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Summary
Background Genome-wide association studies (GWAS) in Parkinson’s disease have increased the scope of biological 
knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify 
novel risk loci and gain further insight into the causes of Parkinson's disease.

Methods We did a meta-analysis of 17 datasets from Parkinson’s disease GWAS available from European ancestry 
samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these 
data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression 
and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological 
pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson’s 
disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation.

Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 
37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson’s disease but have a first 
degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk 
signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants 
explained 16–36% of the heritable risk of Parkinson’s disease depending on prevalence. Integrating methylation and 
expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals 
underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested 
Parkinson’s disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single 
cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for 
intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment 
(p=0·038). Mendelian randomisation between cognitive performance and Parkinson’s disease risk showed a robust 
association (p=8·00 × 10–⁷).

Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson’s disease to 
date, to the best of our knowledge, by revealing many additional Parkinson’s disease risk loci, providing a biologi cal 
context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. 
These associations derived from European ancestry datasets will need to be followed-up with more diverse data.

Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, 
and The Parkinson’s Foundation (see appendix for full list of funding sources).

Copyright © 2019 Elsevier Ltd. All rights reserved.

Introduction
Parkinson’s disease is a neurodegenerative disorder, 
affect ing approximately 1 million individuals in the USA 
alone.1 Patients with Parkinson’s disease have a com-
bination of pro gressive motor and non-motor symptoms 
affecting daily function and quality of life. The prevalence 
of Parkinson’s disease is projected to double in some age 

groups by 2030, creating a substantial burden on health-
care systems.1

Early investigations into the role of genetic factors in 
Parkinson’s disease focused on the identification of rare 
mutations underlying familial disease;2,3 however, over the 
past decade there has been a growing appreciation for 
the contribution of genetics in sporadic disease.4,5 Genetic 
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studies of sporadic Parkinson’s disease have altered the 
foundational view of disease causes.

We aimed to undertake the largest-to-date GWAS for 
Parkinson's disease to identify novel mechanistic can-
didate genes for this disease. We will further assess the 
function of potential risk genes, estimate Parkinson's 
disease heritability, and develop a model to predict the 
proportion of this heritability. Our final goal is to identify 
potential Parkinson's disease biomarkers and risk factors.

Methods
Study design
The work flow and rationale of our study is shown in figure 
1. Three sources of data were used for dis covery analyses, 
these include three previ ously published GWAS studies,4,6 
13 new datasets (figure 1), and proxy-case data from 
the UK Biobank. Previous studies comprised sum mary 
statistics published in Nalls and col leagues,6 GWAS sum-
mary statistics from the 23andMe Web-Based Study of 
Parkinson’s Disease by Chang and colleagues,4 and the 
pub licly available NeuroX dataset from the International 
Parkinson’s Disease Genomics Consortium previously 

used as a replication sample.6 These cohorts have been 
reported in detail, but in brief represent all European 
ancestry Parkinson's disease case-control GWAS studies 
available for collaboration.4,6 We included 13 new case-
control sample series for meta-analyses through either 
publicly available data or collabora tions (appendix pp 1–3, 22). 
All samples from the 13 new data sets underwent similar 
standardised quality control for inclusion, mirroring that 
of previous studies. We attempted to generate sum mary 
statistics for GWAS meta-analyses as uniformly as pos-
sible. This analy sis used fixed-effects meta-analyses as 
implemented in METAL7 to com bine summary statistics 
across all sources.

Conditional joint analysis
To nominate variants of interest, we used a conditional 
and joint analysis strategy to algorithmically identify vari-
ants that best account for the heritable variation within 
and across loci.8 Additional analyses were used to further 
scrutinise putative associated variants and account for 
possible differential linkage disequilibrium (LD) signa-
tures, including using the massive single site reference 

Research in context

Evidence before this study

Previous studies have used genome-wide association study 

(GWAS) methods to discover 42 independent risk loci associated 

with Parkinson’s disease. Some of these loci harbouring common 

risk variants also include rare variants implicated in familial 

Parkinson’s disease risk such as SNCA, LRRK2, or GBA. 

Earlier studies have attempted to quantify how much heritable 

risk is captured by common variation that can be easily imputed 

using commercial genotyping arrays and estimate the amount 

of risk explained by GWAS. Since 2011, GWAS of Parkinson’s 

disease have integrated expression and methylation datasets to 

evaluate possible candidate genes for follow-up at Parkinson’s 

disease loci. Many epidemiological and observational studies 

have attempted to assess risk of Parkinson’s disease and various 

exposures like smoking, caffeine, or occupational hazards, with a 

mixed track record of success at validating presumed 

associations.

Added value of this study

This study increased the count of independent common 

genetic risk factors for Parkinson’s disease to 90. We added 

38 novel risk variants not previously identified as genome-

wide significant. We refined heritability estimates and genetic 

risk predictions suggesting that common genetic variants 

account for approximately 22% of Parkinson’s disease risk on 

the liability scale, with a range of 16–36% of that risk being 

explained by GWAS loci in this study. These updated risk 

predictions also suggested that polygenic risk scoring can be 

used to achieve an area under the curve of near 70%, although 

this prediction uses many more variants than just the 

90 independent risk factors identified in this report. Of the 

90 risk variants we have characterised here, we have 

nominated at least one possible candidate gene for follow-up 

functional studies in 70 of these genomic regions by mining 

recently available expression and methylation reference 

datasets on a scale not possible just a few years ago. We have 

additionally mined single cell RNA sequencing data from mice 

to identify tissue-specific signatures of enrichment relating to 

Parkinson’s disease genetic risk, showing a major focus on 

neuronal cell types. We also used the massive amount of 

publicly available GWAS results to survey genetic correlations 

between Parkinson’s disease and other phenotypes showing 

significant correlations with smoking, education, and brain 

morphology. Subsequent analyses using Mendelian 

randomisation methods showed probable causal links between 

increased cognitive performance and Parkinson’s disease risk 

on a genetic level.

