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Identification of novel sarcoma risk genes
using a two-stage genome wide DNA
sequencing strategy in cancer cluster
families and population case and control
cohorts
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Abstract

Background: Although familial clustering of cancers is relatively common, only a small proportion of familial cancer
risk can be explained by known cancer predisposition genes.

Methods: In this study we employed a two-stage approach to identify candidate sarcoma risk genes. First, we
conducted whole exome sequencing in three multigenerational cancer families ascertained through a sarcoma proband
(n = 19) in order to prioritize candidate genes for validation in an independent case-control cohort of sarcoma patients
using family-based association and segregation analysis. The second stage employed a burden analysis of rare variants
within prioritized candidate genes identified from stage one in 560 sarcoma cases and 1144 healthy ageing controls, for
which whole genome sequence was available.

Results: Variants from eight genes were identified in stage one. Following gene-based burden testing and after
correction for multiple testing, two of these genes, ABCB5 and C16orf96, were determined to show statistically significant
association with cancer. The ABCB5 gene was found to have a higher burden of putative regulatory variants (OR = 4.9, p-
value = 0.007, q-value = 0.04) based on allele counts in sarcoma cases compared to controls. C16orf96, was found to have
a significantly lower burden (OR = 0.58, p-value = 0.0004, q-value = 0.003) of regulatory variants in controls compared to
sarcoma cases.

Conclusions: Based on these genetic association data we propose that ABCB5 and C16orf96 are novel candidate risk
genes for sarcoma. Although neither of these two genes have been previously associated with sarcoma, ABCB5 has been
shown to share clinical drug resistance associations with melanoma and leukaemia and C16orf96 shares regulatory
elements with genes that are involved with TNF-alpha mediated apoptosis in a p53/TP53-dependent manner. Future
genetic studies in other family and population cohorts will be required for further validation of these novel findings.
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Background
Cancers are a major cause of morbidity and mortality in
the world today. Cancers can be caused by mutations that
arise in single somatic cells resulting in sporadic tumors,
or by heritable germline susceptibility variants [1]. Famil-
ial clustering of cancers is relatively common [2].
Although more than 100 cancer susceptibility genes have
been identified using a variety of genetic strategies [3–6],
a large proportion of familial risk remains to be
accounted for [7, 8]. The study of cancer families using
contemporary genome-wide DNA sequencing technolo-
gies now offers an opportunity to identify novel germ-
line risk variants and potentially novel gene targets
that will be of clinical utility for better prediction of
cancer risk and improved therapeutic intervention.
For example, gene variants that regulate drug metab-
olism can influence response to treatment and are of
interest as a target for improved therapeutic interven-
tion [9].
Recently there has been a return to family-based

study designs to identify rare risk variants involved in
complex human disease and traits, with the under-
lying assumption that affected members of the same
family will carry the same rare risk variant [10–14].
In a family-based study design, the number of indi-
viduals needed for rare variant discovery is potentially
fewer than in population cohorts of unrelated individ-
uals [10]. Two-stage next generation sequencing fam-
ily study designs are recommended. In the first stage,
family members are sequenced and identified variants
are ranked according to their likelihood of being
associated with the disease or trait [15]. In the second
stage, variants are tested for disease association in an
independent population-based sample [15].
Sarcomas are a rare group of cancers that arise pre-

dominantly in the connective tissues of the body [16].
Despite representing only 1% of all cancers, sarcomas
are a high impact group of cancers that dispropor-
tionately affect children, adolescents and young adults
[17]. Families in which related individuals develop a
rare form of cancer, such as sarcoma, are more likely
to have a heritable susceptibility variant segregating in
a cancer risk gene compared to families affected by
more common types of cancer [18]. In this study, we
have used whole exome sequencing (WES) of
germline DNA to identify novel candidate sarcoma
risk genes in three multigenerational mixed cancer
pedigrees identified by a sarcoma proband from the
International Sarcoma Kindred Study (ISKS) [19]. The
identified candidate risk genes were validated by vari-
ant burden analyses using whole genome sequencing
data from sarcoma cases from the ISKS and healthy
ageing controls from the Medical Genome Reference
Bank (MGRB) [20].

