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Coronavirus disease (COVID-19), caused by the virus SARS-CoV-2, is already

responsible for more than 4.3 million confirmed cases and 295,000 deaths worldwide

as of May 15, 2020. Ongoing efforts to control the pandemic include the development of

peptide-based vaccines and diagnostic tests. In these approaches, HLA allelic diversity

plays a crucial role. Despite its importance, current knowledge of HLA allele frequencies

in South America is very limited. In this study, we have performed a literature review

of datasets reporting HLA frequencies of South American populations, available in

scientific literature and/or in the Allele Frequency Net Database. This allowed us to

enrich the current scenario with more than 12.8 million data points. As a result, we are

presenting updated HLA allelic frequencies based on country, including 91 alleles that

were previously thought to have frequencies either under 5% or of an unknown value.

Using alleles with an updated frequency of at least ≥5% in any South American country,

we predicted epitopes in SARS-CoV-2 proteins using NetMHCpan (I and II) and MHC

flurry. Then, the best predicted epitopes (class-I and -II) were selected based on their

binding to South American alleles (Coverage Score). Class II predicted epitopes were

also filtered based on their three-dimensional exposure. We obtained 14 class-I and four

class-II candidate epitopes with experimental evidence (reported in the Immune Epitope

Database and Analysis Resource), having good coverage scores for South America.

Additionally, we are presenting 13 HLA-I and 30 HLA-II novel candidate epitopes without

experimental evidence, including 16 class-II candidates in highly exposed conserved

areas of the NTD and RBD regions of the Spike protein. These novel candidates

have even better coverage scores for South America than those with experimental

evidence. Finally, we show that recent similar studies presenting candidate epitopes

also predicted some of our candidates but discarded them in the selection process,

resulting in candidates with suboptimal coverage for South America. In conclusion,

the candidate epitopes presented provide valuable information for the development of
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epitope-based strategies against SARS-CoV-2, such as peptide vaccines and diagnostic

tests. Additionally, the updated HLA allelic frequencies provide a better representation of

South America and may impact different immunogenetic studies.

Keywords: allele frequency, HLA, literature review, South America, epitope, immunoinformatics, SARS-CoV-2,

COVID-19

INTRODUCTION

The novel virus Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) (1, 2) is the first member of the Betacoronavirus
genus to reach pandemic status (3). This virus probably
originated in bats and infects humans with the participation
of an intermediate host (4–7), like its two highly human-
infective relatives, SARS-CoV (8, 9) and MERS-CoV (10). It
causes Coronavirus Disease 2019 (COVID-19), whose clinical
symptoms include fever, cough, fatigue, sputum production, and
difficulty breathing (11, 12). Transmission is mostly human-to-
human through respiratory droplets and direct contact, carrying
infectious virions to the nose, mouth, and eyes (13, 14). It has
spread to 216 countries, resulting in more than 4.3 million
confirmed cases and 295,000 deaths worldwide as of May 15,
2020 (15). It has an estimated basic reproductive number (R0)
of 2.24–3.58 (16).

SARS-CoV-2, as with other Coronaviruses, is characterized by
a high recombination frequency andmutation rate, in addition to
a relatively large and sophisticated genetic machinery compared
to other RNA viruses. At the 5′ end of the genome, the cleavable
polyprotein ab (ORF1ab) is processed into 16 non-structural
proteins (NSPs). They are involved in the viral replication and
assembly process, as well as in immune evasion (17, 18). At the 3′

end, the structural proteins Spike (S), envelope (E), membrane
(M), and nucleocapsid (N) are interspersed by the accessory
proteins ORF 3a, 6, 7a, 7b, 8, and 10 (19, 20). A key factor in viral
attachment and entry is the receptor-binding domain (RBD),
located in the subunit 1 (S1) of the S protein. This binds strongly
to the angiotensin-converting enzyme 2 (ACE2) receptors (21,
22). Other possible receptors, like CD209L (23), CD147 (24), and
the protease TMPRSS2 (25), could also participate in the viral
entry and processing.

Post-translational modifications (PTMs) are covalent
modifications that regulate protein functions. In coronaviruses,
they are required for a successful viral cycle. Glycosylation
and palmitoylation of S and E proteins are fundamental in
terms of stability, enzymatic activity, subcellular localization,
and protein interaction (26–29). Similarly, glycosylation of
the M protein (30, 31), phosphorylation, and ribosylation
of the N protein (32, 33), as well as other PTMs in non-
structural and accessory proteins, can play a determinant
role in the viral cycle (34, 35). Considering the relevant role

Abbreviations: AFNDB, Allele Frequency Net Database; COVID-19, Coronavirus

Disease 2019; CS, Coverage Score; GISAID, Global Initiative on Sharing All

Influenza Data database; HLA, Human Leukocyte Antigen; IEDB, Immune

Epitope Database and Analysis Resource; PDB, Protein Data Bank; PTM, Post-

translational modifications; SARS-CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2; WAF, Weighted Allele Frequency.

of PTMs and the complex composition of N-glycans, it was
proposed that inhibition with N-butyl-deoxynojirimycin
(NB-DNJ) (35) or the addition of carbohydrate-binding
agents (CBAs) could be considered as therapeutic strategies
against SARS-CoV infections (36). Nitric Oxide (NO)
and its derivatives have been shown to inhibit SARS-CoV
replication by reducing the palmitoylation on the nascent
Spike protein, affecting the receptor binding. It also affects
viral RNA production in the early steps of replication,
potentially due to an effect on the ORF1a-encoded cysteine
proteases (37).

Effective methods to control the pandemic include the
development of vaccines and diagnostic tests. The fast
release of complete SARS-CoV-2 genomes boosted the
development of molecular diagnostic methods, resulting in
an increasing portfolio of nucleic acid approaches like RT-qPCR
(38–40), serological-based approaches like ELISA (41, 42),
immunochromatographic panels based on antibodies IgM/IgG
(43) or antigens (44), and hybrid systems in Point-of-Care
devices, consisting of viral genome pre-amplification followed by
a cleavage assay in a lateral flow system (45).

