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Abstract

Single nucleotide polymorphisms (SNPs) are growing in popularity as a genetic marker for investigating evolutionary
processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple
individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary
large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine
SNP50 BeadChip developed in cattle (Bos taurus) for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule
deer and black-tailed deer) and O. virginianus (white-tailed deer) in the Pacific Northwest. We found that 38.7% of loci could
be genotyped, of which 5% (n = 1068) were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral
loci (n = 878) and loci under selection (n = 190) were identified with the FST-outlier method. A range of population genetic
analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be
distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP
chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species
(the Bovidae and Cervidae families diverged some 25.1230.1 million years before present).
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Introduction

Single nucleotide polymorphisms (SNPs) are increasingly

becoming the marker of choice for investigating contemporary

and evolutionary genetic processes (e.g. [1,224]). SNPs have

many advantages over more traditionally used allozymes, micro-

satellite loci and chain-termination (Sanger) sequencing of select

loci. These include availability in high numbers, presence in

coding and non-coding regions, low-scoring error rates, relative

ease of calibration between different studies and conformation to

simple models of mutation. Furthermore, SNPs can be genotyped

using high-throughput protocols that allow thousands of loci to be

scored simultaneously, even from low quality DNA samples

[2,5,6]. In species with fully sequenced genomes (i.e., ‘model’

organisms), panels of SNP markers that cover the entire genome

can be devised to allow marker-trait association studies of high

statistical power and accuracy (e.g. [7,8,9]). SNPs are also useful in

researching the genetics of non-model organisms, and can be used

in place of or in tandem with microsatellite markers to investigate

kinship [10], individual identification [11], parentage inference

[12] and population structure [13]. In addition, a SNP panel

including both selectively neutral loci and loci under selection

could be beneficial in studies of non-model organisms, as neutral

loci can be used to make inferences about long-term demographic

processes (e.g., migration) whereas loci under selection can be used

to differentiate recently diverged lineages or identify genomic

regions involved in local adaptation, reproductive isolation or

speciation [4,14,15].

Developing a panel of SNP markers can be a challenge when

working with non-model organisms. While next-generation

sequencing technologies have greatly reduced the cost of DNA

sequencing [16], performing such sequencing on enough individ-

uals to identify SNPs (with minimal bias) is still outside the

resources of many projects. One means of SNP discovery that does

not require extensive sequencing is to use commercially available

SNP chips developed for a related, well-studied model species.

SNP chips are microarrays specifically customized for genotyping

known SNP loci, and allow thousands of such loci to be scored

simultaneously for two alleles. Recently, SNP chips from

agricultural species have been used to identify SNPs in closely

related, non-model species. For example, Miller et al. [17]

identified 868 SNPs in bighorn (Ovis canadensis) and thinhorn

sheep (Ovis dalli) using the OvineSNP50 BeadChip developed for

domestic sheep (Ovis aries). Similarly, Pertoldi et al. [18] used the

BovineSNP50 BeadChip developed for cattle (Bos taurus) to

genotype 2 209 polymorphic loci in European (Bison bonasus) and

American bison (B. bison bison and B. bison athabascae). These studies

confirm that cross-species application of commercial SNP chips

can be a successful strategy for SNP discovery in non-model

organisms. This strategy, however, has only been applied to SNP

development in non-model species closely related to the focal
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species. Domestic sheep diverged from bighorn and thinhorn

sheep approximately 3.1 million years ago (MYA) [19], while

cattle and bison diverged 1.222.1 MYA [20]. The use of

commercial SNP chips in non-model organisms therefore warrants

further investigation regarding their utility in more divergent

lineages.