Methods
Initial discovery cohort
Samples for whole exome sequencing
An initial discovery cohort of three cancer cluster pedigrees
(Fig. 1) with a sarcoma proband were selected from the
ISKS. The ISKS is a global genetic, biological, epidemio-
logical, and clinical resource available for researchers to
investigate hereditary characteristics of sarcoma (see Add-
itional file 1) [19, 21].
In selecting this initial discovery cohort, sarcoma pedi-

grees were chosen that are not defined by or associated
with 72 known cancer susceptibility gene as previously re-
ported [19] and that have at least one first degree relative of
the sarcoma proband with a cancer diagnosis and at least
one unaffected relative with germline DNA available for
WES. Pedigree 1 (Fig. 1) includes a proband (Patient 1-III-
1) who developed Ewing’s sarcoma at 15 years of age, as
well as a non-identical twin brother (Patient 1-III-2) who
has not developed sarcoma. The proband’s father (Patient
1-II-2) developed myxoid liposarcoma at 39 years of age.
Germline DNA was available from the proband and father,
and from the proband’s twin brother, mother (Patient
1-II-3), an aunt (Patient 1-II-1) and grandparents (Patient
1-I-1 and Patient 1-I-2), who were all unaffected by cancer.
Pedigree 2 (Fig. 1) was identified by a proband (Patient

2-II-1) who developed myxoid liposarcoma at 61 years of
age. The proband’s father (Patient 2-I-2) developed pros-
tate cancer at 71 years old, and two of the proband’s sis-
ters were diagnosed with skin melanomas at 44 (Patient
2-II-3) and 46 (Patient 2-II-2) years of age. Germline
DNA was available for the proband, one of his un-
affected children (Patient 2-III-1), three of his sisters (in-
cluding an unaffected sister, Patient 2-II-4), and his
parents (Patient 2-I-1 and Patient 2–1-2).
In Pedigree 3 (Fig. 1), there are two individuals with

sarcoma: the proband (Patient 3-III-1) who developed a
primitive neuroectodermal tumour at 22 years of age,
and her grandmother (Patient 3-I-1) who developed ma-
lignant peripheral nerve sheath tumour at 79 years old.
The proband’s father (Patient 3-II-1) was diagnosed with
prostate cancer at 51 years of age, and the proband’s
aunt developed breast cancer at age 36. Germline DNA
was available from the proband, her parents (Patient
3-II-1 and Patient 3-II-2), her unaffected brother (Pa-
tient 3-III-2), and her grandmother (Patient 3-I-1).

Whole exome sequencing
Nineteen individuals (9 cancer cases and 10 unaffected
family members) from these three ISKS family pedigrees
underwent germline WES. Anti-coagulated blood was
processed using a Ficoll gradient and DNA was ex-
tracted from the nucleated cell product using QIAamp
DNA blood kit (Qiagen, Germany). Whole genome amp-
lification was performed on two of these germline DNA
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samples (Patient 3-I-1 and Patient 3-III-2) that were badly
degraded, using a Qiagen REPLI-g Mini Kit as per the
manufacturer’s instructions. Exome library preparation
was performed using the Thermo Fisher Scientific Ion
AmpliSeq™ Exome RDY Kit. The target regions were amp-
lified using the Ion Ampliseq™ Exome RDY Library Prep-
aration. Validation of enrichment and quantification of
target DNA were performed on the ViiA 7 (Thermo
Fisher Scientific). Libraries were loaded onto the Ion P1
v2 BC chip (Thermo Fisher Scientific) using the Ion Chef™
and sequenced on the Ion Proton™ as per the manufac-
turer’s instructions.