Implications of all the available evidence

Using updated heritability estimates and risk predictions, we 

took preliminary steps on a long path to early detection. In 

future studies, combining genetic and clinicodemographic risk 

factors could lead to earlier detection and refined diagnostics, 

which could help improve clinical trials. The generation of 

copious amounts of public summary statistics created by this 

effort relating to both the GWAS and subsequent analyses of 

gene expression and methylation patterns might be of use to 

investigators planning follow-up functional studies in stem cells 

or other cellular screens. This information would allow 

researchers to prioritise targets more efficiently, using our data 

as additional evidence. We hope our findings might have some 

downstream clinical impact in the future, such as improved 

patient stratification for clinical trials and genetically informed 

drug targets.

http://cnsgenomics.com/software/gcta/
http://cnsgenomics.com/software/gcta/
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data from 23andMe in further conditional analy ses. If a 
variant nominated during the conditional and joint analy-
sis strategy phase of analysis was greater than 1 Mb from 
any of the genome-wide significant loci nominated in 
Chang and colleagues,4 we considered this to be a novel 
risk variant. We defined nominated risk variants as 
from a single locus if they were within 250 kb of each 
other. We instituted two filters after fixed-effects and 
conditional and joint analyses, exclud ing variants that had 
a random-effects p value across all datasets more than 
4·67 × 10–⁴ and a conditional analysis p value more than 
4·67 × 10–⁴ using participant level 23andMe genotype data. 
Please see appendix (pp 4–5, 22) summarising all variants 
nominated.

Heritability estimates and extant genetic risk
We used the R package PRSice2 for risk profiling,9 which 
calculates polygenic risk score (PRS) profiling in the 
standard weighted allele dose manner.4,6,10–12 In addition, 
PRSice incorporates permutation testing, in which case 
and control labels are swapped in the withheld samples to 
generate an empirical p value. This workflow identi fies the 
best p value thresholds for variant inclusion while doing 
LD pruning. In many cases this best p value threshold 
for PRS construction does not meet what is commonly 
regarded as genome-wide significance.

A two-stage design was also used, training on the largest 
single array study (NeuroX-dbGaP13) and then tested on 
the second largest study (Harvard Biomarker Study) using 
the same array. These two targeted array studies were 
chosen for three reasons: precedent in the previous pub-
lications in which the NeuroX-dbGaP dataset was used in 

PRS; direct genotyping of larger effect rare variants in 
GBA and LRRK2; and participant level genotypes for these 
datasets are publicly available.

To calculate heritability in clinically defined Parkinson’s 
disease datasets, we used LD score regression employing 
the LD references for Europeans provided with the soft-
ware.14 This workflow was also repeated on a per cohort 
level (appendix pp 10–11).

Functional causal inferences via quantitative trait loci
We used Mendelian randomisation to test whether changes 
in DNA methylation or RNA expression of genes phys ically 
proximal to significant Parkinson’s disease risk loci were 
causally related to Parkinson’s disease risk. To nominate 
genes of interest for Mendelian randomisa tion analyses, 
we took our putative 90 loci in the large LD reference used 
for the conditional and joint phase of analysis and identified 
SNPs in LD with our SNPs at an r² 0·5 within 1 Mb 
(appendix pp 9–10). Mendelian randomisation was used by 
integrating discov ery phase summary statistics with quan-
ti  ta tive trait loci (QTL) association sum mary statistics 
across well curated methyl ation and express ion datasets. 
We used the curated versions of Qi and colleagues brain 
methylation and express ion summary statistics (multi-
study and multi-tissue meta-analysis), with a specific focus 
on substantia nigra data (GTEx). We also made use of the 
blood expression data from Võsa and colleagues from 2018 
(eQTLGen).15–19 For all QTL analyses, we used the multi-
SNP summary-based Mendelian random isation method 
as a framework to do Mendelian random isation. All 
Mendelian randomisation effect estimates are reported on 
the scale of an SD increase in the exposure variable relating 
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See Online for appendix

For WebGestaltR see 

http://www.webgestalt.org/ 

For the conditional and joint 

analysis strategy see http://

cnsgenomics.com/software/gcta/

For the Harvard Biomarker 

Study see https://

neurodiscovery.harvard.edu/

biomarkers-discovery

For GTEx see http://cnsgenomics.

com/software/

smr/#DataResource

For eQTLGen see http://www.

eqtlgen.org

Figure 1: Workflow and rationale summary

GWAS=genome-wide association studies. SNPs=single nucleotide polymorphisms. IPDGC=International Parkinson’s Disease Genomics Consortium. 

PDWBS=Parkinson’s disease web based study. SGPD= Systems genomics of Parkinson’s disease consortium. LD=linkage disequilibrium. LDSC=linkage disequilibrium 

score regression. QTLs=quantitative trait loci. FUMA=functional mapping and annotation of genetic associations platform. *WEB-based GEne SeT AnaLysis Toolkit.
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to a sim ilar change in Parkinson’s disease risk. Simply, 
these Mendelian randomisation analyses com pare the local 
polygenic risk of an exposure (methyla tion or express-
ion) to similar polygenic risk in an outcome (Parkinson’s 
disease). This method infers causal associ ations under 
the assumption that there is no intermediate confounder 
associated with both parameters and that the association is 
not simply due to LD.

