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Abstract

Genomic translocation events frequently underlie cancer development through generation of gene fusions with
oncogenic properties. Identification of such fusion transcripts by transcriptome sequencing might help to discover
new potential therapeutic targets. We developed TRUP (Tumor-specimen suited RNA-seq Unified Pipeline)
(https://github.com/ruping/TRUP), a computational approach that combines split-read and read-pair analysis
with de novo assembly for the identification of chimeric transcripts in cancer specimens. We apply TRUP to
RNA-seq data of different tumor types, and find it to be more sensitive than alternative tools in detecting
chimeric transcripts, such as secondary rearrangements in EML4-ALK-positive lung tumors, or recurrent inactivating
rearrangements affecting RASSF8.

Background
Genomic rearrangements in cancer often lead to gene

fusions disrupting the activity of tumor suppressor genes

or activating proto-oncogenes, thus playing an important

role in tumor development. Gene fusions can lead to the

constitutive activation of a kinase, on which cancer cells

become dependent, a process sometimes referred to as

‘oncogene addiction’ [1]. One of the big successes in the

treatment of cancer was the identification of small mol-

ecules that specifically target fusion proteins, such as ima-

tinib for CML patients carrying the BCR-ABL translocation

[2] or crizotinib in the case of EML4-ALK positive lung

tumors [3].

Paired-end transcriptome sequencing (PE RNA-seq) is

a powerful tool for the identification of fusion transcripts

in tumors [4]. However, the complexity of the cancer

transcriptome, the high dynamic range of gene expres-

sion, and the prevalence of sequencing errors confound

the computational fusion detection from RNA-seq data

[5]. Existing methods in this field primarily rely on read-

pair analysis by assuming that deviations of the mapping

distance or orientation are caused by fusion events [6,7].

To increase sensitivity, a split-read mapping method

may be adopted in addition to read-pair analysis [8,9].

However, the short reads typically generate a large num-

ber of candidates including many false positives that

need sophisticated further processing, which is computa-

tionally expensive. It has recently been shown that de

novo assembly of novel junctions in a targeted region
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obtained by read-pair analysis leads to accurate fusion

predictions, since it provides high quality and longer

sequences spanning the fusion point by leveraging de-

pendency among short reads [10].

In this study we present TRUP, a computational pipe-

line that combines split-read and read-pair analysis with

de novo assembly of candidate regions containing a poten-

tial breakpoint, to achieve sensitive and accurate detection

of fusion transcripts. TRUP afforded detecting secondary

in-frame rearrangements in EML4-ALK-positive lung

adenocarcinomas, as well as the identification of recurrent

inactivating rearrangements affecting the candidate tumor

suppressor gene RASSF8.

Results and discussion

TRUP: A pipeline for detecting fusion genes in cancer

In order to detect fusion transcripts from PE RNA-seq

data, we need to identify the fusion point from the se-

quencing read alignments. Discordant mapping of mate

pairs, which include chimeric as well as partial alignments

of an individual read, are reported by GSNAP [11] or

STAR [12]. To guarantee high sensitivity, TRUP collects

all candidate regions containing potential breakpoints

suggested by those abnormal alignments. Additionally,

for each candidate region, de novo assembly is per-

formed using de Bruijn graphs (‘Velvet’) [13] and a

modified version of Velvet (Oases) that employs add-

itional filters to afford optimized merging of multiple

assemblies, specifically of transcriptome sequencing

data [14], with the aim to construct possible contigs

from each region by leveraging dependency among

reads. After sensitive split-read mapping and specific

de novo assembly, fusion candidates are filtered and

ranked based on repeat content and number of reads

supporting the fusion points (Figure 1; Materials and

Methods).