Sequence alignment and variant calling
Base calling was performed using the Torrent Variant
Caller (Life Technologies, version 5.0.0) using the Ampli-
Seq Exome capture .bed file. Each of the 19 participants
was called individually and then merged using BCFtools
[22] vcf-merge to create a single *.vcf file. BCFtools [22]
missing-to-reference was also run on the merged file to fill
unknown positions to homozygous reference (0/0).
Genome Analysis Toolkit [23] UnifiedGenotyper (version

3.4.0) was used in addition to the single sample calling to
sort, index and call the *.bam files to ensure base calling
accuracy.
The resulting *.vcf files from both Torrent Variant

Caller and Genome Analysis Toolkit [23] were combined
using BCFtools [22] intersect (isec) exact allele match to
identify the common calls between these two bioinfor-
matics tools. The intersect data from both callers was
used for the remainder of the analysis to improve confi-
dence that base calls were real and not sequence arte-
fact. Details of this pipeline are shown in Fig. 2.

Variant categorization
Three different categories of variants were selected for
further analyses. The first category were rare private var-
iants; defined as those unique to individuals or pedigrees
[24]. To identify rare private variants in this study, the
variants from the intersect file were filtered to remove
variants with an rs ID number (build hg19).
The second category were known rare variants. Vari-

ants that were present in both the intersect file and the
full Exome Aggregation Consortium browser (version
0.3.1, downloaded 30 August 2016) with a minor allele
frequency ≤ 0.01 (1%) were selected.
The third category were variants within candidate

genes that were selected based on a priori knowledge of
cancer biology. Variants in 118 known cancer and sar-
coma genes, and in genes 25 kb upstream and down-
stream of each known gene to include any potential
regulatory variants captured in off-target reads, were
identified from the intersect file (see Additional file 1:
Table S1). The 118 known cancer and sarcoma genes
were selected from the HaloPlex Cancer Research Panel,
Illumina’s MiSeq and TruSeq Cancer Panels, and the
Online Mendelian Inheritance in Man database [6].

Association analysis
A weighted covariate using a probability unit (probit) re-
gression was created in R (bias reduction in binomial-re-
sponse generalized linear models library, version 3.1.2) to
account for ascertainment bias. Probit regression assigns a
weight to each individual based on their case status and
can be used as a covariate in modelling.
Sequential Oligogenic Linkage Analysis Routines

(SOLAR) was employed to estimate and test the signifi-
cance of association under a polygenic statistical model for

Fig. 1 Pedigrees of three cancer cluster pedigrees identified by a sarcoma proband
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four cancer outcomes. These four cancer outcomes were 1)
age at onset of cancer; 2) age at onset of sarcoma; 3) any
cancer; and 4) any sarcoma [25]. Covariates included age
and sex, and their interactions along with a weighting factor
were assigned to each individual to correct for ascertain-
ment bias. Analysis of any cancer or any sarcoma treated as
discrete binary traits was performed using a liability thresh-
old model. This model employs probit regression for the
mean effect component and a standard random effects vari-
ance component model for the residual additive genetic
component of variance. As variance component models are
highly influenced by kurtosis, the age of cancer onset and
age of sarcoma onset were inverse normalized using the
inorm function in SOLAR.

Bonferroni correction
Bonferroni correction was performed on each annotated
variant list to correct for multiple testing. Corrections
were performed for each method based on the number of
variants in the prioritized list. Any significant variants
after correcting for multiple testing, or nominal variants

(p-value < 0.05), were investigated for co-segregation in
the pedigrees.

Segregation analysis
Three assumptions were used to determine familial segre-
gation. First, the variant will be rare (shared only by cases
in one family pedigree). Second, every carrier of a putative
disease-causing variant will have the phenotype (complete
penetrance). Third, every individual with the disorder will
carry the putative disease-causing variant (100% probabil-
ity of observing a genotype given the phenotype).

Gene validation
Replication cohort
Variant burden analyses were performed for candidate
risk genes using whole genome sequencing data from an
additional 560 sarcoma cases from the ISKS and 1144
healthy ageing cancer-free controls selected from the
MGRB program [20, 26] accounting for European
ancestry. The MGRB program is described further in
the Additional file 1.

