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Abstract

Background: Expression and activity of heparanase, an endoglycosidase that cleaves heparan sulfate (HS) side chains

of proteoglycans, is associated with progression and poor prognosis of many cancers which makes it an attractive drug

target in cancer therapeutics.

Methods: In the present work, we report the in vitro screening of a library of 150 small molecules with the

scaffold bearing quinolones, oxazines, benzoxazines, isoxazoli(di)nes, pyrimidinones, quinolines, benzoxazines,

and 4-thiazolidinones, thiadiazolo[3,2-a]pyrimidin-5-one, 1,2,4-triazolo-1,3,4-thiadiazoles, and azaspiranes against

the enzymatic activity of human heparanase. The identified lead compounds were evaluated for their

heparanase-inhibiting activity using sulfate [35S] labeled extracellular matrix (ECM) deposited by cultured

endothelial cells. Further, anti-invasive efficacy of lead compound was evaluated against hepatocellular

carcinoma (HepG2) and Lewis lung carcinoma (LLC) cells.

Results: Among the 150 compounds screened, we identified 1,2,4-triazolo-1,3,4-thiadiazoles bearing

compounds to possess human heparanase inhibitory activity. Further analysis revealed 2,4-Diiodo-6-(3-

phenyl-[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazol-6yl)phenol (DTP) as the most potent inhibitor of heparanase

enzymatic activity among the tested compounds. The inhibitory efficacy was demonstrated by a

colorimetric assay and further validated by measuring the release of radioactive heparan sulfate

degradation fragments from [35S] labeled extracellular matrix. Additionally, lead compound significantly

suppressed migration and invasion of LLC and HepG2 cells with IC50 value of ~5 μM. Furthermore, molecular docking

analysis revealed a favourable interaction of triazolo-thiadiazole backbone with Asn-224 and Asp-62 of the enzyme.

Conclusions: Overall, we identified biologically active heparanase inhibitor which could serve as a lead structure in

developing compounds that target heparanase in cancer.
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Background
The extracellular matrix (ECM) plays a prime role in
maintaining the architecture and integrity of organs and
tissues [1]. Collagen, fibronectin, laminin and several
growth factors and cytokines interact with heparan sul-
fate proteolglycans (HSPGs) in the ECM and cell surface
to maintain cellular framework and function [2, 3].
Heparanase is the predominant endoglycosidase that cat-
alyzes the cleavage of heparan sulfate (HS) polysacchar-
ide chains in HSPGs into smaller fragments and thereby
modulates the functions of HS [4–10]. Heparanase
degrades the linkage between glucuronic acid and N-
sulfo glucosamine residues at restricted sites of HS
yielding fragments of 4-7 kDa [6]. Heparanase activity
contributes to disassembly and remodeling of basement
membrane and ECM resulting in upregulated cell migra-
tion and invasion and release of HS-bound growth- and
angiogenesis- promoting factors [7–9]. Notably, elevated
levels of heparanase are positively correlated with trig-
gered expression of MMP-9, hepatocyte growth factor
(HGF) and vascular endothelial growth factor (VEGF)
that are entangled with cancer progression [11–13]. To-
gether, these and other results critically support the in-
timate involvement of heparanase in tumor progression
and encourage the development of heparanase inhibitors
as anti-cancer therapeutics [14–16].
Several heparin/HS mimetics were demonstrated as

heparanase inhibitors and some have entered clinical
trials [8, 15], among these are Muparfostat (PI-88),
Roneparstat (SST0001), PG545, and necuparanib (M402)
[8, 15]. Muparfostat is a mixture of sulfated di- to hexa-
saccharides which progressed to Phase III clinical trial in
post-resection hepatocellular carcinoma. It displayed sig-
nificant hematologic side effects when administered with
docetaxel [17, 18]. PG545, a fully sulfated hexasaccharide
conjugated with a lipophilic moiety, is a dual inhibitor of
heparanase and angiogenesis, currently in phase-I
clinical trials in patients with advanced solid tumors
([19], https://clinicaltrials.gov/ct2/show/NCT02042781).
Roneparstat, N-acetylated glycol-split heparin, is in
phase I clinical trial in myeloma patients (https://clinical
trials.gov/ct2/show/study/NCT01764880, [20]. Similarly,
necuparanib (glycol-split low molecular weight heparin)
is in phase-I/II trial for pancreatic cancer in combination
with nab-paclitaxel and gemcitabine (https://clinicaltrials
.gov/ct2/show/NCT01621243, [21]). Given the diverse
effects of heparin-like compounds, these studies indicate
the significance of designing chemically novel, highly
selective and biologically active heparanase inhibitors to
potently target various types of cancers and possibly in-
flammatory diseases [8, 15]. Synthesis of heparanase-
inhibiting small molecules has been reported [8, 16, 22],
but none was advanced to preclinical and clinical studies
[8]. We have previously reported the synthesis of various

heterocylces with good anticancer activity [23–29]. The
current saccharide-based compounds are not specific for
heparanase leaving open the question as to how much of
their anti-tumor effect is due specifically to blocking hepar-
anase activity. Herein, we screened 150 small molecules
with the scaffold bearing quinolones, oxazines, benzoxa-
zines, isoxazoli(di)nes, pyrimidinones, quinolines, benzoxa-
zines, and 4-thiazolidinones, thiadiazolo[3,2-a]pyrimidin-5-
one, 1,2,4-triazolo-1,3,4-thiadiazoles, and azaspiranes for in-
hibition of human heparanase enzymatic activity. Selected
molecules were tested for inhibition of cell migration and
invasion. The most effective compound was examined for
putative binding modes against the target enzyme using
molecular docking analysis.