In order to evaluate the performance TRUP, we ini-

tially applied a preliminary version of TRUP (v1.0) to the

well-characterized lung cancer cell-lines H3122 and

H2228, which are known to harbor different variants of

the EML4-ALK fusion gene [15], as well as to five lung

adenocarcinoma tumor specimens that had been found

positive for ALK rearrangements by FISH. On average,

50 million PE reads were uniquely mapped to the human

genome (Additional file 1). We considered as high confi-

dence candidates those chimeric transcripts that matched

the following requirements: inter- or intra-chromosomal

rearrangements; at least five independent reads supporting

the breakpoint (either reads that span or read-pairs that

encompass the fusion-point, referred as spanning reads

and encompassing reads, respectively); and a non-

repetitive sequence across the fusion-point (unless the

chimeric transcript was also covered by encompassing

reads). We found that below 5x most of the candidates

called were artifacts of the pipeline or barely expressed

chimeric transcripts difficult to validate by RT-PCR. In the

seven samples analyzed, 20 chimeric transcripts matched

the above-mentioned requirements. Out of these 20, 17

Figure 1 Overview of the TRUP pipeline. The schematic diagram on the left panel shows the four major processing steps applied in TRUP. The
cartoon on the right panel illustrates an example of detecting a fusion event. White and black colored boxes indicate reads mapped to gene A
and to gene B, respectively. In a first step, TRUP aligns the read pairs onto the genome allowing discovery of chimeric alignments (read pair id p2
and p7 in the cartoon) and partial alignments (p1, p3, p6, and p8). To guarantee a sensitive detection of candidate regions containing potential
breakpoint, relaxed criteria are adopted to call breakpoints from chimeric/partial alignments, as well as from entirely aligned discordant pairs
(p4 and p5). Subsequently, to reach high accuracy, de novo assembly is performed on a candidate region by using the read pairs anchored in this
region. Lastly, bona fide breakpoints relative to the genome are identified from the assembled sequences. A fusion candidate is called if it attracts
a sufficient number of supporting reads. While the mapping and assembly steps adopt the state-of-the-art algorithms, the breakpoint searching
and fusion calling steps are novel (Materials and methods).
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(85%) were validated by RT-PCR and Sanger sequen-

cing across the fusion-point, or by FISH in the case of

EML4-ALK (Table 1). These results were used to build

an improved version of TRUP (v2.0), which not only

recovered all the above-mentioned validated candi-

dates but also identified 28 additional high-confident

ones (Additional file 2). For all subsequent analyses

version 2.0 was used.

In order to determine the robustness and accuracy of

TRUP we applied our pipeline to a published PE RNA-

seq dataset of small cell lung cancer [16]. We applied

TRUP to the cell-line data, where experimental validation

of candidates was possible. We were able to identify

two novel fusion transcripts affecting histone modi-

fiers: one predicted to inactivate the histone acetyl-

transferase CREBBP in the cell line, N417, and the

other one leading to the inactivation of the TAF6-

like RNA polymerase II p300/CBP-associated factor

(PCAF)-associated factor (TAF6L) in the cell line, H187

(Additional file 3). These results are in agreement with

previous studies in which alterations of histone modi-

fiers by rearrangements were reported [17,18], and sup-

port the important role that these genes might have in

the development and maintenance of small cell lung

cancer.

Detection of secondary rearrangements in EML4-ALK

positive cases

Paired-end RNA-seq analysis of the EML4-ALK positive

lung cancer cell-lines H3122 and H2228 revealed that in

both cases EML4-ALK co-occurred with secondary in-

frame chimeric transcripts: SOS1-ADCY3 in the case of

H3122, and SND1-CFTR and DCBLD2-STXBP5L in the

case of H2228 (Table 1; Figure 2a). We noticed that the

genes involved in EML4-ALK and SOS1-ADCY3 were lo-

cated in the same region of chromosome 2 (Figure 2b,

upper panel). In fact, the arrangement of these two

genes in the genome suggested that SOS1-ADCY3 might

be generated by the same genomic event that had caused

the EML4-ALK fusion. In order to test this hypothesis

we first performed a break-apart FISH assay (ba-FISH)

for both SOS1 and ADCY3 genes and a fusion assay for

SOS1-ADCY3 on H3122 interphase chromosomes, to

test whether the alteration happened at the genomic

level (Additional file 4). We then performed ba-FISH for

both ALK and ADCY3 separately, on metaphase chro-

mosomes of the same cell line (Figure 2b, lower panel):

in the case of ADCY3 ba-FISH we found one aberrant

single green signal with loss of the correspondent red

signal. The same pattern was observed when performing

the assay for ALK. We therefore reasoned that if both

Table 1 EML4-ALK co-occurring fusion genes and chimeric transcripts detected with TRUP 1.0

PatID HistoID Chimeric_transcript Sp Enc Total Type-I Type-II Domains Validated

H2228 Cell-line EML4-ALK_v3 8 (8 + 8) 13 21 Intra IF Protein_kinase .