Fig. 2 Bioinformatics flowchart for variant calling in pedigree samples
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Whole genome sequencing
Whole genome sequencing for ISKS cases and MGRB
controls was performed at one lane per sample on
the Illumina HiSeq X Ten platform using TruSeq
Nano chemistry (2 × 150 base pair paired-end reads, >
30X mean depth for all samples). Samples passing
FastQC390 and verifyBamID contamination filters
were mapped to the 1000 Genomes Project hs37d5
reference with additional PhiX decoy, and small vari-
ants called using the Genome Analysis Toolkit 3.7
best practices pipeline. Variants passing variant qual-
ity score recalibration tranche thresholds of 99.5%
(single nucleotide polymorphisms) and 99.0% (inser-
tions and deletions) were retained for frequency
summarization.

Annotation of variants in candidate genes
Variant calling files for genes identified in the
family-based analyses were obtained from the WGS
dataset and annotated using ANNOVAR (version
2015Jun16) and RegulomeDB [27, 28].

Variant annotation and filtering
ANNOVAR [29] was used to annotate the intersect file
using gene-based annotation. Variant filtering retained
loci if they were: stop-gain or stop-loss, predicted to be
deleterious or probably damaging in SIFT (Sorting
Intolerant from Tolerant) [30] and PolyPhen-2 [31] and
had a Genomic Evolutionary Rate Profiling [32] score <
3. All remaining variants were annotated using Regulo-
meDB [28]. Variants that had a RegulomeDB score < 3
were retained as these scores represent the highest con-
fidence that a variant lies within a regulatory region.

Variant burden analyses
The total number of rare (minor allele frequency (MAF <
0.05)) nonsynonymous and deleterious alleles (defined as
deleterious in both SIFT and PolyPhen-2) and the total
number of major alleles in each candidate gene of interest
were determined and compared between ISKS cases and
MGRB controls. Similarly, the total number of rare (MAF
< 0.05) putative regulatory alleles (defined as those with a
RegulomeDB score < 3) and the total number of major al-
leles in each candidate gene of interest were determined
and compared between ISKS cases and MGRB controls.
Odds ratios and p-values reported for variant burden

analysis were obtained from one-sided Fisher’s exact
tests performed in R to compare total burden of dele-
terious and putative regulatory variants, separately, in
ISKS cases and MGRB controls. A conservative Bonfer-
roni approach was used to correct for multiple testing.

Results
Discovery of candidate risk variants
Three multigenerational mixed cancer cluster pedigrees
(9 cancer cases and 10 family members) were selected
from the ISKS for variant discovery (Fig. 1). The average
age of onset of cancers in the three pedigrees is similar
to the average age of onset of all cancers and age of
onset of sarcomas in the ISKS (Table 1).

Whole exome sequencing
The average depth of coverage across all samples was
100X (range 72-131X). The average number of reads,
mapped to hg19, was 38,484,361 and the average total
genotyping rate was 98.9%.
Variants called from both Torrent Variant Caller and

Genome Analysis Toolkit were intersected using the bio-
informatic software, BCFtools in order to improve confi-
dence that base calls were real and not sequence artefact.
In total, 109,503 variants were called by Torrent Variant
Caller and 238,530 variants were called by Genome Ana-
lysis Toolkit UnifiedGenotyper. The intersect file from both
callers contained 94,263 variants for all 19 subjects (Fig. 2).

Variant annotation and filtering
The intersected variant calling file was annotated using
Annotate Variation (ANNOVAR) [29] and Regulome
Database (RegulomeDB) [28] and the annotations were
used to filter putative nonsynonymous and regulatory
variants. Approximately 42% of variants were exonic and
51% were intronic. Less than 1% of variants were inter-
genic. Of the exonic variants, approximately 48% were
nonsynonymous and 51% were synonymous, with 0.5%
classified as stop gain and loss variants (Table 2).