Methods
All solvents were of analytical grade and reagents were
purchased from Sigma-Aldrich. 1H and 13C NMR spec-
tra were recorded on a Varian and Bruker WH-200
(400 MHz) spectrometer in CDCl3 or DMSO-d6 as solv-
ent, using TMS as an internal standard and chemical
shifts are expressed as ppm. Mass spectra were deter-
mined on a Shimadzu LC-MS. High resolution mass
spectra were determined on a Bruker Daltonics instru-
ment. The elemental analyses were carried out using an
Elemental Vario Cube CHNS rapid Analyzer. The pro-
gress of the reaction was monitored by TLC pre-coated
silica gel G plates.

Heparanase

Active heparanase was produced in HEK 293 cells stably
transfected with the human heparanase gene construct
in the mammalian pSecTag vector. The enzyme was
purified and kindly provided by Dr. Yi Zhang (Eli Lilly
and Company, New York, NY) [30].

Cells

Mouse Lewis lung carcinoma (LLC; ATCC Cat. number:
CRL-1642), human lung carcinoma (HCC827; ATCC
Cat. number: CRL-2868), and human hepatocellular car-
cinoma (HepG2, Hep3B; ATCC Cat. number: HB-8065
and HB-8064, respectively) cell lines were obtained from
the American Type Culture Collection and working
stocks did not exceed four passages. The cell lines have
recently been tested for mycoplasma contamination and
authenticated using the Promega PowerPlex 16 HS kit.
Cells were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with glutamine, pyru-
vate, antibiotics and 10% fetal calf serum in a humidified
atmosphere containing 5% CO2 at 37 °C.

Real-time PCR

Total RNA was extracted with TRIzol (Sigma) and RNA
(1 μg) was amplified using one step PCR amplification
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kit, according to the manufacturer’s (ABgene, Epsom, UK)
instructions. The PCR primer sets utilized were: i) mouse
heparanase - Forward: 5′ TTTGCAGCTGGCTTTATG
TG 3′, Reverse: 5′ GTCTGGGCCTTTCACTCTTG 3′
(207 nucleotides); ii) mouse GAPDH - Forward: 5′ AGAA
CATCATCCCTGCATCC 3′, Reverse: 5′ AGCCGTATTC
ATTGTCATACC 3′ (348 nucleotides); iii) human hepara-
nase - Forward: 5′ CCAGCCGAGCCACATCGCTC 3′,
Reverse: 5′ ATGAGCCCCAGCCTTCTCCAT 3′ (550
nucleotides); iv) human GAPDH - Forward: 5′ ACAGTTC
TAATGCTCAGTTGCTC 3′; Reverse: 5′ TTGCCTCATC
ACCACTTCTATT 3′ (360 nucleotides).

Preparation of Sulphated Ceria

Hydrous cerium oxide was prepared by the hydrolysis of
cerium (III) nitrate hexahydrate with 1:1 ammonia. Cer-
ium (III) nitrate was dissolved in double distilled water.
To this clear solution, dilute (1:1) aqueous ammonia was
added drop-wise from a burette with vigorous stirring
until the pH of the solution reached 8.
The solution was boiled for 15 min and allowed to

stand overnight. The mother liquor was then decanted
and the precipitate was washed several times with dis-
tilled water till it is completely free of nitrate ions which
was confirmed by brown ring test. The precipitate was
filtered and dried overnight at 383 K for 16 h. The hy-
droxide obtained was sieved to get particles of 75-
100 μm mesh size and immersed in (1:1) H2SO4 solution
(2 mL/g) and subjected to stirring for 4 h. Excess water
was evaporated and the resulting sample was oven dried
at 383 K for 16 h, calcined at 823 K for 5 h and stored
in vacuum desiccator.

General procedure for Microwave synthesis of 4-amino-5-

phenyl-4 h-1,2,4-triazole-3-thiol (2)

A mixture of methylbenzoate (1 mmol) and hydrazine hy-
drate (1 mmol) in 20 mL ethanol was irradiated in micro-
wave at 700 W in a specially designed Teflon vessel
containing lead acetate, until all the starting material was
consumed (1-2 min, as monitored by TLC). To the above
mixture (0.006 mmol) of KOH, CS2 (1 mmol) was added
and further irradiated at 700 W for 1 min. Finally, hydra-
zine hydrate (2 mmol) was added drop wise to the above
mixture and continued the irradiation at 700 W until a
white solid appeared at the bottom (2-3 min). The lead
acetate worked as a trap for H2S that was evolved during
reaction. The solid obtained was dissolved in water (15-
20 mL) and acidified with conc. HCl. The separated solid
was filtered, dried and recrystallized to obtain pure 4-

amino-5-phenyl-4 h-1,2,4-triazole-3-thiol. Yield 78%, m.p.
232-234 °C; IR (KBr) γ/cm

−1: 3310.07 (NH2 stretch),
3071.36 (aromatic CH stretch), 1472.38 (tautomeric
C = S). 1H NMR: (400 MHz, DMSO-d6). δ:7.6-7.5 (m, 2H,
ArH), 7.34-7.2 (m, 3H, ArH), 5.14 (s, 2H, NH2).