SND1-CFTR 6 (6 + 4) 5 11 Intra IF Snase/ABC_tran RT-PCR

DCBLD2-STXBP5L 7 (7 + 2) 2 9 Intra IF CUB/LCCL/F5_F8_type_C RT-PCR

H3122 Cell-line SOS1-ADCY3 16 (16 + 15) 16 32 Intra IF RhoGEF/Guanylate_cyc RT-PCR

EML4-ALK_v1 22 (22 + 7) 9 31 Intra IF Protein_kinase .

S00006 AD EML4-ALK_v2 15 (15 + 4) 5 20 Intra IF Protein_kinase FISH

S00054 AD EML4-ALK_v1 24 (24 + 16) 30 54 Intra IF Protein_kinase FISH

PIGF-CHMP3 13 (13 + 0) 4 17 Intra IF Snf7 RT-PCR

SNAP29-CELSR1 8 (8 + 2) 6 14 Intra IF EGF/LamininG2/LamininEGF/HRM/GPS/7tm2 RT-PCR

APOBEC3F-SBF1 4 (4 + 0) 1 5 Not validated

S01122 AD EML4-ALK_v1 29 (29 + 8) 12 41 Intra IF Protein_kinase FISH

BMI1-ABI1 14 (14 + 4) 7 21 Intra OF . RT-PCR

MYO10-GPC5 12 (12 + 0) 0 12 Inter IF Myosin_head/IQ/PH RT-PCR

ARHGEF7-ZDHHC11 8 (8 + 2) 0 8 Inter IF CH/SH3/RhoGEF RT-PCR

S01124 AD EML4-ALK_v1 0 4 4 Intra IF Protein_kinase FISH

TAF4-LSM14B 12 (12 + 1) 2 14 Intra IF FDF RT-PCR

S01320 AD EML4-ALK_v1 21 (21 + 7) 6 27 Intra IF Protein_kinase FISH

NUP85-GPC3 12 (12 + 2) 0 12 Inter IF Nucleopor_Nup85 RT-PCR

NR2C1-PTPRB 15 (15 + 4) 4 19 Not validated

KRIT-MAGI2 2 (2 + 3) 3 5 Not validated

Table summarizing the chimeric transcripts detected in two lung cancer cell-lines and five lung adenocarcinoma (AD) EML4-ALK-positive tumors. Information about

the EML4-ALK variant detected is indicated (v1, v2, v3). The number of spanning (Sp) and encompassing (Enc) reads is given, as well as additional information of

the chimeric transcripts: intra-chromosomal (Intra), inter-chromosomal (Inter), in-frame (IF), out-of-frame (OF).
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rearrangements were linked, when performing both assays

together we should see the same pattern as observed

separately (that is, one single green signal), since the two

green signals would overlap and therefore be indistin-

guishable (Additional file 5, arrow A). On the contrary, if

the two rearrangements occurred on different alleles, we

Figure 2 Genomic complexity of EML4-ALK co-occurring fusion genes. (a) Detection by transcriptome sequencing of SOS1-ADCY3 and
SND1-CFTR in the H3122 and H2228 EML4-ALK-positive cell-lines, respectively. Schematic representation of the fusion transcripts and some of the
transcriptome sequencing reads spanning the fusion point. (b) Top: schematic representation of part of chromosome 2 illustrating the location of
ADCY3, ALK, SOS1, and EML4 as well as the relative location of the FISH probes. Bottom, from left to right: ADCY3 break-apart assay, ALK break-apart
assay, and simultaneous application of ADCY3 and ALK break-apart assays on metaphase chromosomes of H3122 cells.
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should be able to distinguish two separate single green

signals, one from the assay testing ALK and one for the

assay assessing ADCY3 (Additional file 5, arrow B). The

combined ALK-ADCY3 assay only generated one single

green signal suggesting that the two rearrangements

were likely to be physically linked (Figure 2b, lower

panel). In addition to these two cell-lines, we validated

at least one secondary in-frame chimeric transcript in

four additional EML4-ALK positive primary tumors:

SNAP29-CELSR1 and PIGF-CHMP3 in sample S00054;

MYO10-GPC5 and ARHGEF7-ZDHHC11 in S01122;

TAF4-LSM14B in S01124; and NUP85-GPC3 in S01320

(Table 1).