Variant identification
Of the 94,263 variants in the intersect file, 4425 variants
were rare private variants and 8840 were known rare vari-
ants. In the analysis of 118 candidate genes, 807 variants
were identified (Additional file 1: Table S1), and an add-
itional 491 variants were identified in 134 genes located in
regions ±25 kb of each known candidate gene (Additional

Table 1 Study cohort demographics [19]

Variable Study ISKSa

Sex 11 female (58%) –

Average age of patients 55.3 years
(range: 15–90
years)

–

Average age of cancer
onset

47.5 years
(range: 15–79 years)

47 years
(range: 1 month
– 93 years)

Average age of sarcoma
onset

– 46 years
(range: 3–93 years)

aISKS International Sarcoma Kindred Cohort
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file 1: Table S2). The summary of the annotation of these
variants for all three categories are shown in Additional file
1: Table S3.

Family-based association and segregation analyses
The variants from each category were tested for associ-
ation using a variance-component model for quantitative
phenotypes (age at onset of cancer and age at onset of sar-
coma) and disease status (cancer and sarcoma) in SOLAR.
For those with no cancer onset, age at onset was set to 0.
No variants were significantly associated with any of the
four cancer outcomes after correcting for multiple testing.
Any nominally associated variants (p-value < 0.05) were
investigated for familial segregation in the three cancer
cluster family pedigrees. No nominally significant associa-
tions were detected for Pedigree 1 after segregation ana-
lysis. Variants in three genes (C16orf96, ABCB5, and
PDIA2) were detected in Pedigree 2 after segregation ana-
lysis. Variants in five genes (ARHGAP39, ZFP69B, UVSSA,
BEAN1, and KIF2C) were nominally significant and segre-
gated in Pedigree 3. A summary of these eight nominally
associated variants are presented in Table 3.

Validation
The eight candidate risk genes identified after
family-based association and segregation analysis were
subjected to variant burden analyses employing whole
genome sequence data from 560 sarcoma cases from the
ISKS and 1144 healthy ageing controls from the MGRB
program accounting for European ancestry [19]. Infor-
mation regarding the ISKS cases can be found in Add-
itional file 1: Table S4. Of the 560 cases, the most
common subtypes were sarcoma, not otherwise specified
(15%), leiomyosarcoma, not otherwise specified (13%)
and chondrosarcoma, not otherwise specified (7%). Of
the 560 cases, 18 had secondary sarcoma, and one pa-
tient had four instances of sarcoma.

Variant burden analyses
One-sided Fisher’s exact tests were used to compare
total burden of minor allele counts for rare deleterious
variants (defined as deleterious in both SIFT and
PolyPhen-2) and regulatory variants (defined as those
with a RegulomeDB score < 3) to total major allele
counts in cases and controls. The results of this analysis
are shown in Table 4 (rare deleterious variants) and
Table 5 (regulatory variants). None of the eight genes
with rare deleterious variants were significant after cor-
rection for multiple testing but two genes (ABCB5 and
C16orf96) with regulatory variants showed significant as-
sociation with burden testing after correction.
The ABCB5 gene was found to have a nominally sig-

nificantly higher burden (OR = 1.79, p-value = 0.02,
q-value = 0.16, Table 4) associated with nonsynonymous
deleterious variants and significant putative regulatory
variants based on allele counts (OR = 4.9, p-value =
0.007, q-value = 0.049, Table 5) in sarcoma cases com-
pared to controls. For deleterious variants within
ABCB5, these gene burden association results are driven
by higher heterozygosity at two variants (rs2074000,
rs58795451) and lower heterozygosity at one variant
(rs751879475). For the regulatory variants in ABCB5,
this result is driven by higher heterozygosity at three
variants (rs73684574, rs78879263, rs78155891). All three
ABCB5 variants have RegulomeDB scores of 2, suggest-
ing that they have a likely impact on the transcription
factor binding of this gene.
One other gene, C16orf96, was found to have a signifi-

cantly lower burden (OR = 0.58, p-value = 0.0004,
q-value = 0.003, Table 5) of regulatory variants in con-
trols compared to sarcoma cases. This result was driven
by the lower heterozygosity at two variants (rs11862083,
rs76048912). The variant rs11862083 is a known eQTL
with a RegulomeDB score of 1f and is linked to expres-
sion of HSCARG (also named NmrA-like family domain
containing protein 1). The second variant, rs76048912,
has a RegulomeDB score of 2 suggesting that this variant
is likely to affect transcription factor binding.