Vaccine development efforts are undergoing worldwide.
There are 110 prophylactic vaccine candidates as of May 15,
2020. Three of them are based on live-attenuated virus, seven on
inactivated virus, 27 on viral vectors (12 replicating and 15 non-
replicating), 26 on nucleic acids (10 using DNA and 16 RNA),
38 on recombinant proteins, six on Virus-Like Particles (VLP),
and three unknown (46, 47). Some vaccines have already moved
to a clinical phase. There are six in Phase I: Pathogen-specific
aAPC (NCT04299724, Shenzhen Geno-Immune Medical
Institute, China), Recombinant Novel Coronavirus Vaccine
(Adenovirus Type 5 Vector) (NCT04313127, CanSino Biologics
Inc.), bacTRL-Spike (NCT04334980, Symvivo Corporation,
Canada), INO-4800 (NCT04336410, Inovio Pharmaceuticals,
USA), mRNA-1273 (NCT04283461, National Institute of
Allergy and Infectious Diseases, USA), and SARS-CoV-2
rS (NCT04368988, Novavax). There are four vaccines on
simultaneous Phase I-II: SARS-CoV-2 inactivated vaccine
(NCT04352608, Sinovac Research and Development Co., Ltd.),
LV-SMENP-DC (NCT04276896, Shenzhen Geno-Immune
Medical Institute, China), ChAdOx1 (NCT04324606, University
of Oxford, UK), and BNT162 (NCT04368728, Biontech SE,
Pfizer). There is also one vaccine in Phase II: Ad5-nCoV
(NCT04341389, Institute of Biotechnology, Academy of Military
Medical Sciences, PLA of China) (47, 48). Of note, six peptide-
based vaccines are currently under development: FlowVaxTM

by Flow Pharma Inc. (49), EPV-CoV19 by EpiVax (50), DPX-
COVID-19 by IMV inc. (51), Vaxil Bio (US patent: 62/987,310)
(52), OncoGen (53), and USask VIDO-InterVac (54).
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In this urgent race to develop a vaccine, immunoinformatic
techniques represent a powerful approach that allows the
screening of whole pathogen proteomes to identify potential
immunogenic regions (55). This includes predicting linear
epitopes potentially presented by the Human Leukocyte Antigen
(HLA) class I and II, which can be used to design peptide vaccines
(56) and molecular diagnostic tests (57). The state-of-the-art
programs are based on artificial neural networks (58–61), and
they require both the sequence of target protein(s) and the host
HLA allele(s) at 4-digit resolution (62, 63).

Two recent studies have extrapolated epitopes with
experimental evidence in SARS-CoV to SARS-CoV-2, and
selected candidates based on different criteria. Grifoni et al. (64)
intersected these extrapolated epitopes with a set of predicted
epitopes using 12 HLA-I A and B supertypes (65). They present
12 candidates in the S, M, and N proteins of SARS-CoV-2.
Ahmed et al. (66) subselected the extrapolated epitopes using
the Population Tool of the Immune Epitope Database and
Analysis Resource (IEDB) (67), resulting in candidates in
the S and N proteins that may potentially cover the global
population. This tool is based on the HLA frequencies reported
in the Allele Frequency Net Database (AFNDB), which is an
important reference source for immunological studies worldwide
(68). Nevertheless, this database has little information about
South America, missing large studies published in recent years
comprising millions of people (see Table S3).

Lack of knowledge about the HLA allelic distribution in South
America can cause regional misrepresentation in immunological
studies, which could result in diminished efficiency of vaccines
and diagnostic tests. Additionally, knowledge on HLA allelic
frequencies typified at 4-digit resolution or higher also plays
a determinant role in other areas, like transplantation (69),
response to cancer immunotherapy (70), and susceptibility to
autoimmune diseases (71, 72).

Here, we performed a literature review of HLA allele
frequencies of South American populations reported in scientific
articles available in PubMed and datasets available in the
AFNDB. These datasets were integrated by country, calculating
weighted allele frequencies (WAFs). Thus, we are presenting
updated WAFs for most South American countries. Then,
HLA class I and II epitopes were predicted using only alleles
with WAF ≥ 0.05. Finally, we selected candidate epitopes
covering all of these South American HLA alleles, reporting
both candidates with existing experimental evidence in the
IEDB database for other coronaviruses as well as novel
candidates. These candidates complement those proposed in
recent articles, which inmost cases scarcely cover South America.
Our findings may result in a better representation of South
America, enriching current development efforts of vaccines and
diagnostic tests.

METHODS

Alignment, Entropy, and Selection
Pressure of the SARS-CoV-2 Proteins
A total of 2,123 genome sequences from human hosts,
categorized as complete with high coverage in the Global

Initiative on Sharing All Influenza Data (GISAID) database (73),
were downloaded on March 31, 2020. This comprises genomes
from 55 countries, including 16 from Brazil, seven from Chile,
and one from Peru (Tables S1, S2). These sequences were aligned
in CLC Main Workbench v.20.0.3 (QIAGEN Bioinformatics).
The coding regions corresponding to the viral proteins were
extracted and translated, using as reference the sequences with
GenBank Gene IDs: 43740568 (Spike, S), 43740571 (Membrane,
M), 43740575 (Nucleocapside, N), 43740570 (Envelope, E),
43740569 (ORF3a), 43740572 (ORF6), 43740573 (ORF7a),
43740574 (ORF7b), 43740577 (ORF8), 43740576 (ORF10), and
43740578 (Orf1ab and NSP1-16 proteins).

Variability at each amino acid position of the SARS-CoV-
2 proteins was measured by Shannon Entropy (74), using
the Shannon Entropy-One online tool (https://www.hiv.lanl.
gov/content/sequence/ENTROPY/entropy_one.html). Sites with
positive selection pressure were obtained from the SARS-CoV-
2 Natural Selection Analysis available in the Galaxy Project
(https://covid19.galaxyproject.org/) (75), retrieved on May 3,
2020, considering the better-ranked sites (meeting at least
four categories).

South American HLA Alleles and Weighted
Allele Frequencies (WAFs)
A review was performed considering first only datasets available
in the AFNDB containing allelic frequencies of HLA-A, -B, -
C, -DPA, -DPB, -DQA, -DQB, and -DRB1 in South American
populations. This was called the “current scenario.” We selected
studies using the following inclusion criteria: (i) we collected
all the studies characterizing HLA alleles with at least 4-digit
resolution in 100 or more individuals (N ≥ 100); and (ii) an
auxiliary rule was exceptionally applied in low-information cases
only, i.e., if just two or fewer articles were obtained, both barely
passing the filter (100 ≤ N ≤ 200). This exception consisted of
relaxing the lower cut-off to N ≥ 40, allowing smaller studies to
pass the filter to rescue additional data.

To expand the “current scenario,” in addition to the previously
described datasets, we collected articles in PubMed reporting
Class I and Class II HLA alleles of South American populations
using the same inclusion criteria. This was called the “updated
scenario.” The selection criteria were applied to both published
datasets in scientific articles and datasets available only in
the AFNDB. All alleles were matched to the current HLA
nomenclature (76).

Then, for both current and updated scenarios, we calculated
Weighted Allele Frequencies (WAFs) by country, using as
approximation the weighted average of the allele frequencies
in all the studies selected by country. This led to a few
exceptions due to evident discrepancies in technology and
resolution, resulting in the exclusion of some studies (see
Figure 1 and Supplementary Methods for full detail). Only
alleles with WAF ≥ 5% in the updated scenario were considered
for further analysis.

