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Abstract

Background: Small RNAs (19-24 nt) are key regulators of gene expression that guide both transcriptional and post-
transcriptional silencing mechanisms in eukaryotes. Current studies have demonstrated that microRNAs (miRNAs)
act in several plant pathways associated with tissue proliferation, differentiation, and development and in response
to abiotic and biotic stresses. In order to identify new miRNAs in soybean and to verify those that are possibly
water deficit and rust-stress regulated, eight libraries of small RNAs were constructed and submitted to Solexa
sequencing.

Results: The libraries were developed from drought-sensitive and tolerant seedlings and rust-susceptible and
resistant soybeans with or without stressors. Sequencing the library and subsequent analyses detected 256 miRNAs.
From this total, we identified 24 families of novel miRNAs that had not been reported before, six families of
conserved miRNAs that exist in other plants species, and 22 families previously reported in soybean. We also
observed the presence of several isomiRNAs during our analyses. To validate novel miRNAs, we performed RT-qPCR
across the eight different libraries. Among the 11 miRNAs analyzed, all showed different expression profiles during
biotic and abiotic stresses to soybean. The majority of miRNAs were up-regulated during water deficit stress in the
sensitive plants. However, for the tolerant genotype, most of the miRNAs were down regulated. The pattern of
miRNAs expression was also different for the distinct genotypes submitted to the pathogen stress. Most miRNAs
were down regulated during the fungus infection in the susceptible genotype; however, in the resistant genotype,
most miRNAs did not vary during rust attack. A prediction of the putative targets was carried out for conserved
and novel miRNAs families.

Conclusions: Validation of our results with quantitative RT-qPCR revealed that Solexa sequencing is a powerful
tool for miRNA discovery. The identification of differentially expressed plant miRNAs provides molecular evidence
for the possible involvement of miRNAs in the process of water deficit- and rust-stress responses.

Background
Small, non-coding RNAs have been characterized in

plants as important factors involved in gene expression

regulation in developmental processes [1,2], as well as

adaption to biotic and abiotic stress conditions [3,4]. In

general, small RNAs are grouped into two major classes:

microRNAs (miRNAs) and short-interfering RNAs

(siRNAs). These two classes of small RNAs cannot be

discriminated by either their chemical composition or

mechanism of action [5,6]. However, siRNAs and miR-

NAs can be distinguished by their origin, evolutionary

conservation and the types of genes that they silence

[5,6]. In this way, miRNAs are well differentiated due to

some particular characteristics. These characteristics

include the following: derived from genomic loci distinct

from other recognized genes, processed from transcripts

that can form local RNA hairpin structures, and usually,

miRNAs sequences are nearly always conserved in

related organisms [6,7].
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In plants, MIRNA genes are transcribed by RNA poly-

merase II enzymes (Pol II) generating primary miRNA

(pri-miRNA). The pri-miRNA forms an imperfect fold-

back structure, which is processed into a stem-loop pre-

cursor (pre-miRNA) by nuclear RNaseIII-like enzymes

called DICER-LIKE proteins (e.g., DCL1) [8]. The result-

ing pre-miRNA contains a miRNA:miRNA* intermediate

duplex, formed by a self-complementary fold-back struc-

ture. A mature miRNA sequence can range from 19 to

24 nucleotides (nt) in length and act as a regulatory

molecule in post-transcriptional gene silencing by base

pairing with target mRNAs. This leads to mRNA clea-

vage or translational repression, depending on the

degree of complementarity between the miRNA and its

target transcript [6,9]. The same mature miRNA can

also present several variants of their sequence in length.

These populations of miRNA variants are called isomiR-

NAs, which are isoforms of microRNAs [10]. They are

caused by an imprecise or alternative cleavage of Dicer

during pre-miRNA processing [10]. IsomiRNAs have

been recently identified in both plants and animals

[10-12].

The first plant miRNAs were described in Arabidopsis

thaliana [13,14] and later in other species. Currently,

miRNAs have been reported in 41 plants species, and all

of their sequences have been deposited in a publicly-

available miRNA database, miRBase (http://www.sanger.

ac.uk/cgi-bin/Rfam/mirna/browse.pl) [15-18]. Several

miRNAs have been identified in plants, and they are

characterized in a wide variety of metabolic and biologi-

cal processes in plants with important functions in

development [19,20], phytohormone signaling [21], flow-

ering and sex determination [22] and responses to biotic

and abiotic stresses [3,4,19,23-25].