Discussion
An ever increasing number of genetic studies are utiliz-
ing genome-wide sequencing strategies in families to
successfully identify novel susceptibility genes for human
diseases. Recent examples include colorectal cancer, an-
aemia, Wilms tumour, prostate cancer, melanoma, and
leukaemia, amongst others [33–41]. The two-stage study
design typically used in these studies begin with WES of
an initial small cohort of multi-case families ascertained
from an affected proband that are negative for known
causal mutations. Candidate variants are prioritized
bioinformatically and by family-based segregation and

Table 2 Functional annotation of the intersect file using
ANNOVAR

Function Percentage

Exonic 42.45

Intronic 50.74

Intergenic 0.04

Upstream/downstream 0.68

Untranslated region 4.96

Other 1.13

Exonic function Percentage

Nonsynonymous 47.61

Synonymous 50.55

Stop gain/loss 0.50

Unknown 1.35

Jones et al. BMC Medical Genetics           (2019) 20:69 Page 6 of 10



Ta
b
le

3
Su
m
m
ar
y
of

SO
LA

R
as
so
ci
at
io
n
an
d
se
gr
eg

at
io
n
an
al
ys
is
by

va
ria
nt

ca
te
go

ry

av
SN

P1
47

C
hr

a
Po

si
tio

n
G
en

e
A
A
ch
an
ge

/
Re
g.