To further investigate expression enrichment across cell 
types in Parkinson’s disease, we integrated GWAS sum-
mary statistics with expression and network data from the 
Functional Mapping and Annotation of Genome-Wide 
Association Studies (FUMA) webserver.20

Rare coding variant burden tests
A uniformly quality controlled and imputed dataset 
from the International Parkinson’s Disease Genomics 
Consortium was used to do burden tests for all rarer 
coding variants successfully imputed in a mean of 85% of 
the sample series (17 188 cases and 22 875 controls). These 
analyses include all variants at a hard call threshold of 
imputation quality more than 0·8. After annotation with 
ANNOVAR, we had 37 503 exonic coding variants (non-
synonymous, stop, or splicing) at minor allele frequency 
less than 5% and a subset of 29 016 at minor allele 
frequency less than 1%.21 For inclusion in this phase, a 
gene had to contain at least two coding variants. After 
assembling this subset of 113 test able genes, we used the 
optimised sequence kernel association test to generate 
summary statistics at maximum minor allele frequencies 
of 1% and 5%.22

LD score regression and causal inference
To investigate correlations of Parkinson’s disease genetics 
with that of multiple traits and diseases, we used bivariate 
LD score regression.14 These analyses were done with data 
from the 757 GWAS available via LD Hub and biomarker 
GWAS summary statistics23–25 on c-reactive protein and 
cyto kine measures; LD Hub was accessed on June 20, 2018, 
(version 1.2.0).23–25 The p values from the bivariate LD score 
regression were adjusted for false discovery rate to account 
for multiple testing. Traits showing signifi cant gen etic 
correlations with Parkinson’s disease were analysed with 
Mendelian randomisation methods. We excluded the UK 
Biobank data when a nominated trait was from summary 
statistics derived from the UK Biobank or if the UK 
Biobank was included as part of a meta-analysis.

When complete GWAS summary statistics were 
available for traits of interest (relating to smoking and 
education), we used the more powerful bidirectional gen-
eralised summary-data-based Mendelian randomisa tion. 
We analysed GWAS summary statistics for smoking 
initiation (453 693 records from a self-report survey 
with 208 988 regular smokers and 244 705 never regular 
smokers) and current smoking within the UK Biobank, 
current smoking contrasted 47 419 current smokers versus 
244 705 never regular smokers. The same analysis was 

done incorporating recent GWAS data regarding educa-
tional attainment (N=766 345) from self-report in the UK 
and cognitive performance (N=257 828) as measured by 
the g composite score.26 These data were analysed using 
methods to mirror that of the UK Biobank Parkinson’s 
disease GWAS dataset. Combined left and right puta-
men volume from a T2 weighted MRI GWAS was available 
from Oxford Brain Imaging Genetics server (accessed 
Dec 28, 2018).27 All Mendelian randomisation analyses 
included GWAS on the scale of ten thousand samples 
and overcame the considerable power demands of the 
methods. For additional quality control, method details, 
and ancillary results, see the appendix.

Role of the funding source
The funder of the study had no role in study design, data 
col lection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all of the data and the final responsibility to submit for 
publication.

Results
Our study took place between Oct 1, 2017, and Aug 9, 2018. 
To maximise our power for locus discovery we used a 
single stage design, meta-analysing all available GWAS 
summary statistics. Supporting this design, we found 
strong genetic correlations using Parkinson’s disease 
cases ascertained by clinicians com pared with 23andMe 
self-reported cases (genetic correla tion from LD score 
regression [rG] 0·85, SE 0·06) and UK Biobank proxy 
cases (rG 0·84, SE 0·134).

We identified 90 independent genome-wide significant 
association signals through our analyses of 37 688 cases, 
18 618 UK Biobank proxy-cases, and 1 417 791 controls 
at 7 784 415 SNPs (figure 2, table 1, appendix pp 1–6). 
Of these, 38 signals are newly identified and more than 
1 Mb from loci described previously (appendix p 4).4

We detected ten loci containing more than one inde-
pendent risk signal (22 risk SNPs in total across these 
loci), of which nine had been identified by previous 
GWAS, includ ing multi-signal loci in the vicinity of 
GBA, NUCKS1 and RAB29, GAK and TMEM175, SNCA, 
and LRRK2. The novel multi-signal locus comprised 
independent risk variants rs2269906 (UBTF and GRN) 
and rs850738 (FAM171A2). Detailed summary statistics on 
all nominated loci can be found in the appendix (pp 4–6), 
including variants filtered out during additional quality 
control.

To quantify how much of the genetic liability we 
have explained and what direction to take with future 
Parkinson’s disease GWAS, we generated updated herit-
ability estimates and PRS. Using LD score regression on a 
meta-analysis of all 11 clinically ascertained datasets from 
our GWAS, we estimated the liability-scale heritability 
of Parkinson’s disease as 0·22 (95% CI 0·18–0·26), only 
slightly lower than a previous estimate derived using 
genome-wide complex trait analysis (0·27, 0·17–0·38).14,28,29 

For the FUMA webserver 

version 1.3.1 see https://fuma.

ctglab.nl/

For ANNOVAR see http://

annovar.openbioinformatics.

org/en/latest/

For LD Hub see http://ldsc.

broadinstitute.org/ldhub/

For the Oxford Brain Imaging 

Genetics server see 

http://big.stats.ox.ac.uk/
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LD score regression is known to be more conservative 
than genome-wide complex trait analysis; however, our 
LD score regression heritability estimate does fall within 
the 95% CI of this estimate.