Although fusion genes are not necessarily expected

to be accompanied by changes in gene copy number

(for instance, balanced translocations are copy neutral

alterations), for many of these samples, for which copy

number data were available, we observed well-defined

breakpoints suggesting these events happen at the gen-

omic level and not as a consequence of trans-splicing [19]

(Additional file 6). These data suggest that the recurrent

fusions in lung cancer might be reciprocal and balanced

rather than merely accompanied by broad destruction of

otherwise non-oncogenic chromosomal DNA.

Comparison of TRUP to alternative fusion detection tools

In order to evaluate the performance of TRUP we ap-

plied eight additional fusion detection tools to the data

of sample S00054: chimerascan [4], FusionHunter [20],

FusionMap [9], TopHat-Fusion [8], deFuse [7], SOAP-

fuse [21], FusionSeq [6], and BreakFusion [10]. For two

tools (FusionSeq and BreakFusion) evaluation could not

be carried out because of computational limitations. De-

tails about parameter settings are provided in Additional

file 7. Despite the fact that most tools use both read-pair

analysis and split-read mapping for the detection of fu-

sion transcripts, they vary widely in terms of resources

required and computing time (Figure 3a and b). Al-

though TRUP additionally capitalizes on regional assem-

bly of potential fusion-points, its overall performance in

terms of disc space, memory size, and running time is

superior to the others (Figure 3b). Also, even though the

Figure 3 Comparison between TRUP and other publically available fusion detection tools. (a) Feature comparison: TRUP adopts
breakpoint assembly after a sensitive detection of potential fusion points. Note that only TRUP and TopHat-Fusion are integrated into regular
RNA-seq analysis pipelines, that is, the mapping results are shared for fusion detection and regular RNA-seq analysis. Alternative tools adopt
various split-read mapping strategy specifically for fusion detection, generating customized mapping results, which could not be easily re-used
for other purposes. (b) Computing resources consumed by TRUP and other tools for processing the data of sample S00054: resources used in the
step of mapping are isolated for each tool to indicate the cost only for fusion detection and further processing (excl.: excluding). TRUP* indicates
that TRUP is run with STAR as the mapper instead of GSNAP. (c) A heatmap showing the number of non-redundant reads spanning fusion-points
for candidates predicted by at least two tools in sample S00054 (referred to as ‘shared fusions’ which is used as a gold set for evaluation). TRUP*
indicates that TRUP is run with STAR as the mapper instead of GSNAP. Underlined fusions are experimentally validated.
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sensitive split mapping via GSNAP takes more time in the

case of TRUP, the re-usability of the mapped data will

eventually save time when regular RNA-seq analyses are

performed. Alternatively, STAR can be used, as this map-

per dramatically decreases the mapping time (Figure 3b)

although it is a little less sensitive than GSNAP (Figure 3c).

Notably, only the mapping results generated by TRUP and

TopHat-Fusion are reusable for regular RNA-seq analysis,

whereas other tools perform customized split-read map-

ping specifically for fusion detection (Figure 3a).

By using relaxed criteria requiring at least two sup-

porting reads with a minimum of one read spanning the

fusion-point, the seven tools reported from four to 542

fusion transcripts in sample S00054 (Figure 3c). Since

the full set of true-positive predictions was not available

we took the set of predictions shared across tools as gold

set. There were in total 21 fusion transcripts detected by

at least two independent tools, including three experi-

mentally validated ones. Despite the low stringency set-

tings, most alternative tools were only able to detect the

EML4-ALK fusion but not the additional two experi-

mentally validated chimeric transcripts. Three tools

showed a high number of unique predictions suggesting

a high number of false-positives. In case of FusionMap

this might be due to the fact that this tool primarily re-

lies on a single method (split-read mapping) not offering

the use of a complementary approach for eliminating

false-positives. By contrast, TRUP combines sensitive split-

read alignment and discordant read-pair analysis with

regional breakpoint assembly, thus achieving a better

balance between sensitivity and total number of predictions.

Due to the dependence on partial and chimeric align-

ments for the selection of potential breakpoints, GSNAP

becomes the first choice owing to its ability in sensitive

split-read mapping although with a relatively slow speed.