In this study, the potential utility of commercial SNP chip

technology for identification of SNPs in non-model organisms is

tested between two lineages that diverged approximately

25.1230.1 MYA, deer (family Cervidae) and cattle (family

Bovidae) [21]. The Illumina BovineSNP50 BeadChip developed

for commercial SNP genotyping of B. taurus is used to genotype

DNA samples from a diverse species complex of deer indigenous

to North America: mule deer and black-tailed deer (Odocoileus

hemionus ssp.), and white-tailed deer (O. virginianus) [22]. A suite of

novel SNPs is characterized, and putatively neutral and selected

loci are identified. A range of population genetic analyses are

implemented using these SNPs and a panel of 10 microsatellite loci

to assess whether the newly identified SNPs behave in a predictable

fashion.

Results

Of the 54 609 SNPs on the chip, 21 131 (38.7%) were scored

successfully in at least 90% of individuals, and 1068 of these loci

were polymorphic. Minor allele frequency (MAF) is widely used to

describe the genetic variability of two-allele SNPs, and refers to

frequency of the least common SNP allele. MAF for each locus

overall and within each deer lineage is detailed in Table S1. MAF

varied across loci and between lineages. The majority of minor

alleles were at low frequencies of 0.1 or less, and some loci that

were polymorphic overall were monomorphic within a single

lineage (Table 1; Table S). To minimize ascertainment bias, all

polymorphic SNPs were included in downstream analyses, re-

gardless of the level of genetic variability. The microsatellites were

successfully genotyped for 98.6% of alleles, with 4213 alleles

detected at each locus.

The analysis in LOSITAN identified 878 SNP loci as neutral, 116

as being under positive selection and 74 under balancing selection

after adjustment for multiple testing (Table S1). Departures from

HWE were non-significant in all analyses (Table 2). The standard

deviation was high for all genetic diversity measures (Table 2),

likely because of the small sample sizes analyzed. Expected

heterozygosity (HE) and observed heterozygosity (HO) were

generally lower for SNPs than for microsatellites, though this

difference between marker types was only significant in mule deer

(Table 2). FIS differed markedly between species and datasets but

was also generally lower for SNPs than for microsatellites (Table 2).

The overall P(ID) (Table 2) was extremely low for both the 1068

polymorphic SNPs (3.46102162) and the 878 neutral SNPs

(3.06102123), attesting to the high discriminatory power of these

markers. Although P(ID) was an order of magnitude higher for

microsatellites (3.6610212; Table 2 ) than for SNPs, this value still

indicates a very high discriminatory power for the microsatellites

Table 1. Minor allele frequencies for each deer lineage.

Frequency All Deer Mule Deer Black-Tailed Deer White-Tailed Deer

# loci % # loci % # loci % # loci %

0* NA NA 639 60% 634 59% 599 56%

0.020.1 691 64.70% 232 21.72% 200 18.73% 0 0.00%

0.120.2 229 21.44% 69 6.46% 71 6.65% 195 18.26%

0.220.3 61 5.71% 44 4.12% 73 6.84% 92 8.61%

0.320.4 32 3.00% 27 2.53% 35 3.28% 99 9.27%

0.420.5 55 5.15% 57 5.34% 55 5.15% 83 7.77%

Total # of

polymorphic loci:

1068 429 434 469

*A MAF value of 0 indicates that loci were polymorphic overall but monomorphic within a particular lineage.
doi:10.1371/journal.pone.0036536.t001

Table 2. Hardy-Weinberg Equilibrium (HWE) p-values,
expected heterozygosity (HE), observed heterozygosity (HO),
and FIS for mule deer (MD), black-tailed deer (BTD) and white
tailed deer (WTD) with associated p values.

10

microsatellites

1068 polymorphic

SNPs 878 neutral SNPs

MD

HWE 0.4587 0.9912 1.0000

HE 0.6358 (0.1384) 0.2389 (0.1619) 0.2259 (0.1566)

HO 0.5417 (0.1582) 0.2545 (0.2290) 0.2273 (0.1858)

FIS 0.1539 (0.0596) 20.0683 (0.0169) 20.0067 (0.0181)

P(ID) 1.461029 5.76102103 2.2610285

BTD

HWE 0.982 0.9412 1.0000

HE 0.5916 (0.2495) 0.2597 (0.1617) 0.2479 (0.1581)

HO 0.5659 (0.2618) 0.2538 (0.2122) 0.2278 (0.1749)