To establish the proportion of SNP-based heritability 
explained by our Parkinson’s disease GWAS results with 
PRS, we used a two-stage design, with variant select-
ion and training in the NeuroX-dbGaP dataset13 (5851 cases 
and 5866 controls) and then validation in the Harvard 
Biomarker Study (527 cases and 472 controls). Using 
equations from Wray and colleagues30 and our current 
heritability estimates, the 88 variant PRS explained a 
minimum 16% of the genetic liability of Parkinson’s 
disease assuming a global prevalence of 0·5%.28,30 The 
1805 variant PRS explained 26% of Parkinson’s disease 
heritability. In a high-risk population with a prevalence of 
2%, the 1805 variant PRS explained a maximum 36% of 
Parkinson’s disease heritable risk (appendix pp 6–7).28,30

We then attempted to quantify strata of risk in our more 
inclusive PRS. Compared with individuals with PRS 
values in the lowest quartile, the Parkinson’s disease odds 
ratio for individuals with PRS values in the highest quart-
ile was 3·74 (95% CI 3·35–4·18) in the NeuroX-dbGaP 
cohort and 6·25 (4·26–9·28) in the Harvard Biomarker 
Study cohort (table 2, figure 3, appendix p 16).

Variants with p values in the range of 5 × 10–⁸ to 1·35 × 10–³ 
(used in the 1805 variant PRS) were rarer and had smaller 
effect estimates than variants reaching genome-wide 
significance. These sub-significant variants had a median 
minor allele frequency of 21·3% and a median effect 
estimate (absolute value of the log odds ratio of the SNP 
parameter from regression) of 0·047. Genome-wide sig-
nificant risk variants were more common with a median 
minor allele frequency of 25·1%, and had a median effect 
estimate of 0·081. Here we assume that the lower minor 

allele frequencies and smaller effect size estimates are 
typical and representative of variants contributing to our 
more inclusive PRS and represent future GWAS hits. 
We did power calculations to forecast the number of 
additional Parkinson’s disease cases needed to achieve 
genome-wide significance at 80% power for a variant with 
a minor allele frequency of 21·3% and an effect estimate 
of 0·047.31 Assuming that future data is well harmonised 
with current data and that disease prevalence is 0·5%, we 
estimated that we would need around 99 000 cases, around 
2·3 times more than the present study for these to reach 
genome-wide significance. These variants already con-
tribute towards the current increases in area under the 
curve (AUC) when considering the 1805 variant PRS 
outperforms the 88 variant PRS. Expanding future studies 
to this size will invariably identify new loci and improve 
the AUC for a genetic predictor in Parkinson’s disease 
(maximum potential AUC estimated at 85% using the 
equations from Wray and colleagues30).

There were 305 genes within the 78 GWAS loci. 
We sought to identify the probable causal gene or genes in 
each locus using large QTL datasets and summary-
data-based Mendelian randomisation (table 3, appendix 
pp 8–9).17 This method allows for functional infer ences 
between two datasets to be made in an analogous 
frame  work to a randomised controlled trial, treating the 
genotype as the randomising factor.

Of the 305 genes under LD peaks around our risk 
variants of interest, 237 were possibly associated with at 
least one QTL in public reference datasets and were 
therefore testable via summary-based Mendelian random-
isation (appendix pp 8–9). The expression or methyla-
tion of 151 (64%) of these 237 genes was significantly 
associated with a possible causal change in Parkinson’s 
disease risk.

Figure 2: Manhattan plot for significant variants 

The nearest gene to each of the 90 significant variants are labelled in green for previously identified loci and in blue for novel loci. –log10 p values were capped at 40. 

Variant points are colour-coded red and orange, with orange representing significant variants at p=5 × 10–⁸ and 5 × 10–⁹ and red representing significant variants at 

p<5 × 10–9. The X axis represents the base pair position of variants from smallest to largest per chromosome (1–22), only autosomes were included in this analysis.  
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Of the 90 Parkinson’s disease GWAS risk variants, 
70 were in loci containing at least one of these putatively 
causal genes after multiple test correction (table 3). For 
53 (76%) of these 70 Parkinson’s disease GWAS hits, the 
gene nearest to the most significant SNP was a putatively 
causal gene (appendix pp 4–6). Most loci tested contained 
multiple putatively causal genes. The nearest putatively 
causal gene to the rs850738 and FAM171A2 GWAS risk 
signal is GRN, a gene known to be associated with 
frontotemporal demen tia.32 Mutations in GRN have also 
been shown to be connected with another lysosomal 
storage disorder, neuronal ceroid lipofuscinosis.33

As an orthogonal approach for nominating genes under 
GWAS peaks, we did rare coding variant burden analyses. 
We did kernel-based burden tests on the 113 genes of 
the 305 under our GWAS peaks that contained two 
or more rare coding variants (minor allele frequency 
<5% or <1%). After Bonferroni correction for 113 genes, 
we identified seven significant genes: LRRK2, GBA, 
CATSPER3 (rs11950533 and C5orf24 locus), LAMB2 
(rs12497850 and IP6K2 locus), LOC442028 (rs2042477 
and KCNIP3 locus), NFKB2 (rs10748818 and GBF1 locus), 
and SCARB2 (rs6825004 locus). These results suggest that 
some of the risk associ ated with these loci might be due 
to rare coding variants or that these are pleomorphic 
risk loci. The LRRK2 and NFKB2 associations at minor 
allele frequency less than 1% remained significant after 
correcting for the app roximate 20 000 genes in the 
human genome (p=2·15 × 10–¹² for LRRK2 and p=4·02 × 10–⁷ 
NFKB2, appendix pp 8–9).