In soybean (Glycine max (L.) Merrill), the major

legume crop worldwide, Subramanian et al. in 2008 [26]

identified 35 novel miRNA families for the first time. In

this study, the role of miRNAs in soybean-rhizobial

symbiosis was investigated [26]. During that same year,

Zhang et al. [27] used a comparative genome-based in

silico screening of soybean EST databases and quantita-

tive PCR to provide evidence for 69 miRNAs belonging

to 33 families. A second study involving miRNAs and

soybean root nodules was performed by Wang and col-

leagues [28]. They identified 32 miRNAs belonging to

11 miRNA families. The identification of nine novel

miRNAs in wild soybean (Glycine soja) was also

reported by Chen et al. [29]. Another study looked at

four different soybean tissues (root, seed, flower and

nodule) and identified 87 novel soybean miRNAs [30].

Recently, Song and coworkers [31] identified 26 new

miRNAs and their related target genes from developing

soybean seeds. Although these studies resulted in a large

number of miRNAs identified in soybean, none of them

looked at microRNAs with respect to biotic and abiotic

stresses.

Drought is the major abiotic stress factor to negatively

affect soybean productivity around the world. The

impact of limited water during the flower formation can

cause shorter flowering periods [32,33], and water stress

during the later phases of soybean reproductive develop-

ment has been reported to accelerate senescence, which

decreases the duration of the seed-filling period [32,33].

With regards to biotic stress, Asian soybean rust (ASR)

is a foliar disease caused by the fungus Phakopsora

pachyrhizi Sydow & Sydow. This pathogen presents a

rapid aerial spread and a high capacity to colonize leaf

tissue and, to a lesser extent, stem and pods [34]. ASR

is one of the most severe diseases on the soybean cul-

ture, which causes damage between 10% and 90% in the

different regions where it has been identified [35,36].

This disease is the main threat in soybean-producing

countries.

Currently, there are 203 miRNAs identified in Glycine

max (miRBase database, release 16, http://www.mirbase.

org/); however, none of these miRNAs were associated

with water deficit or ASR stress conditions. We consider

that the identification of these miRNAs is important to

understanding small RNA-mediated gene regulation in

soybean roots under water deficit stress and in leaves

during rust infection. In this context, our goal was to

identify new miRNAs and to discover those that may be

regulated by water deficit and soybean rust stress. Using

high-throughput sequencing, we constructed four

libraries of small RNAs from the roots of drought-sensi-

tive and tolerant seedlings in response to control or

water deficit conditions. We also constructed four

libraries from leaves of rust-susceptible and resistant

seedlings with mock and infected conditions. A set of

eight small RNAs libraries was analyzed from soybean

plants. A total of 256 miRNAs were detected in Solexa

sequencing. We discovered 24 novel miRNAs families

and also detected several isomiRNAs in soybean. In our

RT-qPCR analysis, we verified that the expression profile

of several miRNAs varied during abiotic and biotic

stresses. This study has important implications for gene

regulation under water deficit and pathogen-infection

conditions and also contributes significantly to increase

the number of identified miRNAs in soybean.

Methods
Plant materials and treatments

Water deficit assay

For water deficit treatment, we used the soybean (Gly-

cine max (L.) Merrill) cultivars ‘Embrapa 48’ as a

drought-tolerant standard and ‘BR 16’ as a sensitive

standard [37]. Plants were grown in a greenhouse at

Embrapa-Soybean (Londrina, Brazil) using a hydroponic
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system compound for plastic containers (30 liters) and

an aerated pH 6.6-balanced nutrient solution. Seeds

were pre-germinated on moist filter paper in the dark at

25°C ± 1°C and in 65% ± 5% relative humidity. Plantlets

were then placed in polystyrene supports so the roots of

the seedlings were completely immersed in the nutrient

solution. Each seedling tray was maintained in a green-

house at 25°C ± 2°C and in 60% ± 5% relative humidity

under natural daylight (photosynthetic photon flux den-

sity (PPFD) = 1.5 × 103 μmoles m-2 s-1, equivalent to

8.93 × 104 lux) for a 12 h day. After 15 days, seedlings

with the first trifoliate leaf fully developed (V2 develop-

mental stage) [38] were submitted to different water-

deficit treatments according to Martins et al. [39]. The

nutrient solution was removed from each plastic con-

tainer where the roots were kept in the tray in the dark

without nutrient solution or water for 0 minutes (T0 or

control), 125 minutes (T125) and 150 minutes (T150).