Epitope Prediction and Selection
Linear epitopes for HLA class I (HLA-A, -B, and -C) and HLA
class II (HLA-DRB1) were predicted in the SARS-CoV-2 proteins
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FIGURE 1 | PRISMA flowchart of the literature review. Flow diagram of the datasets processed. (A) Current Scenario, using only the datasets available in the Allele

Frequency Net Database. (B) Updated Scenario, adding databases from scientific literature until April 10, 2020. Countries are represented by the first three letters of

their names. PRISMA checklist included in the Supplementary Material (77).

using the alleles obtained in the previous step and the cut-offs
recommended by each software. For HLA class I, we predicted
epitopes of 8-11aa using NetMHCpan v4.0 (59) with rank ≤ 2
and MHCflurry v1.6.0 (60) with an affinity (IC50) ≤ 500 nM. As
these programs do not have the same collection of HLA alleles
available for prediction, we used the consensus verdict whenever
possible. Otherwise, we only used the prediction of the software
with the allele available. For HLA class II, we predicted epitopes
of 15aa using NetMHCIIpan v4.0 (61) with rank ≤ 10. Then, we
annotated which predicted epitopes have previous experimental
evidence for other coronaviruses (identical match, either in full
length from end to end or contained inside) in the IEDBDatabase
(www.iedb.org) (67).

Each predicted epitope obtained corresponds to one or more
HLA alleles, which have different WAFs by country. To combine
these WAFs into a single value, we defined a Coverage Score
(CS), which reflects how good a candidate epitope is for South
America. This was calculated for each predicted epitope, by
adding the proportion by country of alleles with WAF ≥ 5% that
bind this predicted epitope. Therefore, this CS varies in a range
from 0 to P, where P is the number of countries. Then, we selected
candidate epitopes with the highest Coverage Scores, with and
without prior experimental evidence. Additionally, for HLA-II
only, we prioritized candidates based on their three-dimensional
exposure. Sequence logos were generated using WebLogo 3 (78),
showing the chemistry and frequency per amino acid of our
best candidates.

All the data was processed and analyzed using Python
v3.8.2 (www.python.org) and R v3.6.3 (www.r-project.org) with
Rstudio v1.2.5033 (www.rstudio.com).

Prediction of Post-translational
Modifications Events
Signal peptide was predicted using Signal-3L 2.0 (79). Protein
topology (inner, transmembrane, and outer regions) were

predicted with MemBrain v3.1 (80). N-Glycosylation and O-
Glycosylation sites were predicted using N-Glycosite (81) and
NetOGlyc v4 (82) (score ≥ 0.5), respectively. Palmitoylation
and Sumoylation sites were predicted using CSS-Palm 4.0
(83) (medium threshold, Sn = 86.92%, Sp = 89.97%) and
GPS-SUMO v1.0 (84) (medium threshold, Sn = 68.94%, Sp
= 95.01%), respectively. Prediction of ADP-ribosylation sites
was performed using ADPredict v1.1 (85) (score ≥ 0.4). All
predictions were manually curated based on Uniprot available
annotations for SARS-CoV-2.

Structural Modeling and Graphical
Representation
Candidate epitopes were mapped on the 3D structure of the
S protein. To avoid missing residues in the current crystal
structure, we modeled the consensus sequence of the S protein
by homology using the SWISS-MODEL web server (86) (https://
swissmodel.expasy.org/), with the crystal structure as template
(Protein Data Bank ID: 6VXX). Figures were generated in
PyMOL v2.3.4 (https://pymol.org/2/) (87).

RESULTS

Alignment, Entropy, and Selection
Pressure of the SARS-CoV-2 Proteins
Diversity at each amino acid position revealed high entropy
values in the proteins NSP2 (T85I, score = 0.36), NSP5 (L37F,
score= 0.42), NSP12 (P323L, score= 0.69), NSP13 (P504L, score
= 0.46 and Y541C, score = 0.47), Spike (D614G, score = 0.69),
ORF3a (Q57H, score = 0.41 and G251V, score = 0.31), ORF8
(L84S, score = 0.57), and Nucleocapsid (R203K, score = 0.41,
and G204R, score= 0.41).

Sites with the highest probability to be under positive selective
pressure are located in NSP2 (T85, P568), NSP3 (K384, N444,
P822, V1768, V1795), NSP6 (L75), NSP7 (S25), Spike (S943,
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G1124), ORF3a (A99, T14, L147), NSP12 (A97, L323, A449),
NSP13 (V49), NSP14 (A482), and NSP16 (K160). See Figure 3

and Table S8.

South American HLA Alleles and Weighted
Allele Frequencies (WAFs)
We found 44 eligible datasets for the “current scenario” and 86
for the “updated scenario”, using only 40 and 58 to calculate the
WAFs by country, respectively (Figure 1). The selection process
is provided in full detail in the Supplementary Methods and
Table S3.

The IEDB population coverage tool (http://tools.iedb.org/
population/) uses information provided by the AFNDB at 4-digit
resolution, which in the case of South America comprises just
a small number of populations: two from Argentina, one from
Bolivia, five from Brazil, two from Chile, three from Colombia,
two from Ecuador, one from Paraguay, two from Peru, and four
from Venezuela. For the current scenario, we collected a similar
number of datasets: five from Argentina, two from Bolivia, 13
from Brazil, four from Chile, four from Colombia, five from
Ecuador, one from Paraguay, four from Peru, and two from
Venezuela. In both cases, there was no data for Uruguay, Guyana,
French Guiana, or Suriname.

Our literature review to update the allele frequencies included
six datasets for Argentina, three for Bolivia, 10 for Brazil,
seven for Chile, seven for Colombia, eight for Ecuador, two for
Paraguay, five for Peru, one for Uruguay, and nine for Venezuela.
In both scenarios (current and updated), we only obtained HLA-
II and not HLA-I data from Bolivia. All of the allele frequencies
and sample sizes by study are provided in Table S4. The addition
of new studies resulted in updated HLA allele frequencies.

We then calculated WAFs for each country (see Table S5).
Some alleles with WAF under 5% in the current scenario are
now above in the updated scenario: 13 alleles of Argentina, 15
of Brazil, seven of Chile, seven of Ecuador, one of Paraguay,
two of Peru, and 19 of Venezuela. Additionally, some alleles
not reported in the AFNDB for South America were found with
WAF ≥ 5% in the updated scenario: six alleles of HLA-I C in
Argentina, two HLA-II DQA1 in Ecuador, two HLA-I A and six
HLA-I B in Paraguay, two HLA-I C in Peru, five HLA-II DQB1
in Uruguay, and four HLA-II DPA1 in Venezuela (see Figure 2).
Details provided in Table S6.

Epitope Prediction
We obtained 11,644 predicted T cell epitopes in SARS-CoV-
2 proteins: 7,517 for HLA-I and 4,127 for HLA-II. We found
that 1400 have previous experimental evidence in the IEDB: 25
in positive T cell assays, 1327 in positive MHC-ligand binding
assays, and 48 in both (see Table S7).