We tested whether genes of interest were enriched in 
10 651 biological pathways (from gene ontology annota-
tions) using FUMA.20,34 We found ten significantly enriched 
pathways (false discovery rate-adjusted p<0·05, appendix 
pp 9–10), including four related to vacuolar function and 
three related to known drug targets (calcium transporters, 
ikeda_mir1_targets_dn and ikeda_mir30_targets_up; kin-
ase signalling, kim_pten_targets_dn35). At least three 
candi date genes within novel loci are involved in lysosomal 
storage disorders (GUSB, GRN, and NEU1), a pathway of 
keen interest in Parkinson’s disease.36 Our GWAS results 
also include candidate genes VAMP4 and NOD2 from the 
endocytic pathway.37

To establish the tissues and cell types most relevant to 
the causes of Parkinson’s disease using FUMA,20,34 we 
tested whether the genes highlighted by our Parkinson’s 
disease GWAS were enriched for expression in 53 tissues. 
We found 13 significant tissues, all of which were brain-
derived (appendix p 17), in contrast to what has been seen 
in Alzheimer’s disease, which shows a strong bias towards 
blood, spleen, lung, and microglial enrichments.38 To 
further disentangle the enrichment in brain tissues, we 
tested whether our Parkinson’s disease GWAS genes were 
enriched for expression in 88 brain cell types using single 
cell RNA sequencing reference data from mouse brains 
using DropViz.39 After false discovery rate correction we 
found seven significant brain cell types, all of which were 
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neuronal (appendix p 17). The strongest enrichment was 
for neurons in the substantia nigra at p=1·0 × 10–⁶, with 
additional signi ficant results at p<5·0 × 10–⁴ for the globus 
pallidus, thala mus, posterior cortex, frontal cortex, hippo-
campus, and entopeduncular nucleus.

Next, we used cross-trait genetic correlation and 
Mendelian randomisation to identify possible Parkinson’s 
disease biomarkers and risk factors by comparing with 
757 other GWAS datasets curated by LD Hub.25 We found 
four significant genetic correlations (false discovery rate-
adjusted p<0·05, appendix pp 10–11) including positive 
correlations with intracranial volume (p=0·0035) and 
putamen volume (p=0·024),40 and negative correlations 
with current tobacco use (p=0·024) and academic qualifica-
tions (p=0·038; eg, National Vocational Qualifications, 
Higher National Diploma, Higher National Certificate, or 
equivalent).41 The negative association with an individual’s 
academic qualifications suggests that indi viduals without a 
college education might be at less risk of Parkinson’s 
disease. The correlation between Parkinson’s disease and 
smoking status might not be independent from the 
correlation between Parkinson’s disease and education as 
smoking status and years of education were significantly 
correlated.42

We used Mendelian randomisation to assess whether 
there was evidence of a causal relationship between 
Parkinson’s disease and five phenotypes related to aca-
demic qualifications, smoking, and brain volumes des-
cribed above (appendix pp 19–21). Cognitive perform ance 
had a large, significant causal effect on Parkinson’s disease 
risk (Mendelian randomisation effect 0·213, SE 0·041; 
Bonferroni-adjusted p=8·00 × 10–⁷), whereas Parkinson’s 
disease risk did not have a signifi cant causal effect on 
cognitive performance (Bonferroni-adjusted p=0·125). 
Educational attainment also had a significant causal effect 
on Parkinson’s disease risk (Mendelian randomisation 
effect 0·162, SE 0·040, Bonferroni-adjusted p=2·06 × 10–⁴), 
and Parkinson’s dis ease risk also had a weak but signifi-
cant causal effect on educa tional attainment (Mendelian 
randomisation effect 0·007, SE 0·002, Bonferroni-adjusted 
p=7·45 × 10–³). There was no significant causal relationship 
between Parkinson’s disease and current smoking status 
in forward analysis (Mendelian randomisation effect 
–0·069, SE 0·031; Bonferroni-adjusted p=0·125) or reverse 
analysis (Mendelian randomisation effect 0·004, SE 0·010, 
Bonferroni-adjusted p=1·00). Smoking initiation (the act of 
ever starting smoking) did not have a causal effect on 
Parkinson’s disease risk (Mendelian randomisation effect 
–0·063, SE 0·034, Bonferroni-adjusted p=0·32), whereas 
Parkinson’s disease had a small, but significantly positive 
causal effect on smoking initiation (Mendelian random-
isation effect 0·027, SE 0·006, Bonferroni-adjusted 
p=1·62 ×    10–⁵). Intracranial volume could not be tested 
because the GWAS data (available from Oxford Brain 
Imaging Genetics server) did not contain any genome-
wide significant risk variants. No significant causal rel-
ationship was observed between Parkinson’s disease and 

Figure 3: Predictive model

The odds ratio of developing Parkinson’s disease for each quartile of PRS compared 

with the lowest quartile of genetic risk (A). PRS receiver-operator curves for the 

more inclusive 1805 variant PRS in the validation dataset and in the corresponding 

training dataset that was used for PRS thresholding and single nucleotide 

polymorphism selection (B). PRS=polygenic risk score. IPDGC=International 

Parkinson’s Disease Genomics Consortium. HBS=Harvard Biomarker Study. 
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putamen vo lume (p>0·05 in both the forward and reverse 
directions).