Since runtime might be a limiting factor in large-scale

projects we optionally provide the extremely fast mapper

STAR as an alternative to GSNAP. When using STAR to

process sample S00054, the performance of TRUP re-

mains high (Figure 3c) with a much-reduced running

time (Figure 3b). Sixteen out of 21 fusions in the gold

set were found by TRUP with STAR (36 fusions pre-

dicted in total), showing a slightly lower recall and com-

parable precision as compared to GSNAP (19 found, 40

predicted). Nevertheless, such a recall is still higher than

that of other fusion prediction tools.

We compared TopHat-Fusion and TRUP in more detail

since they showed the best performance (the harmonic

mean of recall and precision for TRUP is 0.62 and for

TopHat-Fusion is 0.49, highest among all the tools) with a

total of 20 and 40 predicted fusion events, respectively

(Additional files 8 and 9). For candidates with very low

coverage, disagreements between the two tools were ob-

served, indicating higher uncertainty for calling fusion

transcripts with low expression. After manually checking

the calls unique to TRUP, we only found a single candi-

date that might be considered as a false positive. This can-

didate exhibited a breakpoint located in a repetitive region

and also showed a low spanning score, which summarizes

the confidence of supporting evidence of the spanning

reads (Materials and methods). In order to avoid using

suboptimal parameter setting for TopHat-Fusion, we al-

ternatively used the default settings and adjusted the

TRUP parameters accordingly. We therefore increased the

threshold for fusion calling as follows: presence of at least

three reads spanning the fusion point and two encompass-

ing mate pairs. TopHat-Fusion now detected eight fusion

events all of which were included in the 25 candidates

found by TRUP (Figure 4). Both tools successfully recov-

ered the EML4-ALK fusion as well as one of the secondary

fusions, SNAP29-CELSR1. However, the fusion event

PIGF-CHMP3 was only reported by TRUP. TopHat-

Fusion failed to call this true positive because the num-

ber of spanning reads was limited to two. By contrast,

TRUP detected nine fusion-spanning reads. We found

that TRUP usually reports more non-redundant span-

ning reads than TopHat-Fusion, indicating a higher

sensitivity in identifying reads showing chimeric pat-

terns. Judging from the results of the analysis of sam-

ple H3122, TRUP performs well even on paired-end

data with short insert sizes (here 70 bp) where mate

pairs overlap.

Figure 4 Comparison of TopHat-Fusion with TRUP analysis

tools. The fusion candidates found by TRUP and TopHat-Fusion on
sample S00054, plotted by the number of non-redundant spanning
reads reported by the two tools. The horizontal and vertical dashed
lines indicate the threshold of three spanning reads for calling a
chimeric transcript. The diagonal dashed line is plotted to show that
TRUP usually reports more reads spanning a fusion point. The axes
are in log2 scale. The unique calls to each algorithm are jittered to
avoid over-plotting.

Fernandez-Cuesta et al. Genome Biology  (2015) 16:7 Page 6 of 11



Taken together, TRUP achieves a better balance among

recall, precision, and computational efficiency for the

detection of fusion events from RNA-seq data com-

pared to the alternative tools tested here. Similar to

TopHat-Fusion, TRUP can be used in a standard RNA-

seq pipeline thus diminishing the impact of the sensitive

but slower spliced-mapping procedures of GSNAP. Faster

aligners, such as STAR, can also be used in TRUP if run-

ning time is the major concern.

Recurrent inactivating RASSF8 rearrangements in cancer

We next applied the method to 17 additional primary

lung adenocarcinoma specimens (Additional file 10).

Of the 17 samples analyzed, one carried an inactivating

chimeric RASSF8 transcript (Figure 5, upper panel;

Additional file 11a). The sample was negative for EGFR

or KRAS mutations and belonged to the adenocarcinoma

of a current smoker (Additional file 10). RASSF8 is one of

the four N-terminal RASSF proteins (RASSF7-10) that be-

long to the Ras-association-domain-containing family of

proteins, which also include the classical RASSF proteins

(RASSF1-6) that are known to act as tumor suppressors

and are frequently epigenetically silenced in tumors

[22]. In order to further investigate the role of RASSF8

in lung adenocarcinoma, we silenced RASSF8 expres-

sion in the lung cancer cell line, H1395, which ex-

presses wild-type RASSF8. In comparison to the EGFP

transfected cells, silencing of RASSF8 led to a significant

increase of cell proliferation of more than 60% (P <0.0001)