In the S protein, we predicted 961 HLA-I epitopes. Previous
experimental evidence was found for 113, although they
had low CS (0.048–2.146). The best two predicted epitopes
with the highest CS (VVFLHVTYV, CS = 2.146, IEDB-ID:
71663 and LQIPFAMQM, CS = 2.043, IEDB-ID: 38855) cover
almost one allele with WAF ≥ 5% by country. These were
previously proposed as candidates by Ahmed et al., 2020
(66). Other predicted epitopes already proposed as candidates

in similar studies (64, 66) have lower CS. From the 848
predicted epitopes without experimental evidence, the top three
with the highest CS cover at least one allele with WAF ≥

5% by country. These represent novel candidates (Table 1):
MIAQYTSAL (CS = 4.127), SIIAYTMSL (CS = 3.739), and
YLQPRTFLL (CS= 3.646).

We predicted 6556 HLA-I epitopes in other SARS-CoV-2
proteins. Experimental evidence was reported for 1122, and the
10 with the highest CS (2.520–3.346) cover at least one allele with
WAF ≥ 5% by country. These predicted epitopes are located in
the ORF6 and NSP proteins, and represent novel candidates. The
highest CS (3.346) corresponds to YADVFHLYL, located in the
NSP12 protein. We also found 5434 predicted epitopes without
experimental evidence. The top seven with the highest CS (3.148–
4.013) are novel candidates, located in NSP proteins, and cover at
least one allele with WAF ≥ 5% by country. The candidate with
the highest CS (FAQDGNAAI, 4.013) is also located in the NSP12
protein (see Table 1).

For HLA-II, we predicted 628 epitopes in the S protein.
Twenty-eight have experimental evidence, and the two
with the highest CS (RAAEIRASANLAATK, CS = 9.000,
IEDB-ID: 100428 and IRAAEIRASANLAAT, CS = 8.148,
IEDB-ID: 100428) are contiguous and belong to the CH region.
They represent novel candidates (see Table 2). The next two,
LDKYFKNHTSPDVDL (CS = 6.760, IEDB-ID: 35205) and
DKYFKNHTSPDVDLG (CS = 6.760, IEDB-ID: 9006), are also
contiguous and correspond to the HR2 region (Figure 3D).
These two were selected as candidates in a previous study (66).

We also predicted 601 epitopes without experimental evidence
in the S protein, where 41 had 6.017 ≤ CS ≤ 9.000 (Figure 3D).
Some of these are located in notoriously exposed regions
(see Figure 4). All of these are novel candidates, including
EKGIYQTSNFRVQPT (CS = 8.490), QTSNFRVQPTESIVR (CS
= 8.714), and TSNFRVQPTESIVRF (CS = 9.000, the maximum
possible score), which overlap in the RBD and have a remarkably
high CS.

We obtained 81 HLA-II predicted epitopes in the M protein.
Only one (PKEITVATSRTLSYY, CS = 6.110) has a reported
experiment (IEDB-ID: 48051), an MHC-ligand assay presenting
the peptide to the HLA-DRB1∗01:01, measuring the affinity.
It was already selected as a candidate in another study (66).
Nevertheless, it is located in a predicted intra-virion region.
Of those without experimental evidence and located outside
the virion, TITVEELKKLLEQWN has the best CS (3.326)
(see Figure 3F). In the E protein, we predicted 15 HLA-
II epitopes. Similarly, only LVTLAILTALRLCAY has previous
experimental evidence, but a very low CS (0.143), and it is located
in a predicted non-external region. However, the candidate
MYSFVSEETGTLIVN (CS = 1.764) is located outside the virion
(Figure 3H). Sequence logos of our class-I and class-II candidate
epitopes are presented in Figures S1, S2, respectively.

To cover all the HLA alleles with WAF ≥ 5% in South
America, we included five additional candidates. We selected
predicted epitopes that bind to HLA alleles not covered
by any of the candidates already selected, choosing those
with the highest CS. Two have experimental evidence:
MPASWVMRI (in NSP6, CS: 2.292, IEDB ID: 42260 and
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FIGURE 2 | Allele frequencies of HLA-I A, B, C, and HLA-II DRB1 in South America. The pie charts represent the distribution of allele frequencies in genes HLA-I A, B,

C, and HLA-II DRB1. Alleles with Weighted Allele Frequency (WAF) ≥ 5% in four or more countries are represented in scales of red (A), blue (B), brown (C), and purple

(DRB1), respectively. Alleles with WAF ≥ 5% in three or fewer countries are shown in white. Alleles with WAF < 5%, are shown in gray. The green gradient represents

the extent of people with HLA alleles genotyped. Detailed data is available in Tables S5, S6.

42261) and SEFDRDAAM (in NSP12, CS:1.832, IEDB
ID: 57419). The remaining three have no experimental
evidence: GEYSHVVAF (in NSP4, CS: 2.270), KLFDRYFKY
(in NSP12, CS: 2.169) and GLNDNLLEI (in NSP2,
CS: 1.705).

Prediction of Post-translational
Modifications Events
Twenty two potential N-linked glycosylation sites were predicted
along the S protein in three clusters: (i) inside the NTD
and RBD regions (N17, N61, N74, N122, N149, N165, N234,
N282, N331, and N343); (ii) in the proximity of the S1/S2
and S2’ cleavage sites (N603, N616, N657, N709, N717,
and N801); and (iii) near the C-terminus (N1074, N1098,
N1134, N1158, N1173, and N1194). In the M protein, one
predicted N-linked glycosylation site (N5) is located in the
exposed region, and it has been associated with antigenicity
and transport in some coronaviruses (88). The E protein
presents two potential N-linked glycosylation sites: N48,

probably non-functional (89), and N66, suggested in SARS-
CoV to be potentially associated with monomeric forms (90).
ORF8 also presents a potential N-linked glycosylation site
in N78, which could stabilize and protect the protein from
proteasomal degradation, as occurring in SARS-CoV (91). O-
linked glycosylations were predicted in residues S673, T678, and
S686 of the S protein and residues T32 and T34 of the ORF3a.
These events were experimentally detected in SARS-CoV (92).
However, glycosylation in residues 686 (O-linked) and 1158
(N-linked) were not confirmed by mass spectrometry in a recent
study (93).

Then, the predicted glycosylation sites were contrasted
with the best HLA-II candidate epitopes for South America
(Table 2). Sites N61, N122, N801, N1074, N1098, and N1158
are located in nine HLA-II candidate epitopes. Additionally,
sites N234, N331, N709, and the O-linked 686 fall near eight
candidate epitopes.

Predicted palmitoylation sites fall into the cytoplasmic
tail (C1235, C1236, C1240, C1243, C1247, C1248, C1250,
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TABLE 1 | Best HLA-I candidate epitopes for South America in SARS-CoV-2 proteins.