Fe
at
ur
eb

Fa
m
ily

#
C
an
ce
r
O
ut
co
m
e

p-
va
lu
ec

Q
-v
al
ue

d
Va
ria
nt

Ty
pe

SI
FT

e
Po

ly
Ph

en
-2

Fa
m
ily

M
A
Ff

M
A
F
1
K

g

Ra
re

Pr
iv
at
e
Va
ria
nt
s

–
8

14
5,
77
3,
31
9

AR
H
G
AP
39

G
11
51
A

3
A
ge

at
on

se
t
of

ca
nc
er

0.
01

1.
00

N
S

D
el
et
er
io
us

D
el
et
er
io
us

0.
07
9

–

A
ny

C
an
ce
r

0.
02

1.
00

Kn
ow

n
Pr
iv
at
e
Ra
re

Va
ria
nt
s

rs
19
12
27
55
6

16
4,
60
6,
55
2

C1
6o
rf9

6
T6
2C

TF
h
Bi
nd

in
g
+

D
N
as
e
Fo
ot
pr
in
t
+

D
N
as
e
Pe
ak

2
A
ge

at
on

se
t
of

ca
nc
er

0.
01

1.
00

N
S/

RE
G

D
el
et
er
io
us

D
el
et
er
io
us

0.
10
5

0.
00
02

A
ny

C
an
ce
r

0.
01

1.
00

rs
13
97
41
31
9

7
20
,7
21
,1
30

AB
CB
5

TF
bi
nd

in
g
+
m
at
ch
ed

TF
m
ot
if
+
D
N
as
e
pe

ak
2

A
ge

at
on

se
t
of

ca
nc
er

0.
01

1.
00

RE
G

–
–

0.
10
5

0.
00
08

A
ny

C
an
ce
r

0.
01

1.
00

rs
13
92
13
01
9

1
40
,9
29
,0
77

ZF
P6
9B

C
14
21
G

3
A
ge

at
on

se
t
of

ca
nc
er

0.
01

1.
00

N
S

D
el
et
er
io
us

D
el
et
er
io
us

0.
07
9

0.
00
16

A
ny

C
an
ce
r

0.
02

1.
00

rs
11
67
41
00
7

4
1,
34
8,
92
0

U
VS
SA

G
10
63
A

3
A
ge

at
on

se
t
of

ca
nc
er

0.
01

1.
00

N
S

D
el
et
er
io
us

D
el
et
er
io
us

0.
07
9

0.
.0
04
0

A
ny

C
an
ce
r

0.
02

1.
00

rs
20
07
06
11
9

16
66
,5
03
,7
05

BE
AN

1
C
22
6A

3
A
ge

at
on

se
t
of

ca
nc
er

0.
01

1.
00

N
S

To
le
ra
te
d

–
0.
07
9

0.
00
50

rs
13
93
73
76
2

1
45
,2
24
,9
37

KI
F2
C

TF
Bi
nd

in
g
+
D
N
as
e

Fo
ot
pr
in
t
+
D
N
as
e
Pe
ak

3
A
ge

at
on

se
t
of

ca
nc
er

0.
01

1.
00

RE
G

–
–

0.
07
9

0.
00
12

C
an
di
da
te

G
en

e
Va
ria
nt
s

rs
45
61
48
40

16
33
4,
54
3

PD
IA
2

C
35
6G

2
A
ge

at
on

se
t
of

ca
nc
er

0.
01

1.
00

N
S

D
el
et
er
io
us

D
el
et
er
io
us

0.
10
5

0.
05

A
ny

C
an
ce
r

0.
01

1.
00

a C
hr

C
hr
om

os
om

e;
b
A
m
in
o
A
ci
d
C
ha

ng
e
or

Re
gu

la
to
ry

Fe
at
ur
e
of

th
e
O
bs
er
ve
d
Va

ria
nt
s;

c U
nc
or
re
ct
ed

p-
va
lu
e;

d
Bo

nf
er
ro
ni

co
rr
ec
te
d
p-
va
lu
e
fo
r
m
ul
tip

le
te
st
in
g
(α

=
0.
05

);
e S
IF
T
So

rt
in
g
In
to
le
ra
nt

fr
om

To
le
ra
nt
.f
M
in
or

A
lle
le

Fr
eq

ue
nc
y
in

Fa
m
ily
;g
M
A
F
10

00
G
:M

in
or

A
lle
le

Fr
eq

ue
nc
ie
s
fr
om

th
e
10

00
G
en

om
es

D
at
ab

as
e;

h
TF

Tr
an

sc
rip

tio
n
Fa
ct
or

Jones et al. BMC Medical Genetics           (2019) 20:69 Page 7 of 10



association analysis followed by validation in a larger
independent case and control cohort.
In this study our primary focus was sarcoma and we

have used a two-stage study design to identify novel candi-
date susceptibility genes for sarcoma and other cancers.
To the best of our knowledge this is the first study to suc-
cessfully use this study design to identify novel risk genes
for this rare group of cancers.
Three assumptions were made in determining familial

segregation in this study. First, the variant will be rare
(shared only by carriers in one family). Second, every
carrier of a putative disease-causing variant will have the
phenotype (complete penetrance). Third, every individ-
ual with the phenotype (cancer) will carry the putative
disease-causing variant (100% probability of observing a
genotype given the phenotype). These assumptions did
not consider the possibility of unaffected carriers (in-
complete penetrance), later onset of disease, or risk vari-
ants that occur in cases in more than one family.
Therefore, some true variants may have been excluded
using these strong assumptions.
Despite these limitations, by treating each cancer pedi-

gree as a separate discovery unit we were able to identify
novel rare variants showing nominal evidence of association

with cancer risk in these families. Importantly, although not
sufficient evidence on their own, these nominal variant
associations pointed to candidate risk genes that we could
then evaluate extensively in the second stage of our study
design, dependent on the availability of large population co-
horts of unrelated sarcoma cases and cancer free controls
for which there was whole genome sequence; a powerful
resource for gene validation.
Of the two novel candidate risk genes validated by vari-