At the end of each water-deficit period, the roots of the

seedlings were immediately frozen in liquid nitrogen

and stored at -80°C until RNA extraction. The experi-

mental design was a factorial (cultivars × duration of

water deficit) with three replicates. Each replicate was

composed of five plantlets that were sampled in bulk.

Four libraries of small RNAs were constructed for the

water deficit-stress assays from the following root tis-

sues: 1) roots of drought-sensitive seedlings submitted

to 0 minutes of stress (Drought-Sensitive Root Control

(DSRC)); 2) roots of drought-sensitive seedlings sub-

mitted to 125 minutes and 150 minutes of stress

(Drought-Sensitive Root Treated (DSRT)); 3) roots from

drought-tolerant seedlings submitted to 0 minutes of

stress (Drought-Tolerant Root Control (DTRC)); and 4)

roots of drought-tolerant seedlings submitted to 125

minutes and 150 minutes of stress (Drought-Tolerant

Root Treated (DTRT)).

Asian Soybean Rust assay

The ASR reaction was evaluated in soybean plants in a

greenhouse at Embrapa-Soybean (Londrina, Brazil)

using a field population of Phakopsora pachyrhizi col-

lected from soybean fields in the state of Mato Grosso,

which were maintained for over 10 generations on the

susceptible cv. BRSMS-Bacuri. ASR identification was

confirmed by ITS-sequencing analysis as described by

Silva et al. [40], and it revealed a similarity to the MUT

Zimbabwe isolate. The soybean plants were grown in a

pot-based system. The ‘Embrapa 48’ genotype was used

as a susceptible host plant, which develops a susceptible

lesion (TAN) after Phakopsora pachyrhizi infection. The

‘PI561356’ genotype was used as the resistant host,

which carries an ASR resistance gene mapped onto link-

age group G (Ricardo V. Abdelnoor, personal communi-

cation) and develops a reddish-brown (RB) lesion with

few or no spores.

Urediniospores were collected from infected BRSMS-

Bacuri plants in a separate greenhouse by tapping

infected leaves over a plastic tray. The urediniospores

were then diluted in distilled water with 0.05% Tween-

20 to a final concentration of 3 × 105 spores/mL. This

spore suspension was sprayed onto three plants per pot

at the V2 to V3 growth stages [38]. A solution without

the spores was used for the mock inoculations. Follow-

ing the ASR or mock inoculations, water-misting bags

were placed over all plantlets for one day to aid the

infection process and to prevent cross-contamination of

the mock-infected plants. The third trifoliolate leaves of

six plants were collected 12 hours after inoculation (hai)

for RNA extraction. The experiment followed a comple-

tely randomized design with the three replicates as

blocks and a full factorial treatment structure consisting

of three treatment factors: hai (12 hours), genotype

(resistant or susceptible), and inoculation type (ASR or

mock).

For the rust-stress assay, we constructed the other

four libraries of small RNAs from leaves which were

compounded by: 1) leaves of rust-susceptible seedlings

with mock inoculation (Rust-Susceptible Leaf Control

(RSLC)); 2) leaves of rust-susceptible seedlings with

rust-spore inoculation (Rust-Susceptible Leaf Treated

(RSLT)); 3) leaves of rust-resistant seedlings with mock

inoculation (Rust-Resistant Leaf Control (RRLC)); and

4) leaves of rust-resistant seedlings with rust-spore

inoculation (Rust-Resistant Leaf Treated (RRLT)).