Best HLA-I candidate epitopes for South America No of alleles with WAF ≥ 0.05 covered by country Coverage

score Reference

Protein Start End Peptide Experiment IEDB ID ARG BOL BRA CHI COL ECU PAR PER VEN

S 1060 1068 VVFLHVTYV LTM, ML 71663 3 - 5 3 6 1 2 3 9 2.146 Ahmed et al. (66)

894 902 LQIPFAMQM ML 38855 1 - 4 2 5 0 6 1 11 2.043

ORF6 3 11 HLVDFQVTI ML 24313 3 - 6 4 6 1 3 3 12 2.520 New

NSP3 950 958 VMYMGTLSY 5477, 70040 6 - 7 5 7 1 5 2 8 2.801

NSP5 219 227 FLNRFTTTL 16786 6 - 9 6 8 1 3 4 13 3.224

NSP6 86 94 MPASWVMRI 42260, 42261 4 - 6 5 6 0 3 3 9 2.292

NSP8 47 55 SEFDRDAAM 57419 3 - 2 3 4 1 5 0 7 1.832

NSP12 877 885 YADVFHLYL ML 14969 6 - 11 7 8 1 3 5 10 3.346 New

123 131 TMADLVYAL 65176, 65177 3 - 5 4 6 1 4 4 13 2.756

898 906 HMLDMYSVM 24342 3 - 5 3 5 1 4 4 12 2.591

NSP13 355 363 YVFCTVNAL ML 76266 6 - 9 6 8 1 3 5 13 3.335 New

291 299 FAIGLALYY 23758 6 - 9 7 8 1 3 3 6 2.838

NSP14 494 502 YLDAYNMMI ML 74593 5 - 9 6 8 1 1 4 11 2.823 New

500 508 MMISAGFSL 42128 2 - 5 4 6 1 4 3 13 2.590

S 869 877 MIAQYTSAL 8 - 10 8 9 1 5 6 15 4.127 New

691 699 SIIAYTMSL - - 6 - 8 6 9 1 5 5 16 3.739

269 277 YLQPRTFLL 6 - 8 6 8 2 3 6 14 3.646

NSP2 420 428 YITGGVVQL - - 5 - 8 6 9 1 5 4 12 3.382 New

265 273 GLNDNLLEI 2 - 4 2 5 1 1 3 7 1.705

NSP3 1776 1784 YVNTFSSTF 6 - 8 7 9 1 4 4 10 3.276 New

1452 1460 YLNSTNVTI - - 5 - 7 6 9 1 3 4 14 3.180

816 824 YYHTTDPSF 6 - 9 8 9 1 2 5 8 3.148

NSP4 25 33 YLITPVHVM - - 6 - 7 6 9 1 6 5 14 3.721 New

309 317 GEYSHVVAF 3 - 3 3 5 1 6 1 9 2.270

NSP12 442 450 FAQDGNAAI - - 8 - 12 8 10 1 4 6 12 4.013 New

281 289 KLFDRYFKY 4 - 4 4 4 1 5 2 5 2.169

NSP16 103 111 FVSDADSTL - - 6 - 11 7 9 1 3 4 13 3.437 New

These candidate epitopes were selected from our prediction based on their scores (rank for NetMHC and IC50 for MHCflurry) and Coverage Score (CS). Experimental evidence including

the IEDB ID and experiment type (LTM: linearT_MHC, ML: MHC_ligand) is provided when available. Scientific articles already proposing these candidates are mentioned. Residues in

bold represent positive selection pressure sites.

C1253, and C1254) of the S protein and three cysteines
(C40, C43, and C44) of the E protein. These sites have been
previously reported in SARS-CoV (94), being associated
with protein subcellular trafficking, stability and viral
assembly (95, 96).

In the N protein, a potential sumoylation site was predicted in

K338. Li et al. (97) explored sumoylation events experimentally

in SARS-CoV, not finding K338 but detecting the site K62. This
site was also detected in our prediction using a less restrictive

threshold. This corresponds to K61 in SARS-CoV-2, having an
Asp instead of Glu in the canonical consensus motif. This site

has been associated with self homo-oligomerization and host cell
division interference.

ADP-ribosylation prediction identified eight potential sites

along the nucleocapsid (D22, E118, E136, E231, E253, E323,
E378, and D415). This PTM was also reported in other
coronaviruses, and can be related to the virus infective phase (33)
(see Figure 3 and Table S8).

Structural Modeling of the S Protein
The monomer model generated is composed of the first 1147
residues of the SARS-CoV-2 Spike protein. It fills the gaps of
the crystal structure PDB:6VXX at positions 1-26, 70-79, 144-
164, 173-185, 246-262, 445-446, 455-461, 469-488, 502, 621-640,
677-688, and 828-853.

HLA-II candidate epitopes shown in Figure 3 were mapped
to the trimeric 3D-structure in order to visualize their exposure
(Figure 4). However, residues 1148-1273 were not represented
in our model as they are missing in the reference crystal
(22). Candidates in this missing region are represented in
Figure 3D only.

DISCUSSION

There is an urgent need to develop vaccines and better
diagnostic tests for COVID-19, targeting specific immunogenic
regions and epitopes with protective potential and population
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TABLE 2 | Best HLA-II candidate epitopes for South America in SARS-CoV-2 proteins.

Best HLA-II candidate epitopes for South America No of alleles with WAF ≥ 0.05 covered by country Coverage

score References

Protein Start End Peptide Region Experimental IEDB ID ARG BOL BRA CHI COL ECU PAR PER VEN

S 1013 1027 IRAAEIRASANLAAT
CH LTM

100428 5 5 5 4 5 7 4 7 4 8.148
New

1014 1028 RAAEIRASANLAATK 100428 6 5 7 4 5 7 5 7 5 9.000

1152 1166 LDKYFKNHTSPDVDL
HR2 ML

35205 4 4 4 3 4 5 5 6 3 6.760 Ahmed et

al. (66)