General procedure for the synthesis of 6-substituted-3-

phenyl-(1,2,4)-triazolo(3,4-b)(1,3,4-thiadiazole (4a-4 h) by

using SCe

To a mixture of 4-amino-5-phenyl-4 h-1,2,4-triazole-3-

thiol (1 mmol) and (3a-h) (1 mmol) in DMF (10 mL),
SCe (20 mol%) and POCl3 (0.1 mmol) were added. The
reaction mixture was refluxed for 10 h. Completion of
the reaction was monitored by TLC and the catalyst was
filtered and washed with water. Solvent was removed
under reduced pressure and crushed ice was added to
the concentrated mass. The pH of reaction mixture was
adjusted to 8.0 using K2CO3 and KOH. The solid ob-
tained was separated by filtration, washed with excess
water, dried and recrystallized using appropriate solvent.

General procedure for the synthesis of 2-hydroxy-3,5-

diiodo-N-(3-phenyl-5-thioxo-1H-1,2,4-triazol-4(5H)-yl)benza-

mide (5a) and 2-hydroxy-5-iodo-N-(3-phenyl-5-thioxo-1H-

1,2,4-triazol-4(5H)-yl)benzamide (5b)

To 3a (1 eq) in DMF, EDC (1.1 eq) and HOBt (1.1 eq)
was added and stirred at room temperature for 30 min.
It was followed by the addition of amine (2) and stirred
for 2 h. After completion of the reaction, it was diluted
with water and the obtained solid was filtered and re-
crystallized in appropriate solvent.

2,4-Diiodo-6-(3-phenyl-[1, 2, 4]triazolo[3,4-b][1, 3,

4]thiadiazol-6yl)phenol (4a, DTP)

Yellow colored solid; 1H NMR (400 MHz, DMSO-d6)
8.37-8.35 (d, 2H), 8.26 (s, 1H), 7.85 (s, 1H), 7.69-7.63 (m,
2H), 7.54-7.52 (d, 1H), 4.92 (s, 1H); 13C NMR (DMSO-
d6); 165.53, 154.53, 149.29, 148.83, 140.98, 137.51,
133.83, 132.45, 129.11, 128.64, 123.10, 122.44, 120.72,
96.18, 85.11; HRMS Calcd 568.840; Found: 568.840
(M + Na)+; Anal. Calcd for C15H8I2N4OS: C, 32.99; H,
1.48; N, 10.26; Found: C, 33.00; H, 1.49; N, 10.28.

6-(4-(1H-Imidazol-1-yl)phenyl)-3-phenyl-[1, 2, 4]triazolo[3,4-

b][1, 3, 4]thiadiazole (4b)

Pale yellow colored solid; 1H NMR (400 MHz, DMSO-
d6) δ: 8.46-8.44 (d, 2H), 7.81-7.77 (m, 2H), 7.53-7.49 (m,
3H), 7.39-7.34 (m, 3H), 7.27-7.24 (m, 2H); 13C NMR
(DMSO-d6); 161.55, 149.29, 148.53, 140.98, 137.18,
137.11, 133.83, 132.48, 131.97, 129.11, 128.64, 128.18,
123.10, 122.43, 120.27; LCMS (MM:ES + APCI) 345.2
(M + H)+. Anal. Calcd for C18H12N6S: C, 62.77; H, 3.51;
N, 24.40; Found: C, 62.79; H, 3.53; N, 24.43.

4-Iodo-2-(3-phenyl-[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazol-

6-yl)phenol (4c, ITP)

Yellow colored solid; 1H NMR (400 MHz, DMSO-d6) δ:
8.44-8.42 (d, 2H), 8.08-8.06 (d, 2H), 8.02-8.00 (m, 1H),
7.95-7.91 (m, 1H), 7.71 (s, 1H), 7.16-7.14 (d, 1H), 4.92 (s,
1H); 13C NMR (DMSO-d6) δ: 164.19, 159.73, 152.02,
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147.46, 138.26, 133.27, 131.64, 129.40, 127.70, 124.93,
120.48, 119.82, 118.66, 88.23; HRMS Calcd 442.943; Found:
442.943 (M + Na)+; Anal. Calcd for C15H9IN4OS: C, 42.87;
H, 2.16; N, 13.33; Found: C, 42.89; H, 2.17; N, 13.35.

6-(((R)-Tetrahydro-2H-pyran-2-yl)(phenyl)methyl)-3-phenyl-

[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazole (4d)

White colored solid; 1H NMR (400 MHz, DMSO-d6) δ:
8.25-8.16 (d, 2H), 8.06 (m, 1H), 7.78-7.76 (m, 1H), 7.62-
7.60 (m, 1H), 7.27-7.15 (m, 4H), 4.58-4.53 (m, 2H), 3.88-
3.84 (m, 2H), 1.78-1.73 (m, 4H), 1.50-1.45 (m, 2H); 13C
NMR (DMSO-d6) δ: 164.56, 149.30, 143.93, 141.04,
137.49, 132.82, 132.41, 130.23, 129.10, 128.10, 120.70,
80.11, 71.09, 43.59, 30.41, 30.33, 21.48; LCMS
(MM:ES + APCI) 377.2 (M + H)+; Anal. Calcd for
C21H20N4OS: C, 67.00; H, 5.35; N, 14.88; Found: C,
67.02; H, 5.37; N, 14.90.