FIS 0.0454 (0.0576) 0.0236 (0.0165) 0.0842 (0.0173)

P(ID) 8.5610211 1.16102112 9.1610297

WTD

HWE 0.5881 1.0000 1.0000

HE 0.5446 (0.2072) 0.4292 (0.1660) 0.4065 (0.1368)

HO 0.4375 (0.2588) 0.3966 (0.2795) 0.3568 (0.2509)

FIS 0.2222 (0.1408) 0.0875 (0.0258) 0.1406 (0.0305)

Overall
P(ID)

3.6610212 3.46102162 3.06102123

Expected probability of identity, P(ID), is estimated overall for each subset of
DNA loci and individually for MD and BTD. P(ID) could not be calculated
individually for WTD due to limited sample size.
doi:10.1371/journal.pone.0036536.t002
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as it is well above the P(ID) value of at least 10
-3–10-4 recommended

for wildlife forensic applications [23].

All three deer lineages were distinguished from each other in all

analyses and for all datasets. Fisher’s exact test in GENEPOP

returned significant (p-value ,0.001) departures from panmixia

in all pairwise comparisons. The analyses in STRUCTURE all

returned K=3. For the microsatellites, the highest DK value was at

K=3, with the mule deer, black-tailed deer and white-tailed deer

each partitioned into distinct clusters (Table 3). Both SNP datasets

initially returned a highest DK value at K=2, where mule deer and

black-tailed deer were clustered together to the exclusion of white-

tailed deer. As STRUCTURE only identifies the upper most level of

population structure [24], the analyses were rerun without the

white-tailed deer to determine if additional substructure could be

identified within the cluster containing mule deer and black-tailed

deer. The highest DK in both these subsequent analyses was two

(Table 4), with the mule deer and black-tailed deer partitioned into

discrete genetic clusters. Finally, FCA readily separated each of the

three lineages into distinct clusters. These clusters were completely

discrete for the microsatellites (Figure 1A), while the SNPs placed

the mule deer and black-tailed deer into partially overlapping but

still discernible clusters (Figure 1B, 1C).

All datasets and all measures of genetic distance clearly

identified mule deer and black-tailed deer as more closely related

to one another than either was to white-tailed deer (Figure 1). This

pattern is consistent with previous studies of morphological

characters [25], nuclear DNA [26,27] and the Y-chromosome

[28]; although it should be noted that mitochondrial DNA studies

have revealed a different pattern, with mule deer and white-tailed

deer being most closely related [26,29231]. FST was higher for

SNPs than for microsatellites in two of the three comparisons

(Figure 1), likely because FST has a tendency to be reduced by high

levels of polymorphism [32235]. D and Dm were far higher for

microsatellites than for SNPs (Figure 1). D is an explicit measure of

allele frequency differences between sample groups that makes no

correction for high numbers of alleles. High mutation rates (and

therefore large numbers of alleles) typical of microsatellites

therefore lead to higher values of D relative to loci with low

mutation rates and low numbers of alleles, such as SNPs [36]. Dm

is similarly elevated increased by high levels of heterozygosity [37],

and is likely elevated here by the higher HO values detected for

microsatellites in mule deer and black-tailed deer than for SNPs

(Table 2).

Discussion

Of the 54 609 loci on the BovineSNP50 BeadChip, 21 131

(38.7%) SNPs were successfully genotyped in at least 90% of

individuals, and 1068 (2.0% of the total; 5.1% of genotyped loci)

were polymorphic in deer. In comparison, Pertoldi et al. [18]

successfully genotyped a far greater proportion of loci (96.7–

98.7%) and detected 4% of loci as polymorphic using the same

SNP chip in bison; and Miller et al. [17] successfully genotyped

over 90% of loci in closely related species of sheep using the

OvineSNP50 BeadChip, yet found only 1.7% of sites to be

polymorphic (868 out of a total of 49 034 loci). The lower rate of

genotyping success in this study when compared with Pertoldi et

al. [18] and Miller et al. [17] is expected, given the 25.1230.1

million year divergence between Bovidae (B. taurus) and Cervidae

(O. hemionus and O. virginianus) [21]. The level of polymorphism,

however, is unexpectedly high and could result from historically

high population sizes of mule deer, black-tailed deer and white-

tailed deer in North America [24]. In contrast, the bison species

analyzed by Pertoldi et al. [18] have undergone several severe

population bottlenecks, while the wild sheep species investigated

by Miller et al. [17] live in relatively small, isolated populations.