(Additional file 11b). RASSF8 was not completely silenced,

as detected by western blotting (Additional file 11c),

suggesting that low doses rather than complete loss of

the RASSF8 protein is sufficient to induce cell prolifer-

ation. Furthermore, we identified an inactivating re-

arrangement of RASSF8 in the osteosarcoma cell line,

KPD (Figure 5, lower panel; Additional file 11a). The

breakpoint of this translocation event was also detect-

able when analyzing the copy number data (Additional

file 12) suggesting that the rearrangement happened at

the genomic level.

RASSF8 has been proposed as a new tumor suppressor

in lung cancer. However, genetic data to support this

notion have so far been missing [22-24]. Our data thus

provide further support for a role of RASSF8 as a tumor

suppressor and suggest that genomic translocations might

be a relevant mechanism for the genetic inactivation of

RASSF8.

Conclusions

Taken together, TRUP is a new tool for the identification

of chimeric transcripts using PE RNA-seq data, which

shows a balance between sensitivity, specificity, and

computational efficiency for prediction of fusion events.

TRUP afforded the identification of new fusion events in

the context of EML4-ALK, which were genomically linked

in one case, suggesting that in some cases EML4-ALK oc-

curs as a balanced translocation. We furthermore detected

inactivating rearrangements affecting RASSF8, supporting

its role as a tumor suppressor gene in cancer.

Figure 5 Recurrent inactivating rearrangements of RASSF8 in cancer. Identification of ASUN-RASSF8 in a lung adenocarcinoma tumor
(upper panel) and RASSF8-MARS in the KPD osteosarcoma cell-line (lower panel). Schematic representation of the fusion transcripts and some
of the transcriptome sequencing reads spanning the fusion point.

Fernandez-Cuesta et al. Genome Biology  (2015) 16:7 Page 7 of 11



Materials and methods
Sample preparation, DNA and RNA extraction, and

illumina sequencing

Sample preparation and DNA and RNA extraction were

performed as previously described [18]. RNAseq was per-

formed on cDNA libraries prepared from PolyA+ RNA

extracted from tumor cells using the Illumina TruSeq

protocol for mRNA. The final libraries were sequenced

with a paired-end 2 × 100 bp protocol aiming at 8.5 Gb

per sample, resulting in a 30× mean coverage of the an-

notated transcriptome. All the sequencing was carried

out on an Illumina HiSeq 2000 sequencing instrument

(Illumina).

Analysis of chromosomal gene copy number (SNP 6.0)

Hybridization of the Affymetrix SNP 6.0 arrays was

carried out according to the manufacturers’ instructions

and analyzed using a previously described method [18].

TRUP pipeline

Development of TRUP (version 1.0 to 2.0)

The differences between 1.0 and 2.0 TRUP are two-fold:

(1) the mapping tool: from TopHat to GSNAP; and (2)

whereas TRUP 1.0 feeds the total (pooled) abnormal reads

into assembly, TRUP 2.0 assembles the reads surrounding

each potential breakpoint detected from GSNAP align-

ments. In the early development stage TRUP 1.0 was

tested on cell line data. The validation of the predictions

was used to guide us to improve TRUP to 2.0. Below only

the strategy of TRUP 2.0 is described as the old version

1.0 is deprecated.

Sensitive split-read and read pair mapping against the

genome

TRUP maps PE RNA-seq reads onto the Hg19 reference

genome using GSNAP, a hash-table based spliced aligner

[11]. It breaks a read into short seeds to localize the

alignment, followed by iterative extension of candidate

regions and merging of initial seeds to the exact spliced

alignment. It has been shown that GSNAP predicts spli-

cing alignments with high sensitivity among many avail-

able RNA-seq mappers [25], partly due to its unbiased

evaluation of both un-spliced and spliced mapping of

the same read [26]. Besides the ability to map splicing

junction reads, GSNAP (version 2013-09-30 is used in

this study) can report chimeric and partial alignments of

an individual read, which are usually un-mappable by

other mappers. A read is chimeric if it spans two differ-

ent chromosomes/strands or a longer distance than the

maximum allowed intron length. Partially aligned reads

contain unmappable sequences at one of its ends that

are clipped. These reads are the source for the identifica-

tion of possible fusion junctions. In addition to GSNAP,

a recent mapper, STAR, can also be used for the read

alignment in TRUP (version 2.4.0 is tested).