Discussion
This meta-analysis of GWAS marks a crucial step for-
ward in our understanding of the genetic architecture 
of Parkinson’s disease and provides a genetic reference 
set for the broader research commun ity. We identi-
fied 90 independent common genetic risk factors for 
Parkinson’s disease, nearly doubling the number of known 
Parkinson’s disease risk variants. We re-evaluated the 
cumulative contribution of genetic risk variants, both of 
genome-wide significance and not yet discovered, to refine 
our estimates of heritable Parkinson’s disease risk. We also 
nominated probable genes at each locus for further follow-
up using QTL analyses and rare variant burden analyses. 
Our work has highlighted the pathways, tissues, and cell 
types involved in Parkinson’s disease causes. Finally, we 
identified intracranial and putaminal volume as potential 
future Parkinson’s disease bio markers, and cognitive per-
formance as a Parkinson’s disease risk factor. Altogether, 
the data presented here has substantially expanded the 
resources available for future investigations into potential 
Parkinson’s disease interventions.

We were able to explain 16–36% of Parkinson’s disease 
heritability, the range being directly related to varying 
prevalence estimates (0·5–2·0%). Power estimates sug-
gest that expansions of case numbers to 99 000 cases will 
continue to reveal additional insights into Parkinson’s 
disease genetics. Although these risk variants will have 
small effects or be quite rare, they will help to further 
expand our knowledge of the genes and pathways that 
drive Parkinson’s disease risk.

Population-wide screening for individuals who are likely 
to develop Parkinson’s disease is currently not feasible 
using our 1805 variant PRS alone. There would be roughly 
14 false positives per true positive assuming a prevalence 
of 0·5%. Although large-scale genome sequencing and 
non-linear machine learning methods will probably 
improve these predictive models, we have previously 
shown that we will need to incorporate other data sources 
(eg, smell tests, family history, age, sex) to generate algor-
ithms that have more value in population-wide screening.43

Evaluating these results in the larger context of pathway, 
tissue, and cellular functionality revealed that genes near 
Parkinson’s disease risk variants showed enrichment 
for expression in the brain, contrasting with previous 
findings in Alzheimer’s disease. Strikingly, we showed 
that the expression enrichment of genes at Parkinson’s 
disease loci occurred exclusively in neuronal cell types. We 
also found that Parkinson’s disease genes were enriched 
in chemical signalling pathways and pathways involving 
the response to a stressor. We believe that this contrast, in 
which the pathway enrichment analyses suggest at least 
some immune component to Parkinson’s disease and the 
expression enrichment analysis does not suggest any 
significant immune related tissue component should be 

viewed with caution. In particular, the marg inal p values 
of most immune-related pathways in our analyses after 
multiple test correction reinforce this caution. These 
obser vations could be informative for dis ease modelling 
efforts, highlighting the importance of disease modelling 
in neurons and possibly incorporating a cellular stress 
component. This information can help inform and focus 
stem-cell derived therapeutic develop ment efforts that 
are underway.44

We found four phenotypes that were genetically cor-
related with Parkinson’s disease. Putamen and intra cranial 
volumes might prove to be valuable in future Parkinson’s 
disease biomarker studies. Our bidirectional generalised 
summary-data-based Mendelian randomisa tion results 
suggest a complex causative connection between smoking 
initiation and Parkinson’s disease that will require further 
follow-up. One of the implications of this work is that 
Parkinson’s disease trials of nicotine or other smoking-
related compounds might be less likely to succeed due to 
the marginal strength of associations shown in this report 
affecting study power. The strong causal effect of cogni-
tive performance on Parkinson’s disease is supported by 
observational studies.45

Although this study marks major progress in assessing 
genetic risk factors for Parkinson’s disease, much remains 
to be established. No defined external validation dataset 
was used, which could be seen as a limitation. However, 
due to the size of the dataset, it is considered infeasible to 
build a sufficiantly large replication series. Also, external 
replication of the novel associations we present will be 
difficult simply because of the sample sizes needed. 
Simulations have suggested that, without replication, 
variants with p values between 5 × 10–⁸ and 5 × 10–⁹ should 
be interpreted with greater caution.46,47 We found 16 risk 
variants in this range, including two known variants near 
WNT3 (proximal to the MAPT locus) and BIN3. To a 
degree, the fact that we filtered our vari ants with a sec-
ondary random-effects meta-analysis could make our 
90 Parkinson’s disease GWAS hits somewhat more robust 
because of the conservative nature of random-effects.

This study focused on Parkinson’s disease risk in 
individuals of European ancestry. Adding datasets from 
non-European populations would be helpful to further 
improve our granularity in association testing and ability 
to fine-map loci through integration of more variable 
LD signatures while also evaluating population-specific 
associations. Also, risk predictions might not generalise 
across populations in some cases and ancestry specific 
PRS should be investigated. Additionally, large ancestry-
specific Parkinson’s disease LD reference panels, such as 
those for patients who are Ashkenazi Jews, will help us 
further unravel the genetic risk of loci such as GBA and 
LRRK2. This clarification might be particularly crucial at 
these loci where LD patterns could be variable within 
European populations, accentuating the possible influ-
ence of LD reference series on con ditional analyses in 
some cases.48 Finally, our work used state-of-the-art QTL 
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datasets to nominate candidate genes, but many QTL 
associations are hampered by both small sample size and 
low cis-SNP density. Larger QTL studies and Parkinson’s 
disease-specific network data from large scale cellular 
screens would allow us to build a more robust functional 
inference framework.