The identification of 1068 novel, polymorphic SNPs in this study

demonstrates that commercial SNP chip technology is a viable and

potentially underutilized means of discovering SNP loci in non-

model species, even when used between highly divergent lineages.

Both neutral loci and loci potentially under selection were

detected in this study, including 878 neutrally evolving, 116 under

the influence of positive selection, and 74 influenced by balancing

selection (Table S1). A suite of loci that includes both neutral and

selected loci will be useful for a variety of applications. Most

population genetic analyses, for example, assume that the genetic

markers employed are selectively neutral. Loci under positive

selection, however, can be essential in distinguishing between

recently diverged species and populations that are otherwise

difficult to distinguish using neutral makers [14,38]. Characteriz-

ing genomic regions under balancing selection could identify

advantageous genes and alleles that move between populations,

such as loci involved in disease resistance (e.g., [39]). Thus,

a necessary first step in any genetic study is to accurately

characterize suites of loci that match study objectives and ensure

the application of appropriate analytical models and correct

interpretation of results.

Population genetic inferences made with the SNPs identified

here were consistent with current taxonomic nomenclature and

with previous studies of nuclear [27] and Y-chromosome [28]

DNA and morphological characters [25] that identified mule and

black-tailed deer as closely related and white-tailed deer as a more

divergent evolutionary lineage. All measures of genetic distance

(FST, D and Dm) reported lower differentiation between mule deer

and black-tailed deer than between white-tailed deer and either O.

hemionus lineage (Figure 2). Consistent with the analyses of

microsatellites performed here, the three lineages were clearly

delineated using exact tests, assignment tests, and FCA using the

dataset of all 1068 polymorphic SNPs or the 878 neutral SNPs.

Extremely low P(ID) values both overall and within individual

lineages suggests that these SNPs would be very useful for fine-

scale population genetic analyses requiring unambiguous in-

dividual identification. In this study, we used only ‘pure’

representatives of each lineage (as identified by previous genetic

analyses; [40]). Further characterization of these SNPs would be

necessary to determine their power and accuracy for delineating

lineages in areas of sympatry where individuals may be of mixed

ancestry.

The level of within-population inbreeding (FIS) differed mark-

edly between datasets (Table 2) and warrants further explanation

here. The FIS statistic ranges from 21 to 1, with negative values

indicating an excess of heterozygosity and positive values

indicating excess homozygosity relative to expectations under

HWE. For each lineage, deer were sampled from disparate

locations, and as such are expected to belong to different

populations and to therefore return positive FIS values consistent

with homozygote excess (Wahlund effect). In accordance with

these expectations, positive FIS values were returned for all

lineages for microsatellites (although FIS was not significantly

different from zero in white-tailed deer) and for SNPs in black-

tailed deer and white-tailed deer. In contrast, statistically

significant negative FIS values were returned in mule deer when

all 1068 SNPs or the 878 neutral SNPs were analyzed (Table 2).

The unexpected heterozygote excess in the SNP data in the mule

deer lineage could be caused by a high proportion of low-

frequency alleles in mule deer which would in turn lead to an

artificially high HO. Of the 429 loci that were polymorphic in mule

deer, 54% (n= 232) had a minor allele frequency (MAF) less than

SNP Discovery in Deer
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0.1 (Table 1). This was higher than the proportion of similarly low-

frequency alleles found in black-tailed deer (46%; 200 of 434

polymorphic loci within the black-tailed deer lineage) and white-

tailed deer, where the MAF could not be less than 0.125 on

account of only 4 individuals being analyzed (if at a given locus

only one of the four individuals is heterozygous, the MAF of that

locus will be 0.125) (Table 1). Multilocus genotypes from

additional individuals would be necessary to more fully evaluate

potential mechanisms for the observed heterozygote excess in mule

deer.