2-(3-Phenyl-[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazol-6yl)-1-p-

tolylethanone (4e)

White colored solid; 1H NMR (400 MHz, DMSO-d6) δ:
8.43-8.41 (m, 2H), 8.03-7.99 (m, 3H), 7.92 (m, 1H), 7.69
(m, 1H), 7.40-7.38 (m, 2H), 4.1 (s, 2H), 2.42 (m, 3H); 13C
NMR (DMSO-d6) δ:192.83, 164.18, 159.42, 151.99,
146.87, 137.47, 132.28, 130.26, 125.66, 123.38, 121.01,
120.89, 48.13, 21.13; HRMS Calcd 357.078; Found:
357.078 (M + Na)+. Anal. Calcd for C18H14N4OS: C,
64.65; H, 4.22; N, 16.75; Found: C, 64.67; H, 4.25; N,
16.77.

6-(3-4-Dimethoxybenzyl)-3-phenyl-[1, 2, 4]triazolo[3,4-b][1,

3, 4]thiadiazole (4f)

Yellow colored solid; 1H NMR (400 MHz, DMSO-d6) δ:
8.2 (d, 2H), 7.6-7.4 (m, 3H), 7.0 (s, 1H), 6.9 (d, 2H), 4.4
(s, 2H), 3.8 (s, 6H); LCMS (MM:ES + APCI) 353.2
(M + H)+; Anal.Calcd for C18H16N4O2S: C, 61.35; H,
4.58; N, 15.90; Found: C, 61.39; H 4.59; N, 15.93.

3-(3-Phenyl–[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazol-6-yl-

)phenol (4 g)

White colored solid; 1H NMR (400 MHz, DMSO-d6) δ:
8.32-8.31 (m, 2H), 8.13 (s, 1H), 7.94-7.87 (m, 3H), 7.65-
7.59 (m, 2H), 7.46 (m, 1H), 4.91 (s, 1H); LCMS
(MM:ES + APCI) 295.2 (M + H)+; Anal. Calcd for
C15H10N4OS: C, 61.21; H, 3.42; N, 19.04; Found: C,
61.23; H, 3.44; N, 19.07.

3-Phenyl-6-styryl-[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazole

(4 h)

White colored solid; 1H NMR (400 MHz, DMSO-d6) δ:
8.25-8.22(d, 2H), 7.92-7.87 (m, 2H), 7.73-7.55 (m, 4H),
7.32-7.26 (m, 2H), 6.45-6.42 (m, 2H); 13C NMR (DMSO-
d6) δ: 164.84, 159.58, 153.39, 145.42, 139.89, 131.08,
131.04, 130.53, 130.42, 130.31, 129.09, 125.84, 125.47,

118.08, 116.18, 115.90; HRMS Calcd 327.067; Found:
327.067 (M + Na)+; Anal. Calcd for C17H12N4S: C, 67.O8;
H, 3.97; N, 18.41; Found: C, 67.09; H, 3.99; N, 18.44.

2-Hydroxy-3,5-diiodo-N-(3-phenyl-5-thioxo-1H-1,2,4-triazol-

4(5H)-yl)benzamide (5a, HTP)

Pale yellow colored solid; 1H NMR (400 MHz, DMSO-
d6) δ: 14.64 (s, NH), 12.30 (s, NH), 8.48 (s, 1H), 8.40 (s,
1H), 8.24-8.15 (m, 3H), 7.81-7.78 (m, 2H), 4.73 (s, 1H);
13C NMR (DMSO-d6) δ:181.47, 173.23, 153.47, 147.94,
145.12, 136.38, 134.36, 131.13, 129.09, 128.78,
128.21, 126.02, 125.58, 90.79, 72.33; HRMS Calcd
586.851; Found: 586.851 (M + Na)+; Anal.Calcd for
C15H10I2N4O2S: C, 31.94; H, 1.79; N, 9.93; Found: C,
31.96; H, 1.81; N, 9.93.

2-Hydroxy-5-iodo-N-(3-phenyl-5-thioxo-1H-1,2,4-triazol-

4(5H)-yl)benzamide (5b)

Pale yellow colored solid; 1H NMR (400 MHz,
DMSO-d6) δ: 12.5 (s, NH), 8.5 (s, 1H), 8.4 (m, 1H),
8.1 (m,1H), 7.8 (m, 3H), 7.6 (m,1H), 4.6 (s, 1H);
LCMS (MM:ES + APCI) 438.4 (M + H)+; Anal. Calcd
for C15H11IN4O2S: C, 41.11; H, 2.53; N, 12.78; Found:
C, 41.12; H, 2.56; N, 12.80.
Spectral data of the compounds are presented in

Additional file 1: Figure S1.

Colorimetric heparanase assay

The assay, carried out in 96 well microplates, measures
the appearance of the disaccharide product of
heparanase-catalyzed fondaparinux cleavage, colorimet-
rically using the tetrazolium salt WST-1 [31]. Briefly,
assay solutions (100 μL) are composed of 40 mM so-
dium acetate buffer (pH 5.0) and 100 mM fondaparinux
(Arixtra) with or without increasing concentrations of
inhibitor. Recombinant heparanase was added to a final
concentration of 140 pM, to start the assay. The plates
are incubated at 37 °C for 18 h and the reaction is
stopped by the addition of 100 μL solution containing
1.69 mM 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-
tetrazolio]-1,3-benzene disulfonate (WST-1) in 0.1 M
NaOH. The plates are developed at 60 °C for 60 min,
and the absorbance is measured at 584 nm. In each
plate, a standard curve constructed with D-galactose as
the reducing sugar standard is prepared in the same buf-
fer and volume over the range of 2–100 μM [31].