Relaxed detection of candidate regions containing

breakpoints

TRUP searches for chimeric and partial alignments indi-

cating reads spanning possible fusion points. The informa-

tion about discordant pairs is also incorporated. A read

pair is discordant if the two ends are mapped to two dif-

ferent chromosomes, different strands or locations with a

distance longer than the maximum allowed intron length.

Chimeric reads are split and aligned as discordant pairs. A

potential breakpoint is called from a read X with length l

if it satisfies one of the following criteria (strength of evi-

dence from high to low, tN are user defined thresholds

whose default is applied): (1) X shows chimeric mapping;

(2) X is partially aligned with a discordant mate and the

unmapped part should be at least (kmer < =1/5 l < =3/2

kmer) bp in size with no undecided nucleotides. kmer is

set in the genome database for GSNAP (16 bp or less).

Within the nearby ±200 bp region of X, TRUP requires

the existence of at least t1 (default: 2) other supporting

read alignments with discordant mates consistent with X.

(iii) For partially aligned X with a shorter unmapped seg-

ment having a discordant mate, TRUP requires at least t2
(default: 3) other discordant read alignments consistent with

X. (iv) For a group of t3 (default: 4) entirely aligned discord-

ant read pairs that are all consistent with a fusion point, the

potential breakpoint will be set to the locations where the

reads’ 3′ ends extend farthest. If STAR is used as mapper,

the chimeric junctions for each read produced by STAR

are incorporated into the breakpoint calls, in addition to

the ones identified by scanning the mapping results.

TRUP groups the breakpoint calls if they are within

200 bp in distance after removing calls from repetitive

region. The call with the strongest evidence will be used

as the group representative. A candidate region is defined

as ±250 bp centered on each breakpoint call.

De novo assembly of read pairs anchored in candidate

regions

TRUP extracts the abnormal read pairs (discordant pairs,

singletons, and reads showing partial or chimeric align-

ments) anchored in a candidate region and feeds them

into a regional assembly by using Velvet [13] and Oases

[14]. Oases is a Bruijn graph-based assembler that receives

a preliminary assembly produced by Velvet as input. Oases

is sufficiently sensitive and accurate to assemble pos-

sible alternative isoforms throughout a wide spectrum

of expression levels [14].

Filtration and prioritization of fusion candidates

The assembled junction sequences are aligned back to

the reference genome using BLAT [27]. After removing
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the non-unique segment hits (that is, mapping to mul-

tiple regions), TRUP concatenates the remaining partial

alignments into longer ones, sometimes resulting in al-

ternative mappings of the assembled sequence. The best

and second best concatenated alignments (with aggre-

gated score q1 and q2) for each assembled sequence with

length q0 are used to calculate an alignment score (Q) as

adopted by BreakFusion [10], where Q ¼ e
q1−q0
10

−e
q2−q0
10

.

TRUP then queries for those candidate sequences with

their best paths exhibiting partial alignments, with min-

imal overlap (15 nt), to two different genes representing

putative fusion junctions. TRUP flags the candidates

whose fusion points are located in repetitive regions or

UCSC Self-Chain annotated regions, both of which can

indicate possible misalignments or incorrect assemblies

due to sequence similarities.

Read pairs which are improperly aligned (including

both assembly-derived and initially unmapped read

pairs) can be either a direct support for a putative fusion

junction if one end spans the fusion point with at least

13 nt aligned on both sides, or an indirect support that

encompasses the fusion point. The junctions supported

by at least two non-redundant supporting reads are re-

ported. TRUP ranks the fusion candidates based on the

following parameters applied in order: (1) the Spanning

Score SS ¼ N−
XN

i−1

Li−Rij j

Li þ Ri

that takes into account both

the number of independent spanning reads N and the

mapping balance of each spanning read i on the left and

right side of the fusion point (with mapping distance Li
and Ri, respectively); (ii) the number of independent

encompassing read pairs; (iii) the alignment score of

junction sequence Q. An additional filtration step was

used to filter out those predictions with low (less than

5) total supporting reads (non-redundant), with low span-

ning score (less than 1) and/or those with both breakpoints

residing in self-chain region or repetitive region. Isoform

junctions for the same gene fusion were merged.