Any process of SNPs discovery carries some risk of ascertain-

ment bias, where the overall pattern of genetic diversity is not

accurately represented by the sampled SNPs. In general, small

screening panel size, overly stringent SNP identification algo-

rithms, and bias toward polymorphic loci in SNP selection can

lead to inaccurate inferences of genetic diversity, population

genetic structure, and phylogenetic relationships [5,41243]. The

small sample size of deer initially screened for SNPs in the present

study will almost certainly have led to some polymorphic sites not

being detected, in particular those sites harboring rare alleles. In

addition, the screening of SNPs identified in B. taurus for use in O.

hemionus and O. virginianus is likely biased in favor of conserved

genomic regions that still retain polymorphisms ancestral to the

divergence between Cervidae and Bovidae. Such loci may not be

representative of the evolutionary changes that have since

occurred within the Cervidae family. The selection of SNPs for

the Bovine SNP50 BeadChip that are distributed in a roughly even

fashion across the B. taurus genome, however, should minimize the

effects of this bias. Downstream applications can avoid compound-

ing ascertainment bias by randomly selecting a panel of SNPs for

analysis, rather than using only SNPs that exceed a minimum,

predefined level of polymorphism [5].

One of the most attractive incentives for using model species to

identify SNPs in non-model species is the availability of

annotations that link SNP variation to DNA sequences and

ultimately to biological processes. Although no deer genomes have

yet been fully sequenced and annotated, the genomic location of

each SNP identified in this study can be mapped on various

versions of the B. taurus genome (e.g., the Btau 4.2 assembly,

compiled by the Bovine HapMap Consortium, or the UMD3.1

assembly, compiled by the Center for Bioinformatics and

Computational Biology at the University of Maryland). The

position of each SNP on both Btau4.0 and UMD3.1 is provided in

Table S1. However, the level of divergence between our model

and non-model species (25–30 MYA) may not permit accurate

chromosomal locations to be determined for all identified SNPs.

Multiple chromosome rearrangements have occurred in the

Bovidae and Cervidae lineages since their divergence, which is

especially evident in a change in karyotype from 2n=70 in cervids

O. virginianus and O. hemionus to 2n= 60 in the bovid B. taurus [44].

In spite of these large-scale rearrangements, alignment of deer

DNA sequences to the B. taurus genome has been successful for

next-generation sequences generated from O. virginianus [45],

presumably owing to regional synteny. Still, caution is warranted

when interpreting results obtained from alignments between such

divergent lineages.

Figure 1. Factorial component analysis (FCA) of mule deer (MD), black-tailed deer (BTD) and white-tailed deer (WTD) estimated
using (a) microsatellites, (b) all 1068 polymorphic SNPs, and (c) the 878 SNPs identified as selectively neutral.
doi:10.1371/journal.pone.0036536.g001

Table 3. Analysis in STRUCTURE for all 28 deer using 10
microsatellites, all 1068 polymorphic SNPs and the 878
putatively neutral SNPs.

K Ln P(D)
DK

Iteration 1 Iteration 2 Iteration 3

10 microsatellites

1 2892.7 2891.3 2892.3 NA

2 2782.7 2779.5 2780.9 15.2

3 2694.4 2695 2693.9 168.1

4 2700.1 2698.5 2702.6 0.1

5 2708.4 2704.4 2706.9 1.0

6 2709.8 2711.8 2710.8 NA

1068 SNPs

1 216594.8 216651.1 216600.2 NA

2 211851.4 211852.3 211846.1 1491.8

3 212113.5 212045.8 212087.2 9.6

4 212755.5 211681 211523.7 13.6

5 234076.5 217164 211884.7 0.7

6 241501 212490.6 212312.2 NA

878 SNPs

1 212831.7 212831.5 212831.5 NA

2 210167.3 210169.8 210176.2 557.4

3 29566.1 210313.7 210328.4 1.6

4 212234 29841.1 29858.7 0.3

5 210148.8 210793.1 211588.8 0.7

6 210155.8 211214.6 210246.4 NA

doi:10.1371/journal.pone.0036536.t003

Table 4. Analysis in STRUCTURE using only mule deer and
black-tailed deer for all 1068 polymorphic SNPs and 878
putatively neutral SNPs.