ECM degradation heparanase assay

The semi-quantitative heparanase assay was performed
as described previously [32, 33]. Briefly, metabolically
sulfate [35S] labeled ECM deposited by cultured endo-
thelial cells and coating the surface of 35 mm tissue cul-
ture dishes [33], is incubated (3 h, 37 °C, pH 6.0, 1 mL
final volume) with recombinant human heparanase
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(200 ng/mL) in the absence and presence of candidate
small molecules. The ECM was also incubated (24 h,
37 °C, pH 6.0) with cell lysates (200 μg protein/dish)
prepared by 3 cycles of freeze and thaw in reaction buf-
fer, as described [32]. To evaluate the occurrence of
proteoglycan degradation, the incubation medium is col-
lected and applied for gel filtration on Sepharose 6B col-
umns (0.9 × 30 cm). Fractions (0.2 mL) are eluted with
PBS and counted for radioactivity. The excluded volume
(Vo) is marked by blue dextran and the total included
volume (Vt) by phenol red. Degradation fragments of
HS side chains are eluted from Sepharose 6B at
0.5 < Kav < 0.8 (fractions 12-25) [32].

In vitro cytotoxicity assay

The antiproliferative effect of the compounds against
LLC (Lewis lung carcinoma) and HepG2 (hepatocellular
carcinoma) cells was determined by the MTT dye up-
take method as described previously [34–36]. Briefly,
cells (2.5 × 104/mL) were incubated in triplicate in a 96-
well plate, in the presence of varying concentrations of
test compounds at a volume of 0.2 mL, for different time
intervals at 37 °C. Thereafter, 20 μL MTT solution
(5 mg/mL in PBS) was added to each well. After 2 h in-
cubation at 37 °C, 0.1 mL lysis buffer (20% SDS, 50%
dimethylformamide) was added and incubated for 1 h at
37 °C, and the optical density (OD) at 570 nm was mea-
sured using a plate reader.

In vitro trans-well invasion/migration assay

Invasion of cells (LLC, HepG2) across a Matrigel™
coated membrane or migration through control un-
coated inserts was assessed using 24-well plates (BD Bio-
sciences, 8 μm pore size, insert size: 6.4 mm) according
to the manufacturer’s protocol and as described earlier
[37–39]. Briefly, single cell suspensions (1 × 106 cells/
mL) were prepared by detaching and resuspending the
cells in DMEM containing 0.1% BSA. Before adding the
cells, the chambers were rehydrated for 2 h in an
incubator at 37 °C. The lower chambers were filled with
600 μL DMEM containing chemo-attractant (10% FBS).
After seeding the cells (2 × 105 in 200 μL of serum-free
medium) into the upper chamber of triplicate wells with

or without increasing concentrations of compounds, the
chambers were incubated for 24 h (LLC) and 48 h
(HepG2) at 37 °C. The non-invaded cells were removed
from the upper surface of the membrane by scrub-
bing and cells that migrated through the filter were
fixed, stained with Diff Quick solution, counted by
examination of at least five microscopic fields and
photographed.

Results
Chemical synthesis and characterization

In recent years, solid acid catalysts have gained consider-
able attention due to their high efficiency, eco-friendly,
longer catalyst life, negligible equipment corrosion and
their reusability. In present work we report the synthesis
of novel 1,2,4-triazolo-1,3,4-thiadiazoles bearing com-
pounds via sulfated ceria mediated cycalization reaction
[40–42]. Initially we synthesized the sulphated ceria
(SCe) catalyst as reported previously [43]. The powdered
X-ray diffraction (PXRD), Burner- Ememett-Teller (BET)
and Scanning Electron microscope patterns of SCe
matched with the standard material.
The experimental strategy for the synthesis of starting

material 4-amino-5-phenyl-4 h-1,2,4-triazole-3-thiol (2)

was achieved by Microwave method as reported recently
(Scheme 1, i) [36]. In order to synthesize the novel
1,2,4-triazolo-1,3,4-thiadiazoles, we focused on the effi-
ciency of SCe in cyclisation reaction. To optimise the re-
action conditions, we attempted reaction in the
combination of 2 and 3-oxo-3-(p-tolyl)propanoic acid
(3e) as a model reaction in different concentrations of
SCe and the results are summarised in Additional file 1:
Table S1. The ideal system for the cyclization was found
to be 20 mol% of SCe in DMF (Additional file 1: Table
S1, entry 8). We also observed incomplete conversions,
when SCe was lower than 20 mol%, despite of longer
reaction time. From the above reaction, we examined
the generality of method by synthesizing series of 1,2,4-
triazolo-1,3,4-thiadiazoles molecules (Scheme 1, ii).

Influence of SCe on cyclization

The modification of SCe with anions such as sulphate
ions forms a super acidic catalyst which effectively catal-
yses the cyclization. Majority of reactions completed

Scheme 1 Schematic representation of new heparanase inhibitors used in this study. i) hydrazine hydrate, ethanol, MWI; CS2 and KOH, 5-6 min at

700 watt; ii) SCe (20 mol%), DMF, 10 h
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within 10 h and undissolved SCe was separated by sim-
ple filtration and finally furnished the product in good
yield (Additional file 1: Table S1).