S

1153 1167 DKYFKNHTSPDVDLG 9006 4 4 4 3 4 5 5 6 3 6.760

61 75 NVTWFHAIHVSGTNG

NTD - -

4 4 4 3 4 5 4 4 4 6.474

New

114 128 TQSLLIVNNEATNVVI 4 4 5 3 4 6 5 6 3 7.045

115 129 QSLLIVNNATNVVIK 5 4 6 4 5 5 5 5 4 7.719

116 130 SLLIVNNATNVVIKV 4 3 5 3 4 4 5 4 4 6.474

206 220 KHTPINLVRDLPQGF 4 3 4 3 4 5 3 5 3 6.017

207 221 HTPINLVRDLPQGFS 5 4 5 3 4 6 5 6 4 7.412

208 222 TPINLVRDLPQGFSA 4 4 3 3 4 5 2 6 3 6.017

216 230 LPQGFSALEPLVDLP 3 4 3 3 3 5 5 6 4 6.450

217 231 PQGFSALEPLVDLPI 3 4 3 3 3 5 5 6 4 6.450

308 322 VEKGIYQTSNFRVQP

RBD - -

4 5 5 3 4 7 5 7 3 7.531

309 323 EKGIYQTSNFRVQPT 5 5 6 4 5 7 5 7 4 8.490

313 327 YQTSNFRVQPTESIV 3 5 3 3 3 6 5 6 3 6.593

314 328 QTSNFRVQPTESIVR 6 5 7 4 5 6 5 6 5 8.714

315 329 TSNFRVQPTESIVRF 6 5 7 4 5 7 5 7 5 9.000

316 330 SNFRVQPTESIVRFP 3 4 5 3 3 5 5 5 4 6.593

430 444 TGCVIAWNSNNLDSK 4 4 6 3 4 6 5 6 4 7.388

689 703 SQSIIAYTMSLGAEN 3 5 3 3 4 7 4 7 3 6.879

690 704 QSIIAYTMSLGAENS - - - 4 5 4 3 4 7 5 7 3 7.388

785 799 VKQIYKTPPIKDFGG 3 5 2 3 3 5 4 6 3 6.107

801 815 NFSQILPDPSKPSKR
FP - -

5 4 5 3 4 6 4 6 4 7.212

802 816 FSQILPDPSKPSKRS 5 4 5 3 4 6 5 6 4 7.412

1059 1073 GVVFLHVTYVPAQEK
BH - -

3 5 3 3 3 7 5 7 4 7.079

1060 1074 VVFLHVTYVPAQEKN 3 4 2 3 3 5 4 6 4 6.107

1098 1112 NGTHWFVTQRNFYEP

SD3 - -

4 4 4 3 3 5 5 5 4 6.617

1099 1113 GTHWFVTQRNFYEPQ 4 4 4 3 3 6 5 6 4 6.902

1110 1124 YEPQIITTDNTFVSG 4 4 4 3 4 5 5 5 4 6.817

1111 1125 EPQIITTDNTFVSGN 4 4 6 3 4 6 5 6 4 7.388

1126 1140 CDVVIGIVNNTVYDP - - - 4 3 5 3 4 4 5 4 4 6.474

M 7 21 TITVEELKKLLEQWN Virion

Surface

- - 2 2 2 1 1 3 3 3 2 3.326 New

E 1 15 MYSFVSEETGTLIVN Virion

Surface

- - 0 2 1 1 1 2 0 2 1 1.764 New

These candidate epitopes were selected from our prediction based on their scores (rank for NetMHC and IC50 for MHCflurry), Coverage Score (CS), and exposure (for Class-II only).

Experimental evidence including the IEDB ID and experiment type (LTM: linearT_MHC, ML: MHC_ligand) is provided when available. Scientific articles already proposing these candidates

are mentioned. Underlined residues indicate sites with predicted N-linked glycosylations. Residues in bold represent positive selection pressure sites.

representativeness. Our research presents an updated report of
HLA genotypes of South American populations, which led to a
selection of candidate epitopes for HLA class I and II supported
by experimental evidence as well as novel candidates, predicted
to cover all South American countries.

The AFNDB and the IEDB population coverage tools are
frequently used by the scientific community worldwide as
reference sources of HLA frequencies (68), meaning it is crucial
to have them updated. However, their collection and curation of
new data rely on the scientific community users (68, 98). For

South America, these databases contain mostly small datasets
coming from ethnic groups, not representative of the countries’
diversity, resulting in a current inaccurate distribution of HLA
frequencies (see Table S6). We have found 30 large datasets from
10 South American countries which were not included in the
AFNDB. Our literature review represents a large update from
a scenario of 20,124 to now 12,857,200 datapoints among all
the alleles collected of HLA-A, -B, -C, -DPA1, -DPB1, -DQA1,
-DQB1, and -DRB1. This is reflected in 86 HLA alleles with
WAF ≥ 5% in the updated scenario, which were previously
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FIGURE 3 | Candidate epitopes in the sequence of the Membrane (M) and Spike (S) proteins of SARS-CoV-2. (A,E,G) Show the entropy per amino acid for the S, M,

and E proteins, respectively, calculated by aligning 2123 SARS-CoV-2 genomes. In (B,F,H), post-translational modifications are represented as sticks with colored

circles: beige (N-linked glycosylations), pink (O-GalNAc glycosylations), and lemon (palmitoylations). (B) Regions of the S protein, indicating the subunits 1 (S1), 2 (S2),

and cleavage points (scissors). Positive selection pressure is represented with (+). SP, Signal peptide; NTD, N-terminal domain; RBD, Receptor Binding Domain;

RBM, Receptor Binding Motif; SD1, Sub-Domain 1; SD2, Sub-Domain 2; FP, Fusion Peptide; CR, Connecting Region; HR1, Heptad Repeat 1; CH, Central Helix; BH,

B-Hairpin; SD3, Sub-Domain 3; HR2, Heptad Repeat 2; TM, Transmembrane domain; CT, Cytoplasmic tail. (C) HLA-I epitopes predicted for South American alleles

with WAF ≥5%. The gradient of green represents the coverage scores. The rectangles below represent the predicted epitopes with experimental evidence in the IEDB

(blue), and those without experimental evidence with CS ≥2 (light blue). Overlapping predicted epitopes are represented by a single rectangle with the number of

epitopes contained (underneath). The inverted triangle on top highlights our best candidates. (D) Analogously, for HLA-II. Predicted epitopes with experimental

evidence are shown in red. Without experimental evidence and CS ≥6, in yellow. Those in the RBD are highlighted in orange. (F,H) Represent the topology of the M

and E proteins, respectively. Exposed (E), transmembrane (TM), and intra-virion (I) regions were extracted from annotated proteins (UniProtKB IDs: P0DTC4 and

P0DTC5). The best HLA-II epitopes predicted in their exposed regions (and their CS) are shown in yellow.

considered with frequencies under 5% or missing in the current
scenario. This issue results in a misrepresentation of South
America that could be affecting multiple immunological studies

using these sources, like Ahmed et al. (66) and other SARS-CoV-
2 recent studies in the pre-print stage. To encourage and facilitate
using the information collected, we are providing the datasets
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FIGURE 4 | Candidate epitopes in the 3D structure of the Spike (S) protein of SARS-CoV-2. This figure shows our HLA-II candidate epitopes with experimental

evidence (red), without experimental evidence and CS ≥ 6 (orange: located in RBD, yellow: located in other regions), and the binding site of the Ab CR3022 (violet).

Candidate epitopes were mapped to the Spike monomer (A), and the Spike trimer (B and C). The monomer is represented in beige, and the other 2 subunits in light

purple. (C) Rotation of the trimer showing the RBD region. A pyramid representing the trimer is shown as visual aid to represent the rotation.

by country in their full extent (Tables S3, S4) and averaged
(Tables S5, S6), as well as the selection and matching process in
full detail (Supplementary Methods).