RNA extraction and sequencing

Total RNA was isolated from fresh leaves and root

materials using Trizol (Invitrogen, CA, USA), and the

RNA quality was evaluated by electrophoresis on a 1%

agarose gel. The amount of the RNA was verified using

a Quibit fluorometer and Quant-iT RNA assay kit

according to the manufacturer’s instructions (Invitrogen,

CA, USA). Total RNA ( > 10 μg) was sent to Fasteris

Life Sciences SA (Plan-les-Ouates, Switzerland) for pro-

cessing and sequencing using Solexa technology on the

Illumina Genome Analyzer GAII. The libraries were

constructed from the eight bar-coded samples (DSRC,

DSRT, DTRC, DTRT, RSLC, RSLI, RRLC and RRLI)

sequenced in a total of two channels. Quality scores

were generated from Illumina’s data analysis pipeline,

which are similar to SAGE Phred scores with a maxi-

mum value of 40. Quality scores are based on the rela-

tive confidence of base calls using elements of cluster

generation and image quality. Briefly, the processing by

Illumina for the miRNA analyses consisted of the fol-

lowing successive steps: acrylamide gel purification of

the RNA bands corresponding to the size range 20-30

nt, ligation of the 3’ and 5’ adapters to the RNA in two

separate subsequent steps each followed by acrylamide
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gel purification, (3) cDNA synthesis followed by acryla-

mide gel purification, and a final step of PCR amplifica-

tion to generate cDNA colonies template library for

Illumina sequencing. After removing the adapter

sequences, the sequences were trimmed into different

read lengths from 19 to 24 nt for further analysis.

Prediction of miRNAs

The reads were grouped into unique sequences, and the

read counts were calculated for each library. The

sequences that presented low read counts (read count <

= 2) were discarded from the final list of unique

sequences, which are referred to as a tag. The sequences

were mapped into the soybean genome (http://www.

phytozome.net) assembly using the SOAP program [41],

which returns information concerning the alignment

position, chromosome number and strand. No mis-

matches were allowed in the alignments. The tag align-

ment position’s upstream and downstream genomic

sequences (200 bp each) were extracted from the gen-

ome assembly using homemade Perl scripts. These

genomic regions were then aligned against the reverse

complement of its respective tag (rc-tag) using the

Smith-Waterman algorithm [42]. To ensure that these

pre-miRNA sequences could be precisely processed into

mature miRNA, the candidates were examined accord-

ing the following criteria [43]: i) the miRNA and anti-

sense miRNA should derive from the opposite stem-

arms and must be entirely within the arm of the hairpin;

ii) base-pairing between the miRNA and anti-sense

miRNA were restricted to four or fewer mismatches;

and iii) the frequency of asymmetric bulges was

restricted to less than one and the size should be less

than two bases. The genomic regions that were not pos-

sible to align the tag and rc-tag were discarded. Finally,

the genomic regions that were limited between the

alignment positions of the tag and rc-tag were consid-

ered as pre-microRNA candidates. From all the pre-

microRNA candidate sequences that we selected, only

the ones with no more than five matches to the soybean

genome were selected for analyzing the secondary struc-

ture using the RNA-folding program Mfold [44]. If a

perfect stem-loop structure was formed, the small RNA

sequence was at one arm of the stem, and the respective

anti-sense sequence was at the opposite arm; then, the

small RNA was consisted as a novel soybean miRNA.

miRNA validation and expression analysis by RT-qPCR

To validate predicted new miRNAs, RT-qPCR in respect

to eleven miRNAs was performed to examine their

expression across the eight different libraries. From

those, six were new miRNAs belonging to conserved

soybean miRNAs families (MIR166a-5p, MIR166f,

MIR169f-3p, MIR482bd-3p, MIR1513c, MIR4415b); one

new miRNA pertencing to conserved miRNAs families

in other plants species (MIR397ab); and four were miR-

NAs belonging to novel miRNAs families (MIR-Seq07,

MIR-Seq11, MIR-Seq13, MIR-Seq15ab). The forward

miRNAs primers were designed based on the full miR-

NAs sequence, and the reverse primer was the universal

reverse primer for miRNA [45]. The stem-loop primer,

used for miRNA cDNA synthesis, was designed accord-

ing to Cheng et al. [45]. The stem-loop sequence con-

sisted of 44 conserved and six variable nucleotides that

were specific to the 3’ end of the miRNA sequence (5’