Plausible mechanism

The First step involves the protonation of acid followed
by dehydration and simultaneous attack of nitrogen lone
pair to the electron deficient acylium ion to form an
intermediate. In the second step, the intermediate
undergoes neighboring group participation with nucleo-
philic sulphur, which leads to the formation of C-S bond
by the elimination of water molecule (Scheme 2). Finally,
deprotonation results in the formation of the title prod-
ucts (4a-h).

Re-usability of acid catalyst system

Experiment was performed to study the recyclability of
the SCe system employing 2 with 3e to yield compound
4e (Scheme 1). After each run, catalyst was removed by
filtration from the reaction mixture, washed thoroughly
with acetone, dried and activated at 823 K and taken for
next cycle. We observed significant reduction in the
yield of the product after second run (Additional file 1:
Table S2). It is important to note that this system is
recyclable twice with the isolated yields above 70%.
Further, we synthesized the amide derivatives of 2 with

corresponding mono and di iodo salicylic acid (3a and
3c) via HOBt/EDC amide formation reactions (Scheme
3) which resulted in the products 2-hydroxy-3,5-diiodo-
N-(3-phenyl-5-thioxo-1H-1,2,4-triazol-4(5H)-yl)benzamide
(5a) and 2-hydroxy-5-iodo-N-(3-phenyl-5-thioxo-1H-1,2,4-

triazol-4(5H)-yl)benzamide (5b). The compounds obtained
were characterized by 1H NMR, 13C NMR, and mass spec-
tral analysis (Additional file 1: Figure S1 – Spectral data).
Detailed chemical characterization of the newly synthesized
compounds is provided in the ‘methods’ section.

In vitro screening of the small molecule library for

inhibition of the catalytic activity of human heparanase

Initially we screened the entire library of small molecules
with diverse structures for their in vitro inhibitory activ-
ity against recombinant human heparanase at different
concentrations up to 20 μg/mL. We used a 96-well
based colorimetric assay that measures the ability of re-
combinant heparanase to degrade fondaparinux (heparin
derived pentasaccharide) in solution [31]. The assay
measures the appearance of a disaccharide product of
fondaparinux cleavage, using the tetrazolium salt WST-1
[31]. Compounds bearing triazolo-thiadiazole backbone
displayed significant inhibitory activity, 2,4-Diiodo-6-(3-
phenyl-[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazol-6yl)phe-
nol (DTP) being the lead and consistently active

Scheme 2 Plausible mechanism of cyclization and synthesis of title compounds

Scheme 3 Synthetic scheme for the preparation of N-amino-triazole-

amides. i) HOBt/EDC, DMF, RT, 2 h. R1 = 3a, 3c
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structure followed by 2-hydroxy-3,5-diiodo-N-(3-phenyl-
5-thioxo-1H-1,2,4-triazol-4(5H)-yl)benzamide (HTP)
and 4-iodo-2-(3-phenyl-[1, 2, 4]triazolo[3,4-b][1, 3,
4]thiadiazol-6-yl)phenol (ITP) (Fig. 1a).
In order to better resemble the in vivo situation, we

applied as substrate metabolically sulfate [Na2
35SO4] la-

beled extracellular matrix (ECM) deposited by cultured
endothelial cells [32]. This naturally produced substrate
closely resembles the subendothelial basement mem-
brane in its composition, biological function and barrier
properties. Years of experience revealed that compounds
that effectively inhibit the enzyme in this assay are also
effective in preclinical animal models [20, 44, 45]. This
semi-quantitative assay measures release of radioactive
heparan sulfate (HS) degradation fragments from an in-
soluble extracellular matrix (ECM) that is firmly bound
to a culture dish [32, 33]. Briefly, the ECM substrate is
incubated with recombinant human heparanase in the
absence and presence of candidate small molecules. The
incubation medium is collected and subjected to gel

filtration on Sepharose 6B. Degradation fragments of
heparan sulfate side chains are eluted at 0.5 < Kav < 0.8,
whereas nearly intact HSPG is eluted next to the void
volume [32]. As demonstrated in Fig. 1b, compound
DTP (10 μg/mL) completely inhibited the release of hep-
aran sulfate degradation fragments. The other structural
analogs were less effective (not shown). Thus, we have
identified heparanase-inhibiting lead compound from a
random screen of bioactive compounds.