We are also presenting weighted allele frequencies by country,
providing a one-sight representation of South America HLA
abundances (Figure 2). This clearly shows that some HLA
genes are understudied, especially in countries like Venezuela,
Bolivia, and Paraguay. Moreover, there is no data from Uruguay,
Guyana, French Guiana, or Suriname (68). We recommend
genotyping the HLA of large populations to reduce diversity
misrepresentation, like the study of the Brazilian bone marrow
registry (99), which provided HLA alleles of millions of people.

Epitopes were predicted using MHCflurry v1.6.0 (60),
NetMHCpan v4.0 (59), and NetMHCIIpan v4.0 (61). These
state-of-the-art software are based on neural networks and use
binding, stability, and eluted MHC-ligand mass spectrometry
data (58). The recent update of NetMHCIIpan from v3.2 to v4.0
represents an evident improvement in prediction accuracy, being
necessary to use the last version. We enriched our predictions,
adding the experimental evidence reported in the IEDB for other
coronaviruses. Nevertheless, certain class-II potential epitopes
found in binding experiments (i.e., measuring the affinity of
epitopes presented in-vitro to the MHC molecule) were located
in transmembrane or internal regions. As the conformational
dynamics of SARS-CoV-2 proteins remains unknown, we opted
for being extra cautious, selecting only class-II candidate epitopes
in known exposed regions of the protein structure.

We then define a Coverage Score (CS), a metric representing
to what extent a candidate epitope covers the HLA alleles
of South America. As this score is based on alleles and not
on haplotypes, it might be overestimating the actual coverage.
However, it represents a reasonable approximation for the
current available data, mostly reported as allelic frequencies.

Based on the CS, we are presenting the best predicted epitopes,
with and without experimental evidence, as potential candidates.
Remarkably, we found novel candidates with very high CS, some
located in immunologically relevant regions like the RBD of the
Spike protein. And exposed regions of the M and E proteins
(Figures 3, 4).

Viral clearance of SARS-CoV-2 infection requires activating
subsets of CD4+ and CD8+ T cells (100). Whereas, HLA-I
epitopes are derived from both structural and non-structural
proteins due to their endogenous processing, HLA-II epitopes
have exogenous processing, being structural proteins (like S, M,
or E) of particular interest (64). In SARS-CoV, CD8+ T cell
response was previously shown to be greater than CD4+, and
it is widely elicited by different proteins including the replicase
(ORF1ab) and NSPs (101). Even though structural proteins
are associated with stronger T-cell responses (102–104), non-
structural proteins can also induce an immune response and
provide additional epitopes (101). Similar experimental studies
are needed to corroborate the same behavior in SARS-CoV-2. In
fact, we found several HLA-I candidate epitopes in NSP proteins
with a high coverage of South American HLA alleles, with and
without experimental evidence (Table 1).

Several studies had demonstrated the immunogenicity of
protein S in beta-coronaviruses, being the main target for vaccine
development (22, 105–109). Its receptor binding domain (RBD)
interacts with the human receptor ACE2, playing a crucial
role during the viral entry process (110). Therefore, antibodies
binding this region could potentially impede viral recognition.
We are presenting 32 HLA-II candidate epitopes in the S
protein, including seven novel candidates located in the RBD
and exposed in the 3D structure. This includes the candidate
epitope TSNFRVQPTESIVRF, which covers all the HLA-II alleles
of South America. Some of our candidates are located near the
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binding site of the monoclonal antibody CR3022 in the RBD
(111, 112) (Figure 4C). This antibody neutralizes SARS-CoV
(113), opening the possibility of finding neutralizing antibodies
against our HLA-II candidate epitopes. Additionally, neutralizing
monoclonal antibodies has been generated against S1 and S2 for
SARS (104, 114), and against the RBD for SARS (115, 116) and
MERS (117, 118).

Other domains of the S protein with predicted HLA-II
epitopes are in accordance with previous evidence in other
coronaviruses. It has been shown that the fusion peptide, the
HR1 region, and the central helix are potential targets for
broadly neutralizing antibodies (119). We also found candidate
epitopes located in exposed regions of the NTD, the Subdomain
3 (SD3), the B-hairpin (BH), the Central Helix (CH), the Heptad
Repeat (HR2), and linker regions, which could serve as potential
antibody targets. Peptides derived from the Heptad regions
HR1 and HR2 have proven to be effective inhibitors of viral
fusion in SARS (120, 121) and MERS (122, 123). Moreover,
conformational changes of the S protein trimer could explain
the presence of cryptic class-II epitopes (not accessible in the
canonical 3D structure) (112). This opens up the possibility of
finding candidate epitopes in unexposed regions of the protein,
as hinted by our predicted epitopes with experimental MHC-
peptide binding evidence (Figure 4B).

Our HLA-I and HLA-II candidate epitopes cover 100% of
the alleles with WAF ≥ 5% in South America. Remarkably, we
obtained two HLA-II candidate epitopes with the maximum CS
possible (covering all the alleles), one with experimental evidence.

Some of our predicted epitopes have been previously reported
by other studies using similar approaches (Tables 1, 2). Our
selection agrees with two candidate epitopes from Ahmed et al.
(66). They collected experimentally-determined epitopes and the
corresponding alleles against which these were tested. Then, they
used the IEDB population coverage tool to select 87 candidate
epitopes for one HLA-II and 32 HLA-I alleles in total, aiming to
cover 96.29% of people worldwide. These alleles represent only
18/47 (38.3%) of the HLA-I and 1/18 (5.6%) of the HLA-II alleles
with WAF ≥ 5% in our literature review for South America.
Moreover, using the same tool with their candidates and alleles,
but selecting South American populations only (according to
the tool), we obtained a coverage of just 90.6% HLA-I and
4.1% HLA-II alleles. These comparisons were done using only
the experimentally-determined binding alleles. Furthermore, we
explored if their candidate epitopes could bind our alleles using
our prediction methodology (i.e., calculating the affinity of their
candidate epitopes to the South American HLA alleles with
WAF ≥ 5%). However, we obtained a match of just 43/47
(91.49%, HLA-I) and 11/18 (61.11%, HLA-II). Altogether, this
suggests a misrepresentation that leads to diminished coverage
for South America.

Grifoni et al. (64) selected candidate epitopes in SARS-CoV-2
through: (i) sequence homology with epitopes with experimental
evidence in SARS-CoV, and by (ii) epitope prediction, using 12
supertype representatives (the six most frequent HLA-I A and B
alleles worldwide). Intersecting these two sources, they selected
12 HLA-I candidate epitopes in common, having an identity ≥

90% with SARS-CoV. Their selection does not agree with any of

our candidates. However, during their prediction, they obtained
12 HLA-I (CS: 0.095–3.739) and two HLA-II (CS: 6.474–6.593)
predicted epitopes that have better scores for South America and
match with some of our candidates. Nevertheless, further steps in
their selection criteria made them drop these candidates. This is
attributable to their strict filtering, due to the fact that they relied
on experimental evidence from SARS-CoV only, as well as the
small number of supertype alleles and epitopes chosen.