ant burden analyses in stage two, the C16orf96 open read-
ing frame gene on chromosome 16 showed the strongest
evidence of association with sarcoma risk. The function of
this gene or any potential role for this gene in cancer
pathogenesis has not been established. However, in silico
analysis of regulatory elements associated with this gene
demonstrate that it contains enhancers and promoters
that target 11 genes, including Cell Death Inducing p53
Target protein 1 (CDIP), which is important for regulating
TNF-alpha-mediated apoptosis in a p53/TP53-dependent
manner [42]. In addition, one of the variants, rs11862083,
driving this signal is known to be linked to the expression
of the gene, HSCARG, which has been shown to be
involved in histone H2A ubiquitination known to be
involved in transcriptional repression and DNA damage

Table 4 Minor allele counts for rare nonsynonymous deleterious variants, odds ratios and p-values from Fisher’s exact test for genes
of interest

Gene of interest Allele Counts (# NS Variants) ISKSa Allele Counts (# NS Variants) MGRBb Odds ratio p-valuec Q-valued

ABCB5 30 (17) 32 (16) 1.79 0.02 0.16

ARHGAP39 1 (1) 3 (1) 2.07 0.45 1.00

BEAN1 1 (1) 0 (0) 0 1 1.00

C16orf96 4 (4) 12 (9) 1.81 0.296 0.237

KIF2C 0 (0) 1 (1) 0 1 1.00

PDIA2 5 (5) 1 (1) 4.07 0.23 1.00

UVSSA 21 (8) 25 (6) 1.29 0.45 1.00

ZFP69B 2 (2) 16 (4) 0.51 0.55 1.00
aISKS International Sarcoma Kindred Study. bMGRB Medical Genome Reference Bank. cUncorrected p-value. dBonferroni corrected p-value for multiple
testing (α = 0.05)

Table 5 Minor allele counts for rare putative regulatory variants, odds ratios and p-values from Fisher’s exact test for genes of
interest

Gene of interest Allele Counts (# Reg. Variants) ISKSa Allele Counts (#Reg. Variants) MGRBb Odds ratio p-valuec Q-valued

ABCB5 12 (5) 3 (3) 4.9 0.007 0.049

ARHGAP39 10 (3) 24 (4) 1.13 0.702 1.00

BEAN1 3 (1) 1 (1) 6.11 0.10 0.800

C16orf96 58 (3) 151 (3) 0.58 0.0004 0.003

KIF2C 2 (1) 9 (1) 0.45 0.52 1.00

PDIA2 10 (1) 24 (1) 0.85 0.85 1.00

UVSSA 114 (4) 215 (4) 1.09 0.44 1.00

ZFP69B 0 (0) 0 (0) – – –
aISKS International Sarcoma Kindred Study. bMGRB Medical Genome Reference Bank. cUncorrected p-value. dBonferroni corrected p-value for multiple
testing (α = 0.05)
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response [43]. The ABCB5 gene, although not previously
associated with sarcoma, has been previously associated
with clinical drug resistance and recurrence in malignant
melanomas and leukaemias [44–48]. ABCB5-expressing
cells have been shown to selectively survive when exposed
to dacarbazine and other chemotherapeutic drugs [49].

Conclusions
In this study we have provided evidence for two novel
candidate risk genes for sarcoma. The two-stage genome-
wide DNA sequencing study design we have employed is
gaining momentum in the human disease genomics field
as researchers return to family-based study designs to
identify rare genetic variants now widely thought to
account for some of the (substantial) missing heritability
in complex diseases and traits. The current study adds to
growing evidence that this approach, requiring only a
relatively small number of affected families for initial gene
discovery, can be successfully used to identify novel risk
genes for complex human diseases, including rare cancers
such as sarcoma. These novel risk genes will require func-
tional evaluation in future studies. In addition, the clinical
utility of these genes and associated variants in risk predic-
tion models for relatives of cancer patients will also
require further validation in other large independent stud-
ies, for example, the large Genomics England resource,
that has a major focus on risk prediction for cancers.
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