Heparanase activity in various hepatocellular and lung

carcinoma cell lines

Heparanase expression (RT-PCR) (Fig. 2a) and enzym-
atic activity (Fig. 2b) were examined in various hepato-
cellular carcinoma (human HepG2, Hep3B) and lung
carcinoma (human HCC827, mouse LLC) cell lines. A
relatively low expression level and enzymatic activity
were noted in HepG2 cells as compared to the other cell
lines which exhibited moderate-high heparanase

Fig. 1 a Screening of compounds for inhibition of heparanase enzymatic

activity applying the Fondaparinux heparanase assay. PC, positive control

= N-(4-{[4-(1H-Benzoimidazol-2-yl)-arylamino]-methyl}-phenyl)-benzamide

[22]. b Lead molecules which exhibited inhibitory activity against human

heparanase were validated using a semi-quantitative assay that measures

release of radioactive heparan sulfate fragments from an insoluble

extracellular matrix as described in ‘Methods’ section. Briefly, sulfate [35S]

labeled ECM was incubated (6 h, 37 °C, pH 6.0) with recombinant human

heparanase (200 ng/mL) in the absence and presence of 10 μg/mL of the

test compounds. Sulfate labeled material released into the incubation

medium was subjected to gel filtration on Sepharose 6B. Compound DTP

effectively inhibited the cleavage and release of heparan sulfate

degradation fragments

Fig. 2 Heparanase expression and activity in various hepatocellular and

lung carcinoma cell lines. Mouse Lewis lung carcinoma (LLC), human

lung carcinoma (HCC827 = HCC), and human hepatocellular carcinoma

(HepG2, Hep3B) cells maintained in culture were subjected to RT-PCR (a)

and heparanase activity (b) assays, as described in ‘Methods’
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enzyme inhibition studies
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enzymatic activity (Fig. 2b). HepG2 human hepatocellular
carcinoma and LLC mouse Lewis lung carcinoma cells
lines were selected for further experimentation, represent-
ing human and mouse cells expressing low (HepG2) and
moderate-high (LLC) enzymatic activity, respectively.

DTP suppresses the proliferation of LLC and HepG2 cells

Given the overexpression of heparanase in hepatocellu-
lar and lung carcinoma cancer cell lines, we next ana-
lyzed the effect of triazolo-thiadiazoles on LLC (Lewis
Lung carcinoma) and HepG2 (hepatocellular carcinoma)
cell proliferation using the MTT assay [46–48].
Paclitaxel and DMSO were used as reference drug and
vehicle control, respectively. Among the tested triazolo-
thiadiazoles, DTP was found to exert an antiproliferative
effect with IC50 value of 11.9 and 8.3 μM against LLC
and HepG2, respectively (Table 1). Thus, structure activ-
ity relationship of the lead anticancer agent revealed that
phenolic and iodine substituents on the core triazolo-
thiadiazole nucleus were found to increase the inhibitory
activity towards the proliferation of cancer cells. Not-
ably, the exo-conjugation to the triazolo-thiadiazole
core structure also enhances the cytotoxicity. The

hydrophobic substituents on the core structure were
found to be ineffective against proliferation of cancer
cells.

DTP inhibits migration and invasion of LLC cells

The involvement of heparanase in cancer metastasis is
clearly demonstrated in various types of cancer [9, 14, 32].
We investigated the effect of DTP on LLC and HepG2 cell
migration and invasion applying trans-well filters (8 μM
pore size) that were either uncoated or coated with Matri-
gel, respectively. LLC (Fig. 3) and HepG2 (Fig. 4) cells mi-
grated through uncoated filters and invaded through
Matrigel in response to stimulation with FBS. DTP
significantly suppressed cell migration (Figs. 3a and
4a) and invasion (Figs. 3b and 4b) in a dose
dependent manner, yielding nearly 50% inhibition at
5 μM. This effect is likely attributed to inhibition of
heparanase enzymatic activity by DTP. Heparin was
used as positive control.

Rationalizing SAR trends via protein-ligand interactions

In order to perform virtual screening, a recently pub-
lished X-ray crystal structure for human heparanase was

Fig. 3 Effect of DTP on LLC cell migration and Invasion. LLC cells were plated on BD BioCoat™ chambers (BD Biosciences) and cell migration (without

Matrigel coat) (a) and invasion (with Matrigel coat) (b) were measured as described in ‘Methods’. The effect of lead compound DTP (1–10 μM) or

heparin (100 μg/mL) on cell migration and invasion is demonstrated by representative photomicrographs (magnification: ×10) and the respective bar

graphs. Data are represented as mean ± S.E. *P < 0.1; **P < 0.05. ***P < 0.01
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obtained from the Protein Data Bank (PDB:5E97; Glyco-
side Hydrolase ligand structures 1, 1.63 Å resolution)
[49]. The structure was loaded into MOE [50] and cor-
rected using the Structure Preparation tool before run-
ning Protonate 3D. The Site Finder tool identified the
active site containing Glu-343 and Glu-225 that were
identified as the catalytic nucleophile and acid-base of
Heparanase [45, 49]. Compound structures were loaded
into MOE and energy minimised before carrying out
rigid receptor docking (triangle matcher, London dG
Forcefield refinement, GBVI/WSA dG rescoring).
The 52 docked poses that included the three active

compounds DTP, HTP, and ITP did not appear to
explain the experimentally observed trend in SAR. How-
ever, docking results revealed a similar interaction pat-
tern between active compounds ITP and DTP, with
poses that interact favourably with both Asn-224 and
Asp-62 due to the triazolo-thiadiazole backbone (Fig. 5).
For compound HTP, this interaction profile was found
to be slightly less favourable, interacting instead with
Asn-224 and the active site acid-base Glu-343.
Although these compounds do not appear to be more

favourable than the other docked compunds, the

presence of iodine substituents found on all hit com-
pounds may preferentially lower the phenols’ pKA suffi-
ciently to allow for deprotonation of the ligands in
protein environment.