As the field moves forward there are some crucial next 
steps that should be prioritised. First, allowing researchers 
to share participant-level data in a secure environment 
would facilitate inclusiveness and uniformity in analyses 
while maintaining the confidentiality of study participants. 
Our work suggests that GWAS of increasing size will con-
tinue to provide useful biological insights into Parkinson’s 
disease. In addition to studies of the genetics of Parkinson’s 
disease risk, studies of disease onset, progression, and 
subtype will be important and will require large series of 
well characterised patients.49 We also believe that work 
across diverse populations is important, not only to be able 
to best serve these populations but also to aid in fine 
mapping of loci. Notably, the use of genome sequencing 
technologies could further improve discovery by capturing 
rare variants and structural variants, but with the caveat 
that very large sample sizes will be required. Although 
much is left to do, we believe that our study represents a 
substantial step forward and that the results and data will 
serve as a foundational resource for the community to 
pursue this next phase of Parkinson’s disease research.
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Data sharing

GWAS summary statistics for the post-Chang 23andMe dataset and 

23andMe summary statistics included in the studies of Chang and 

colleagues4 and Nalls and colleagues6 will be made available through 

23andMe to qualified researchers under an agreement with 23andMe 

that protects the privacy of the 23andMe participants. Interested 

investigators should visit http://research.23andme.com/dataset-access to 

submit a request. An immediately accessible version of the summary 

statistics is available online, excluding Nalls and colleagues6, 23andMe 

post-Chang and colleagues4 and Web-Based Study of Parkinson’s Disease 

but including all analysed SNPs. After approval from 23andMe, the full 

summary statistics including all analysed SNPs and samples in this 

GWAS meta-analysis will be accessible to approved researchers. 

Underlying participant level International Parkinson’s Disease 

Genomics Consortium data are available to potential collaborators, 

please contact ipdgc.contact@gmail.com.

Acknowledgments

For details of individual funding see appendix p 16.

References
1 Dorsey ER, Constantinescu R, Thompson JP, et al. Projected 

number of people with Parkinson disease in the most populous 
nations, 2005 through 2030. Neurology 2007; 68: 384–86.

2 Polymeropoulos MH, Higgins JJ, Golbe LI, et al. Mapping of a gene 
for Parkinson’s disease to chromosome 4q21-q23. Science 1996; 
274: 1197–99.

3 Singleton AB, Farrer M, Johnson J, et al. α-Synuclein locus 
triplication causes Parkinson’s disease. Science 2003; 302: 841.

4 Chang D, Nalls MA, Hallgrímsdóttir IB, et al. A meta-analysis of 
genome-wide association studies identifies 17 new Parkinson’s 
disease risk loci. Nat Genet 2017; 49: 1511–16.

5 Fung H-C, Scholz S, Matarin M, et al. Genome-wide genotyping in 
Parkinson’s disease and neurologically normal controls: first stage 
analysis and public release of data. Lancet Neurol 2006; 5: 911–16.

6 Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of 
genome-wide association data identifies six new risk loci for 
Parkinson’s disease. Nat Genet 2014; 46: 989–93.

7 Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis 
of genomewide association scans. Bioinformatics 2010; 26: 2190–91.

For 23andMe publication 

dataset access and for more 

information see 

https://research.23andme.com/

collaborate/#publication

For summary statistics see 

https://bit.ly/2ofzGrk

https://research.23andme.com/collaborate/#publication
https://research.23andme.com/collaborate/#publication
https://bit.ly/2ofzGrk
https://research.23andme.com/collaborate/#publication
https://research.23andme.com/collaborate/#publication
https://bit.ly/2ofzGrk


Articles

1102 www.thelancet.com/neurology   Vol 18   December 2019

8 Yang J, Ferreira T, Morris AP, et al. Conditional and joint 
multiple-SNP analysis of GWAS summary statistics identifies 
additional variants influencing complex traits. Nat Genet 2012; 
44: 369–75, S1–3.

9 Euesden J, Lewis CM, O’Reilly PF. PRSice: polygenic risk score 
software. Bioinformatics 2014; 31: 1466–68.

10 International Parkinson Disease Genomics Consortium, et al. 
Imputation of sequence variants for identification of genetic risks 
for Parkinson’s disease: a meta-analysis of genome-wide association 
studies. Lancet 2011; 377: 641–49.

11 International Parkinson’s Disease Genomics Consortium (IPDGC), 
Wellcome Trust Case Control Consortium 2 (WTCCC2). A two-stage 
meta-analysis identifies several new loci for Parkinson’s disease. 
PLoS Genet 2011; 7: e1002142.

12 Nalls MA, Escott-Price V, Williams NM, et al. Genetic risk and age 
in Parkinson’s disease: continuum not stratum. Mov Disord 2015; 
30: 850–54.

13 Nalls MA, Bras J, Hernandez DG, et al .NeuroX, a fast and efficient 
genotyping platform for investigation of neurodegenerative 
diseases. Neurobiol Aging 2015; 36: e7–12. 

14 Bulik-Sullivan BK, Loh P-R, Finucane HK, et al. LD Score 
regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat Genet 2015; 47: 291–95.

15 GTEx Consortium. The genotype-tissue expression (GTEx) project. 
Nat Genet 2013; 45: 580–85.

16 Qi T, Wu Y, Zeng J, et al. Identifying gene targets for brain-related 
traits using transcriptomic and methylomic data from blood. 
Nat Commun 2018; 9: 2282.

17 Zhu Z, Zhang F, Hu H, et al. Integration of summary data from 
GWAS and eQTL studies predicts complex trait gene targets. 
Nat Genet 2016; 48: 481–87.

18 Wu Y, Zeng J, Zhang F, et al. Integrative analysis of omics summary 
data reveals putative mechanisms underlying complex traits. 
Nat Commun 2018; 9: 918.

19 Võsa U, Claringbould A, Westra H-J, et al. Unraveling the polygenic 
architecture of complex traits using blood eQTL meta-analysis. 
bioRxiv 2018; published online Oct 19. DOI:10.1101/447367 (preprint).

20 Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional 
mapping and annotation of genetic associations with FUMA. 
Nat Commun 2017; 8: 1826.