K Ln P(D)
DK

Iteration 1 Iteration 2 Iteration 3

1068 SNPs

1 29278.7 29300.2 29281.9 NA

2 28510.7 28516.8 28499.2 96.9

3 28585.6 28605.2 28598.6 9.7

4 28594.6 28589.4 28578.7 4.4

5 28624 28625.2 28593.7 2.6

6 28598 28594.7 28588.8 NA

878 SNPs

1 27984.2 27961.8 27961.6 NA

2 27286.1 27289.6 27294.4 174.0

3 27334.2 27336.4 27336.8 33.9

4 27331.6 27342.6 27328.1 1.1

5 27337.9 27343.8 27339.4 0.5

6 27341.2 27331.3 27362.7 NA

doi:10.1371/journal.pone.0036536.t004
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Figure 2. Genetic distance measures estimated between mule deer, black-tailed deer and white-tailed deer using 10 microsatellites
(white), all 1068 polymorphic SNPs (dark grey) and 878 putatively neutral loci (pale grey). (a) FST (with standard deviation), (b) Jost’s D
(with standard error) and (c) Nei’s minimum distance, Dm.
doi:10.1371/journal.pone.0036536.g002
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The SNPs characterized in this study would likely be useful in

a variety of applications for an array of cervid species, given the

high cross-species amplification success we observed. Neutral

SNPs can be readily applied to more traditional population genetic

analyses, such as characterizing population structure, quantifying

genetic diversity and inferring migration rates. Loci under natural

selection could be used to investigate genetic mechanisms un-

derpinning natural selection and adaptation, or to differentiate

recently diverged populations, species and ecotypes that are

otherwise difficult to distinguish using neutral loci [46]. Such

investigations are relevant not only for evolutionary research but

also for conservation and management of mule deer, black-tailed

deer and white-tailed deer. In addition to being important game

species, the U.S. Fish and Wildlife Service lists the Cedros Island

mule deer (O. h. cerrosensis), Florida Key white-tailed deer (O. v.

calvium) and Columbian white white-tailed deer in western Oregon

(O. v. leucurus) as ‘Endangered’ [47]. White-tailed deer are also

threatened in Venezuela by overhunting and habitat loss [48].

Thorough delimitation of subpopulation boundaries, identification

of locally adapted populations and characterization of genetic

diversity patterns will therefore be highly useful in informing

regional conservation and management strategies. These com-

mercial SNP chips could even be applied to other cervids of

conservation or management concern; for example, those listed as

threatened on the IUCN Red List [49] (hog dear, Axis spp, revised

to genus Hyelaphus in [50]; Père David’s deer, Elaphurus davidianus;

Patagonian huemul, Hippocamelus bisulcus).

This study demonstrates the potential utility of commercially

available SNP chip technology for identifying SNP loci in non-

model organisms. As polymorphic SNPs were identified between

lineages that diverged up to 30.1 MYA, SNP chips developed for

model organisms can likely identify SNPs in a far wider range of

organisms than previously realized. The porcine, ovine, equine

and bovine SNP chips, for example, could be used to collectively

to develop a panel of SNPs for wide range of highly divergent

ungulates; while SNP chips developed for dogs (Canis lupus

familiaris) could likely identify polymorphic SNPs in a wide range

of Carnivora species that would otherwise require extensive DNA

sequencing. The cross-species utilization of SNP chips is therefore

an exciting avenue of future research.

