in the present example. Such may not be 
the case in other applications. However, the presented method 

0.0 Time Sec. 75 0 

0.0 Time Sec. 75.0 

0.0 T ~ m e  Sec. 75.0 

Fig. 13 Nonstationary excitation used in the validation test 

can cope with nonlinear modal coupling by simply adding as 
many cross-coupling terms as necessary (see equation (A41)). 

5 Response Prediction Under Different Excitation 

In order to demonstrate the validity of the present iden- 
tification approach, the model representation expressed by the 
C,, coefficients shown in Fig. 11, which were extracted from 
the original ("exact") modal response under a probing signal 
consisting of stationary broad-band excitation, supplied 
through support motion, will now be used to predict tbe 
response of the original model when subjected to directly- 
applied (to mass m,) nonstationary random excitation con- 
sisting of modulated white noise of the form 

where e(t)  is a deterministic envelope function 

with the a's being deterministic constants, and n ( t )  is the 
output of a simulated Gaussian white noise process. The, ex- 
citation time histories are shown in Fig. 13. 

By following the steps indicated in'equation (A15), the iden- 
tification results can be used to predict the response time 
history. The adequacy of the approximate (identified) 
nonlinear model to predict the response of the exact 
(hysteretic) nonlinear system under arbitrary excitation is 
clearly illustrated by the results &own in Fig. 14 in which the 
"exact" relative displacement of each mass location of the 
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Fig. 14 Comparison between the measured and predicted response 
time history (a), (c), and (e) when both the linear and nonlinear terms are 
used; (b), (d) and (9 when only linear terms are used 

nonlinear system is compared to its corresponding value as 
computed on the basis of the approximate nonlinear model. 

The plots on the right-hand-side column of Fig. 14 show a 
comparison between the time history of the measured and 
predicted elements' deformation when only linear terms are 
used to compute the estimated response. Note that the exclu- 
sion of the nonlinear terms from the indentification results 
leads to a deterioration in the accuracy (of the amplitude as 
well as the phase) of the predicted response. The contribution 
of the nonlinear terms to the internal forces associated with 
the system degrees of freedom is compared to the corre- 
sponding linear terms in Fig. 15. Note that, as one would ex- 
pect, the magnitude of these forces is correlated with the large 
amplitude range of motion. 

6 Summary and %onclusions 

Application of a time-domain procedure for the identifica- 
tion of nonlinear vibrating structures, presented in a com- 
panion paper, to a multi-degree-of-freedom nonlinear system 
incorporating hysteretic and polynomial-type nonlinearities, 
demonstrates the utility of the method under discussion. It is 
shown that an optimum (in the least-squares sense) reduced- 
order nonlinear mathematical model can be developed to 
match, with reasonable accuracy, all of the response time 
histories measured by the available sensors. Furthermore, the 
mathematical representation allows convenient separation of 
the contribution of the linear and nonlinear internal forces 
developed in the structure. 

The illustrative examples indicate the considerable flexibili- 
ty inherent in the procedure to cope with a variety of data pro- 
cessing and test performance situations. 
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