Discussion
Human heparanase is an endoglucuronidase that cleaves
heparan sulfate chains thereby regulating multiple bio-
logical activities that together enhance tumor growth,
metastasis and angiogenesis [7–10, 14, 32]. Heparanase
is expressed by most types of cancer and has emerged as
a valid target for anti-cancer therapy [8, 15]. Heparanase
represents a druggable target because: (i) there is only a
single enzymatically active heparanase expressed in
humans, (ii) the enzyme is present in low levels in nor-
mal tissues but dramatically elevated in tumors where it
is associated with poor prognosis and reduced postoper-
ative survival time, and (iii) heparanase deficient mice
appear normal [51]. Thus, properly designed heparanase
inhibitors will likely have few, if any, negative side
effects. Development of heparanase inhibitors has
focused predominantly on carbohydrate-based com-
pounds with heparin-like properties [8, 15, 44]. These

Fig. 4 Effect of DTP on HepG2 cell migration and Invasion. HepG2 cells were plated on BD BioCoat™ chambers (BD Biosciences) and cell migration (without

Matrigel coat) (a) and invasion (with Matrigel coat) (b) were measured as described in ‘Methods’. The effect of lead compound DTP (1–10 μM) or heparin

(100 μg/mL) on cell migration and invasion is demonstrated by representative photomicrographs (magnification: ×5) and the respective bar graphs. Data are

represented as mean ± S.E. *P < 0.05
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compounds bind to the heparin-binding domains that
flank the enzyme active site of heparanase thereby inhi-
biting cleavage of heparan sulfate. Four different heparin
mimics are currently in clinical trials in human cancer
patients. However all of these mimics have the disadvan-
tage that they are not specific for heparanase and likely
interact with different heparin-binding proteins with un-
known consequences and off target effects [8, 15].
Therefore, even if they prove efficacious in patients it
will be impossible to attribute their effect solely to
heparanase inhibition. In addition three of the four
mimics are heterogeneous in their structure adding
further to their uncertainty as viable drugs for use in
humans [8]. A number of heparanase-inhibiting small
molecules were reported [8, 16, 22], but none entered
clinical testing.
Heparanase expressed in cancer cells and cells of the

tumor microenvironment provides a most appropriate
therapeutic molecular target and could serve a decisive
role in cancer regime. In addition to remodeling of
ECM, human heparanase regulates multiple signaling
cascades involved in tumor cell survival, angiogenesis
and metastasis [7, 8, 14, 15, 44, 52]. The positive
correlation of heparanase with progression of malignan-
cies makes it an attractive target in the treatment of
cancer. It is hoped that our identification of a lead

molecule and the recently resolved crystal structure of
the heparanase protein [49] will accelerate rational de-
sign of heparanase-inhibiting small molecules endowed
with considerably improved binding affinity, specificity,
pharmacokinetics and efficacy in xenograft cancer
models. Selected molecules exerting little or no side ef-
fects will then be examined for oral availability and anti
cancer effect in combination with currently available
treatments, applying patient derived xenograft models
and, at a later stage, animal models of other diseases
shown to be causally related to heparanase [53–58].

Conclusions

In a search for small molecule inhibitors that can inter-
fere with the catalytic activity of human heparanase, we
report the synthesis and biological evaluation of a library
of synthetic small molecules and identification of
triazolo-thiadiazole derivative as a potent inhibitor of
human heparanase. The identified lead structure dis-
played antiproliferative activity and suppressed the mi-
gration and invasion of cancer cells in correlation with
inhibition of heparanase enzymatic activity. Further
development of this novel class of heparanase inhibitors
and optimization to maximize their affinity, pharmaco-
kinetics and oral availability will provide a unique
opportunity for development of innovative anti-cancer

Fig. 5 Selected docked poses for active compounds DTP, HTP and ITP (a, b and c, respectively), showing similar active site interaction modes. DTP

and ITP are shown to interact with both Asn-224 and Asp-62 via the triazolo-thiadiazole backbone, and HTP is shown to interact with Asn-224 and the

active site acid-base Glu-343
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therapeutics. Moreover, because heparanase helps drive
the progression of other diseases (e.g., diabetes, diabetic
nephropathy, arthritis, colitis, sepsis, atherosclerosis)
[53–58], these drugs hold potential to impact public
health.

Additional file

Additional file 1: Table S1. Optimisation of mol% of SCe catalyst, and

selection of medium for cyclization reaction. To optimize the reaction

conditions for the synthesis of novel 1,2,4-triazolo-1,3,4-thiadiazoles, the reaction

was performed in combination of 4-amino-5-phenyl-4 h-1,2,4-triazole-3-thiol

and 3-oxo-3-(p-tolyl)propanoic acid as a model reaction in different

concentrations of SCe and solvent. The optimal system for cyclization was

20 mol% of SCe in DMF. Table S2. Evaluation of the reuse of SCe for cyclization

reaction. The recyclability of the SCe system was evaluated by employing 4-

amino-5-phenyl-4 h-1,2,4-triazole-3-thiol with 3-oxo-3-(p-tolyl)propanoic acid to

yield 2-(3-Phenyl-[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazol-6yl)-1-p-tolylethanone.

The catalyst was removed by filtration after each run and thoroughly washed

with acetone, dried and activated at 823 K and taken for the next cycle. There

was a significant reduction in the yield of the product after the second run

using SCe. Figure S1. Spectral data. Scanned copy of 1H NMR, 13C NMR, and

mass spectra of the indicated compounds. (DOCX 4202 kb)
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