Materials and Methods

Ethics Statement
Samples were collected by Department of Natural Resources

staff in Washington and Oregon from hunter-harvested animals

between 2003 and 2009. Ethics approval was not required or

sought for this research, as the samples were hunter-harvested and

thus not collected specifically for this study, and no additional

observational or field data were collected.

Study Organism
Mule deer and black-tailed deer are both classified as O.

hemionus. Morphological [51,52] and genetic studies [26,28,53,54],

however, strongly support the separation of this species into two

highly distinct lineages that diverged in allopatry during the last

glacial maximum. Black-tailed deer include subspecies O. h.

columbianus and sitkensis and are found throughout the Pacific

Northwest, west of the Cascade Mountains and north to Alaska

along the Pacific Coast. Mule deer include subspecies O. h.

hemionus, fulginatus, californicus, inyoensis, eremicus, crooki, peninsulae,

sheldoni, and cerrosensis, and are found east of the Cascade

Mountains and throughout western and central North America,

Canada, and Mexico. White-tailed deer (O. virginianus) are more

widespread than O. hemionus, being found throughout northern

South America, Central America, Mexico, central and eastern

North America and in a number of isolated populations in western

North America. White-tailed deer can be subdivided into as many

as 38 subspecies [45,55,56]. All three types of deer within this

species complex show extensive local adaptation and population

structuring [53,57,58], yet all have a conserved karyotype of

2n= 70 chromosomes [44] and are capable of extensive hybrid-

ization and introgression in regions of sympatry

[26,28,40,59266]. Notably, all three lineages overlap within our

study area in western Oregon, making this region a natural

experiment for testing specific hypotheses about such evolutionary

processes as hybridization, local adaptation, and reproductive

isolation. However, for the purposes of this study, only ‘pure’

samples from each lineage were used (as identified in previous

genetic analyses; [40]).

Sample Collection and DNA Genotyping
To evaluate the feasibility of cross-species SNP chip genotyping

as a means of SNP discovery, tissue samples were collected from

twelve mule deer, twelve black-tailed deer and four white-tailed

deer in Washington and Oregon, USA (Figure 3) between 2003

and 2009. Previous genetic analyses identified these deer as ‘pure’

representatives of their respective lineages, i.e., no evidence inter-

lineage ancestry [40]. Genomic DNA for each of the 28 deer

sampled was genotyped at a commercial lab (Genetic Visions, Inc.)

using an Illumina BovineSNP50 Genotyping BeadChip. In

addition, 10 selectively neutral microsatellite loci (BM848,

Odh_C, Odh_E, Odh_K, C273, Odh_G, Odh_P, Odh_O,

RT24, and T40) were PCR-amplified and genotyped according

to Latch et al. [67] in all individuals so that statistical inferences

made with SNPs could be compared with microsatellites.

Identification of Neutral Loci and Loci Under Selection
Genetic analyses of wild populations depend on accurately

characterizing whether the genetic loci used are under selection.

Theoretical models in population genetics typically assume that

the markers employed are selectively neutral; including loci under

selection can bias inferences about migration rates, genetic

diversity, population genetic structure, and phylogenetic relation-

ships. Loci should therefore be screened for signatures of selection

prior to population genetic analyses, in order to ensure that

appropriate analytical models are used and results are interpreted

correctly [15,43]. Genomic studies, in contrast, are primarily

concerned with identifying genes or genomic regions involved in

evolutionary processes and can hence benefit from specifically

targeting genomic regions suspected to be under selection (e.g.

[68]). To identify SNPs potentially under selection in the present

study, the FST-outlier method [69] was implemented in the

Bayesian program LOSITAN [70]. LOSITAN simulates the expected

distribution of Wright’s inbreeding coefficient FST vs expected

heterozygosity (HE) for a given set of genetic markers under the

island model of migration [71]. Loci under positive selection are

expected to show greater levels of interpopulation differentiation

than neutral loci (i.e., higher FST/HE ratio), whereas loci under

balancing selection are expected to show lower levels (i.e., lower

FST/HE ratio) of differentiation [72]. LOSITAN was run for 10 000

000 simulations, under the ‘‘neutral’’ mean FST and forced mean

FST settings, with a two-tailed significance level of 0.05. The mule

deer, black-tailed deer, and white tailed deer were designated as

different ‘populations’ in the analysis. P-values were adjusted for

multiple testing using the B-Y method of false discovery rate

correction [73] in the R-project package multtest [74].
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Statistical Analyses
The statistical properties of the newly identified SNPs were