An important improvement in selecting the best candidate
epitopes is to consider problematic sites affected by entropy,
selective pressure, post-translational modifications, and other
effects. Some of these considerations have been demonstrated
to assist in developing molecular diagnosis in coronaviruses
and other species (124, 125). Amino acid variants can result
in diverse changes affecting the infectious and adaptive virus
behavior. Entropy analysis revealed highly variable sites such as
P323L in NSP12 (RdRp) or D614G in the S protein. Further
biological consequences could be obtained from the sites affected
by positive selective pressures, like T85 inNSP2, S25 inNSP7, and
A99 inORF3a. In the present study, we found that five of 27HLA-
I and two of 34 HLA-II candidate epitopes contain predicted sites
affected by positive selective pressure (shown in bold in Tables 1,
2). However, we decided to keep these epitopes in our list of
potential candidates due to their high CS and low amino acid
variability (under 5%) in the current pandemic wave.

We predicted PTMs, including glycosylation, palmitoylation,
sumoylation, and ADP-ribosylation events, in order to find
relevant sites for the viral cycle. Sites affected by these
events are expected to be conserved as they fulfill critical
functions in viruses (33, 95–97). N-linked glycosylation is one
of the most frequents PTMs with potential effects over the
folding, tropism, interactions with host proteases, antibody
recognition, and antigenicity of the Spike protein (126–131).
N-linked glycosylations have been predicted in our candidate
epitopes, including those with experimental evidence (Table S8).
SARS-CoV-2 Spike protein possesses 22 potential N-linked
glycosylation sites (Figure 3), mainly distributed in S1 and the
C-terminal region of the S2 (119, 132). Some of them are
located in the NTD and near the S1/S2 cleavage region (N122,
N165, N234, N603, and N717). These sites surround the ACE2-
binding domain and were shown to be critical for viral entry
mediated by DC-SIGN (dendritic cell-specific ICAM-3-grabbing
non-integrin) and L-SIGN (liver/lymph node-specific ICAM-3-
grabbing non-integrin) (133), which are two C-type lectins that
recognize high-mannose glycans (134). In contrast to SARS-
CoV, SARS-CoV-2 presents an additional site (N657, near the
S2 cleavage) and misses the glycosylation site N370 (in the
RBD region), due to the absence of Ser/Thr to complete the
sequon. Although this does not alter the affinity to the ACE2
receptor (135), it can significantly reduce DC-SIGN binding
capacity (136). Thus, availability of N-linked glycosylations sites
and differential affinities to ACE2, DC-SIGN, or L-SIGN may
act as either enhancer forces or alternative mechanisms for viral
entry (23, 137). Additionally, sites N227 and N699 in SARS-
CoV (equivalent to N234 and N717 in SARS-CoV-2) have been
hypothesized to facilitate the zoonotic transmission of this virus
(133). A recent study based on liquid-chromatography-mass
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spectrometry (LC-MS) (132) confirmed the occurrence of N-
linked glycosylation in all of our predicted sites. However,
another study using LC-MS/MS (93) found only 17 out of 22
of the predicted sites. These differences could be due to the
different experimental design and procedures used. Moreover,
the composition diversity (oligomannose, complex, or hybrid-
type), and frequency of these glycosylation events were dissimilar
in both studies.

O-linked glycosylations were predicted at three previously
proposed sites flanking the S1/S2 cleavage site (138). These events
were not found in two recentmass spectrometry studies (93, 132).
Thus, occurrence of these events could be very rare or affected
by intra-host conditions. Interestingly, T323 and S325 in RBD
were detected as O-glycosylated (93), which may be related to
increasing affinity with the human receptor ACE2 (110, 139). N-
and O-linked glycosylation events can influence not only their
position but also the surrounding area under the glycan shield.
In fact, both N- and O-linked glycosylations could be associated
with masking epitopes or important amino acids, resulting in
immune evasion (129, 140, 141). Further in-vivo studies should
be performed to determine the real complexity and heterogeneity
of these events.

Meanwhile, palmitoylation predicted sites in the cytoplasmic
tail of the S protein (Table S8) have been reported in other
Coronaviruses (34). The presence of these sites supports the
importance of membrane-proximal cysteine-rich clusters in
processes like the Spike-mediated cell fusion (27, 95, 142),
infectivity (143), and viral assembly (144, 145).

Conservation of PTMs in amino acids can support the
selection of candidate epitopes. In contrast, their emergence or
disappearance resulting in better fitness should be considered
important evolutive events and must be particularly monitored.
In sum, the emergence/disappearance of alternative codons
affecting PTMs in the evolutive course of the current pandemic is
intriguing, and it has already been noticed in some SARS-CoV-2
genomes (73). Additional studies may unravel the impact of these
events and could help in the development of strategies to control
the infectious viral cycle.

In summary, our study provides updated HLA allele
frequencies for South America, rectifying previously
misrepresented alleles. This led to the identification of potential
Class-I and -II epitopes in SARS-CoV-2 with high regional
coverage. Some are supported by existing experimental evidence,
while the rest represent novel candidates. These could represent
targets for neutralizing antibodies or could be used for the
development of vaccines and diagnostics tests, which needs
to be further studied. Our study highlights the advantage of
a regionally-focused design. Approaches based on the global
population have the advantage of broad coverage. However,
this may result in leaving aside the best regional candidates
and reducing the regional population coverage, as shown in
this study. Furthermore, incorrect HLA frequencies could
result in misleading results and misrepresentation of certain
populations. We hope our findings may promote regional efforts
with potentially better specificity.

Additionally, the exuberant immune response against SARS-
CoV-2 infections is related to disease severity (146, 147).

COVID-19 has shown cases of minimal manifestations in people
within the risk group as well as fatal response in people without
apparent risk, thereby suggesting a genetic predisposition (148).
In that sense, information about the HLA allele frequencies
distribution in different populations may contribute to study the
magnitude of the immune response and its severity.

Lack of knowledge of the HLA allele frequencies’ distribution
in South America also limits regional scientific studies in the field.
This impacts the study of infectious and autoimmune diseases,
cancer immunotherapy, and transplantations. Our results will
serve as an immediate source of information formultiple ongoing
studies based on HLA allele frequencies.

In conclusion, the candidate epitopes presented may help in
the fight against SARS-CoV-2, providing valuable information
for the development of peptide vaccines and diagnostic tests.
And updated HLA allele frequencies will impact on the study
of many human diseases. We hope this literature review may
result in a better representation of South America in future
immunogenetic studies.
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