GTCGTATCCAGTGCAGGGTCCGAGGTATTCG-

CACTGGATACGACNNNNNN 3’). The RT-qPCR was

performed in an ABI 7500 Real-Time PCR System

(Applied Biosystems) using SYBR Green I (Invitrogen)

to detect double-stranded cDNA synthesis. Reactions

were completed in a volume of 24 μL containing 12 μL

of diluted cDNA (1:50), 1X SYBR Green I (Invitrogen),

0.025 mM dNTP, 1X PCR Buffer, 3 mM MgCl2, 0.25 U

Platinum Taq DNA Polymerase (Invitrogen) and 200

nM of each reverse and forward primer. The universal

reverse primer (5’ GTGCAGGGTCCGAGGT 3’) was

used in all RT-qPCR reactions. Samples were analyzed

in biological triplicate in a 96-well plate, and a no-tem-

plate control was included. We used MIR156b (5’-

TGACAGAAGAGAGAGAGCACA - 3’), MIR172ab (5’-

AGAATCTTGATGATGCTGCAT - 3’) and MIR1520d

(5’- ATCAGAACATGACACGTGACAA - 3’) as refer-

ence genes, which has been demonstrated as optimal

normalizers for water deficit and rust-stress analysis in

Glycine max [46]. The conditions were set as the follow-

ing: an initial polymerase activation step for 5 minutes

at 94°C, 40 cycles for 15 seconds at 94°C for denatura-

tion, 10 seconds at 60°C for annealing and 25 seconds

at 72°C for elongation. A melting curve analysis was

programmed at the end of the PCR run over the range

65-99, increasing the temperature stepwise by 0.4°C.

Threshold and baselines were manually determined

using the ABI 7500 Real-Time PCR System SDS Soft-

ware v2.0. To calculate the relative expression of the

miRNAs, we used the 2-∆∆Ct method. Student’s t-test

was performed to compare pair-wise differences in

expression. The parameters of two-tailed distribution

and two samples assuming unequal variances were

established. The means were considered significantly dif-

ferent when P < 0.05.

Prediction of miRNA targets

Target prediction for miRNAs is straightforward because

it is assumed that most of them match their targets with

almost perfect complementarity [8,9]. The putative tar-

get genes for all miRNAs identified were searched for by

using the web-based computer psRNA Target Server

(http://biocomp5.noble.org/psRNATarget/) [47] which
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can identify putative targets that may be regulated at

post-transcriptional or at translational levels. Mature

miRNA sequences were used as queries to search for

potential target mRNAs in the Glycine max database

(DFCI gene index release 15). The total scoring for an

alignment was calculated based on the miRNA length,

and the sequences were considered to be miRNA targets

if the total score were less than 3.0 points (mismatch =

1 and G:U = 0.5). Results from these analyses were indi-

vidually inspected on the Phytozome, where the loci and

protein annotation were obtained. In order to look for

evidences of the predicted targets of the novel identified

miRNA, we searched for the miRNA targets sites in the

soybean degradome libraries published by Song et al.

[31] available under NCBI-GEO accession nμ.

GSE25260. Finally, all putative targets regulated by soy-

bean new miRNAs which were analyzed by RT-qPCR

were subjected to AgriGO database to investigate the

gene ontology [48].

Results
To identify miRNAs from soybean under water deficit

and rust stresses, we generated eight libraries of small

RNAs species. From these libraries, a total of 256 miR-

NAs ranged from 19 to 24 nt-long sequence sizes were

identified (Table 1). All pre-miRNA sequence candidates

that were selected by the parameters stipulated during

the miRNA prediction and those that had no more than

five matches on the soybean genome were folded using

the Mfold program. All miRNA sequences with the

respective precursor sequence originating at a hairpin

structure were submitted to the miRBase to determine if

they were a new or known miRNA. We separated the

results of these miRNAs according the following classes:

novel miRNAs belonging to miRNAs families never

detected before (29 miRNAs); new miRNAs belonging

to conserved miRNA families in other plants species

detected for the first time in soybean (15 miRNAs);

miRNAs belonging to conserved miRNA soybean

families (71 miRNAs); different isoforms of new and

known miRNAs (121 isoforms); and known miRNAs

already deposited into the miRBase database (20 miR-

NAs) (Table 1).

Identification of novel miRNAs from soybean

A total of 29 new miRNAs belonging to 24 novel

families (Table 2) were identified by Solexa sequencing

in libraries from water deficit and rust infections of Gly-

cine max. These families were provisory nominated

Seq01 to Seq25 (Table 2). The precursor miRNA

sequences varied from 55 to 239 nt in length. Precursors

of these novel miRNAs were identified, and they formed

proper secondary hairpin structures, with MFEs ranging

from -16.50 to -153.80 kcal/mol (Additional file 1). The

most abundant mature miRNAs were 21 nt in length.