TRUP also has several other modules for RNA-seq

analysis in general, such as quality assessment, gene/

transcript expression quantification, and differential ex-

pression analysis. TRUP is available at [28].

ADCY3, SOS1, ALK, and EML4 FISH break apart assays

A dual-color break-apart fluorescence in-situ hybridization

(FISH) assay was developed to assess for ADCY3, SOS1,

ALK, and EML4 (chromosome 2) rearrangements on the

chromosomal level as described earlier [29]. All centro-

meric BAC clones were labeled red using biotin and all

telomeric BAC clones were labeled green using digoxi-

genin. In brief, for the ADCY3 break-apart assay, we used

the BAC clone CTD-3252C16 for centromeric labeling

with biotin (eventually producing a red signal) and RP11-

1109B14 for telomeric labeling with digoxigenin (eventu-

ally producing a green signal). Similarly, for the SOS1

break-apart assay, we used BAC clone RP11-708G9 for

centromeric labeling and CTD-2026H4 for telomeric la-

beling, for the ALK break-apart assay RP11-993C21 was

used as the centromeric probe and RP11-984I21 was

used as the telomeric probe, and for the EML4 break-

apart assay, RP11-368 J11 was used as the centromeric

labeled probe and RP11-142 M12 was used as the telo-

meric labeled probe. Metaphase spreads were prepared

as previously described [29]. FISH on the metaphase

spreads was performed by pre-treating the slides with

2x SSC solution and digesting it with Digest-All III (di-

lution 1:2). FISH probes were added to the metaphase

spreads and co-denatured at 85°C for 4 min. and hybrid-

ized overnight at 37°C. Post-hybridization, slides were

washed with 0.5x SSC and streptavidin-Alexa-594 con-

jugates (dilution 1:200) and anti-digoxigenin-FITC (di-

lution 1:200) were added to the slides. Counterstaining

was performed using 4′,6-Diamidin-2′ phenylindoldihy-

drochlorid (DAPI) and mounted. All slides were analyzed

under a 63x oil immersion objective using a fluorescence

microscope (Zeiss, Jena, Germany) and images were cap-

tured using the Metafer 4 software (Metasystems, Altlus-

sheim, Germany). Assessment of the experiments was

done independently by two evaluators (RM and SP). Gene

rearrangements were defined as follows: a loss of a signal,

resulting in either a single red or single green signal for at

least one allele is referred to as a rearrangement through

deletion, or a wild-type allele displays a juxtaposed red

and green signal (mostly forming a yellow signal).

RASSF8 knockdown

A total of 60,000 cells per well were seeded in 2.5 mL

culture media in six well plates 1 day before the transfec-

tion. Triplicates were made. For the transfection 1.5 mL of

Opti-MEM and 15 μL of Lipofectamine RNAiMax (Life

Technologies), were mixed and incubated for 5 min at

room temperature. After 5 min 400 ng of esiRNA were in-

cubated for 20 min. Then 500 μL of the mix were added

dropwise to each well. After 6 days cells were counted.

Additionally, the triplicates were pulled, centrifuged 5 min,

4°C, 13,500 rpm, washed with PBS and resuspended with

lysis buffer (1 mL of 10x lysis buffer (Cell Signaling), one

tablet of Protease Inhibitor (Roche), 200 μL of phosphat-

ase inhibitor cocktail III (Merck), 5 μL of 200 mM PMSF

(Carl Roth), filled up to 10 mL). After 10 min incubation

on ice, samples were centrifuged 10 min, 4°C, 13,500 rpm,

and supernatants were transferred to new tubes. Protein

determination was assessed with BCA Kit (Pierce). Western

blot was performed according with standard procedures.

The antibodies used were: RASSF8 (4B1) mouse monoclo-

nal (Santa Cruz, 1:250), goat anti mouse HRP (Millipore,

1:3,000), and ß-actin HRP conjugated (Santa Cruz, 1:3,000).
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Accession codes

Transcriptome sequencing data and affymetrix 6.0

(copy number) data have been deposited at the European

Genome-phenome Archive under the accession code

EGAS00001000659.
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