21 Yang H, Wang K. Genomic variant annotation and prioritization with 
ANNOVAR and wANNOVAR. Nat Protoc 2015; 10: 1556–66.

22 Lee S, Emond MJ, Bamshad MJ, et al. Optimal unified approach for 
rare-variant association testing with application to small-sample 
case-control whole-exome sequencing studies. Am J Hum Genet 2012; 
91: 224–37.

23 LD Hub. http://ldsc.broadinstitute.org/ldhub/ (accessed Jun 20, 2018). 

24 Prins BP, Abbasi A, Wong A, et al. Investigating the causal 
relationship of c-reactive protein with 32 complex somatic and 
psychiatric outcomes: a large-scale cross-consortium Mendelian 
randomization study. PLoS Med 2016; 13: e1001976.

25 Ahola-Olli AV, Würtz P, Havulinna AS, et al. Genome-wide association 
study identifies 27 loci influencing concentrations of circulating 
cytokines and growth factors. Am J Hum Genet 2017; 100: 40–50.

26 Lee JJ, Wedow R, Okbay A, et al. Gene discovery and polygenic 
prediction from a genome-wide association study of educational 
attainment in 1·1 million individuals. Nat Genet 2018; published 
online Jul 23. DOI:10.1038/s41588-018-0147-3. 

27 Elliott LT, Sharp K, Alfaro-Almagro F, et al. Genome-wide 
association studies of brain imaging phenotypes in UK Biobank. 
Nature 2018; 562: 210–16.

28 Keller MF, Saad M, Bras J, et al. Using genome-wide complex trait 
analysis to quantify “missing heritability” in Parkinson’s disease. 
Hum Mol Genet 2012; 21: 4996–5009.

29 Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for 
genome-wide complex trait analysis. Am J Hum Genet 2011; 
88: 76–82.

30 Wray NR, Yang J, Goddard ME, Visscher PM. The genetic 
interpretation of area under the ROC curve in genomic profiling. 
PLoS Genet 2010; 6: e1000864.

31 Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more 
efficient than replication-based analysis for two-stage genome-wide 
association studies. Nat Genet 2006; 38: 209–13.

32 Cruts M, Gijselinck I, van der Zee J, et al. Null mutations in 
progranulin cause ubiquitin-positive frontotemporal dementia 
linked to chromosome 17q21. Nature 2006; 442: 920–24.

33 Smith KR E al. Strikingly different clinicopathological phenotypes 
determined by progranulin-mutation dosage. Am J Hum Genet 
2012; 90: 1102–07. 

34 Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: 
a more comprehensive, powerful, flexible and interactive gene set 
enrichment analysis toolkit. Nucleic Acids Res 2017; 45: W130–37.

35 Gene set enrichment analysis. 2019. http://software.broadinstitute.
org/gsea/index.jsp (accessed June 20, 2018).

36 Robak LA, Jansen IE, van Rooij J, et al. Excessive burden of 
lysosomal storage disorder gene variants in Parkinson’s disease. 
Brain 2017; 140: 3191–203.

37 Bandres-Ciga S, Saez-Atienzar S, Bonet-Ponce L, et al. 
The endocytic membrane trafficking pathway plays a major role in 
the risk of Parkinson’s disease. Mov Disord 2019; 34: 460–68.

38 Jansen IE, Savage JE, Watanabe K, et al. Genome-wide 
meta-analysis identifies new loci and functional pathways 
influencing Alzheimer’s disease risk. Nat Genet 2019; 51: 404–13. 

39 Saunders A, Macosko EZ, Wysoker A, et al. Molecular diversity and 
specializations among the cells of the adult mouse brain. Cell 2018; 
174: 1015–30

40 Hibar DP, Stein JL, Renteria ME, et al. Common genetic variants 
influence human subcortical brain structures. Nature 2015; 
520: 224–29.

41 Neale lab. Rapid GWAS of thousands of phenotypes for 
337,000 samples in the UK Biobank. 2017. http://www.nealelab.is/
blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-
samples-in-the-uk-biobank (accessed Jun 24, 2018).

42 Bulik-Sullivan B, ReproGen Consortium, Finucane HK, Anttila V, 
Gusev A, Day FR. An atlas of genetic correlations across human 
diseases and traits. Nat Genet 2015; 47: 1236–41.

43 Nalls MA, McLean CY, Rick J, et al. Diagnosis of Parkinson’s 
disease on the basis of clinical and genetic classification: 
a population-based modelling study. Lancet Neurol 2015; 
14: 1002–09.

44 Parkinson's progression Markers Inititative. 2019. http://www.
ppmi-info.org/access-data-specimens/ (accessed June 20, 2018). 

45 Valdés EG, Andel R, Sieurin J, et al. Occupational complexity and 
risk of Parkinson’s disease. PLoS One 2014; 9: e106676.

46 Wu Y, Zheng Z, Visscher PM, Yang J. Quantifying the mapping 
precision of genome-wide association studies using whole-genome 
sequencing data. Genome Biol 2017; 18: 86.

47 Pulit SL, de With SAJ, de Bakker PIW. Resetting the bar: statistical 
significance in whole-genome sequencing-based association studies 
of global populations. Genet Epidemiol 2017; 41: 145–51.

48 Rivas MA, Avila BE, Koskela J, et al. Insights into the genetic 
epidemiology of Crohn’s and rare diseases in the Ashkenazi Jewish 
population. PLoS Genet 2018; 14: e1007329.

49 Iwaki H, Blauwendraat C, Leonard HL, et al. Genome-wide 
association study of Parkinson’s disease progression biomarkers in 
12 longitudinal patients’ cohorts. bioRxiv 2019; published online 
March 27. DOI:10.1101/585836 (preprint).