compared with the 10 neutral microsatellite loci to verify that the

SNPs were behaving in a predictable fashion. A range of common

statistical analyses were implemented using all 1068 polymorphic

SNPs identified here (see Results), the 878 SNPs identified as

selectively neutral (see Results) and the 10 microsatellite loci to

characterize population genetic structure in mule deer, black-

tailed deer, and white-tailed deer. Departures of genotype

frequencies from expectations under Hardy-Weinberg equilibrium

(HWE) were tested using Fisher’s exact test in GENEPOP 4.1 [75].

Heterozygosities were estimated in ARLEQUIN 3.5.1.2 [76], and FIS
for each deer lineage was calculated in GENETIX [77]. The unbiased

theoretical expected probability of identity P(ID) was calculated for

each suite of loci over all deer and within the mule deer and black-

tailed deer lineages [23,78].

To determine if either suite of SNPs (1068 polymorphic loci or

878 neutral loci) could be used to distinguish between mule deer,

black-tailed deer and white-tailed deer, significant differences in

allele frequencies were assessed using Fisher’s exact test in GENEPOP

4.1 [75]. Assignment tests were also performed in STRUCTURE 2.3.3

[79,80] under the Allele Frequencies Correlated Model and

Admixture Model. The newly developed Sampling Locations as

Priors Model was also used, as this model incorporates pre-defined

sample group information (in this case, each individual was

identified a priori as mule deer, black-tailed deer or white-tailed

deer) to allow population structure to be detected at lower levels of

divergence and with less data than earlier versions of STRUCTURE

[81]. Assignment tests were run for K=126, with 50 000 burn-in

steps and 500 000 iterations for each value of K. Tests were

performed three times for each value of K, and the DK statistic of

Evanno et al. [24] was used to determine the most likely value of K

for each data set. Factorial correspondence analysis (FCA) was

implemented in GENETIX 4.05.2 [77] in order to represent genetic

relationships among individual deer graphically.

Three measures of genetic distance were calculated to further

confirm that the newly identified SNPs exhibit patterns of genetic

variation and structure in accordance with theoretical expecta-

tions. Weir and Cockerham’s [82] measure of FST was calculated

in GENETIX [77], and the standard deviation was estimated using

10 000 permutations. The more recently developed Jost’s D [83]

was estimated in GENODIVE [84] and the standard error calculated

against a background of 10 000 permutations. Nei’s minimum

genetic distance, Dm [37], was estimated in POPULATIONS 1.2.31

[85]. FST is one of the most commonly used measures of genetic

differentiation and is used in LOSITAN to detect loci under selection,

despite being strongly affected by high levels of polymorphism

[32235]. D provides an unbiased quantification of differences in

allele frequencies between populations without being affected by

levels of genetic diversity and heterozygosity the way FST and its

analogues are [83]. Dm performs well in recently diverged lineages

and when mutation rate is low [37], and is therefore well suited for

SNP data (low mutation rates and numbers of alleles [86]) and the

study system (recently diverged lineages [53]).

Supporting Information

Table S1 Genome location, outlier-analysis in LOSI-

TAN and Minor Allele Frequency (MAF) data of the 1068

polymorphic SNPs identified in O. hemionus and O.

virginianus. Only SNPs that were genotyped in at least 90% of

individuals were included in the analysis. The chromosomal

position of each SNP on the Bos taurus genome assemblies

UDM3.0 and BTAU4.0 is included. N/A values in the UMD3.0

assembly indicate that SNPs that are not mapped to this genome

assembly. Zero values on the BTAU4.0 assembly are indicative of

SNPs that could not be mapped to this assembly.

(XLS)
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