We also evaluated the genomic location of the new

miRNAs (Table 2). Of the 29 new miRNAs genes identi-

fied in soybean, around 86% (25) were located in inter-

genic regions and the rest were situated inside genes.

The mature miRNAs sequences were localized inside

the stem-loop sequence with almost half in each arm:

17 miRNAs were localized in the 3’ arm and 12 miRNAs

were in the 5’ arm. More than 63% of the pre-miRNA

sequences were in the same sense direction (+) as the

soybean genome annotation. For all 24 novel families

identified, four were compounded by miRNAs provided

from two loci, and we detected only one miRNA mem-

ber for the rest. Sense and anti-sense miRNAs were

detected only in one family, the Seq10, and both were

nominated according the arm localization (3p or 5p).

Most of the new mature miRNA sequences presented a

uracil (U) as their first nucleotide, which is in agreement

with previous results for soybean root sequences [26].

Identification of homologues miRNAs of other plant

species

To determine whether any of the miRNAs identified in

our libraries were conserved among other plant species,

we searched miRBase for homologues. Besides the novel

families identified, we also detected 15 miRNAs belong-

ing to six conserved families in other plants species

(Table 3). The families MIR170, MIR395, MIR397,

MIR408, MIR2118 and MIR3522 were detected for the

first time in soybean. For families MIR170 and

MIR3522, only a single locus was identified, and for

MIR408, three genes were found. In two families,

MIR408 and MIR2118, we detected sense and antisense

Table 1 The amount of different miRNA classes detected by high-throughput sequencing.

Class Size (nt) Total

19 20 21 22 23 24

Novel miRNAs 4 3 12 5 1 4 29

New miRNAs pertencing to conserved miRNAs families in other plants species 1 2 9 3 - - 15

New miRNAs identified in conserved soybean miRNAs families 1 7 52 9 2 - 71

Isoforms of new and known miRNAs 24 50 26 16 4 1 121

Known miRNAs - 1 16 3 - - 20

miRNAs detected 30 63 115 36 7 5 256
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Table 2 The novel soybean microRNA families determined from Solexa sequencing.

Sequence Codea Mature miRNA Pre-miRNA Regionb

Sequence Size (nt) Ch Start End Length (nt) Sense Arm

gma-MIR-Seq01 GGACAGUCUCAGGUAGACA 19 Gm04 30764003 30764171 169 - 3p intergenic

gma-MIR-Seq03 UGAGAAAAGGAGGAUGUCA 19 Gm11 29821812 29821926 115 + 3p intergenic

gma-MIR-Seq04a GCUGGAUGUCUUUGAAGGA 19 Gm08 46853906 46853991 86 + 3p intergenic

gma-MIR-Seq04b GCUGGAUGUCUUUGAAGGA 19 Gm18 61624611 61624690 80 - 3p intergenic

gma-MIR-Seq05 AACCCUCAAAGGCUUCCUAG 20 Gm18 61626669 61626771 103 + 5p intergenic

gma-MIR-Seq06 AGUGGAACUUUGAGGCCUGC 20 Gm08 46848259 46848354 96 + 3p intergenic

gma-MIR-Seq07 AAAUGACUUGAGAGGUGUAG 20 Gm01 44787899 44787988 90 + 5p intergenic

gma-MIR-Seq08 CUAAAGAUUGUCCAAAAGGAA 21 Gm14 6763304 6763456 153 + 5p intergenic

gma-MIR-Seq09 GUAGUGGAUGCCUAGAGGUCC 21 Gm18 61655979 61656075 97 - 3p intergenic

gma-MIR-Seq10-5p UAGGAAUUAGUCACUCAGAUC 21 Gm15 31542836 31543058 223 + 5p intergenic

gma-MIR-Seq10-3p AUCUCAGUGACUAAUUUCUAG 21 Gm15 31542836 31543058 223 + 3p intergenic

gma-MIR-Seq11 UUGUUCGAUAAAACUGUUGUG 21 Gm16 5744795 5744863 69 - 5p intergenic

gma-MIR-Seq12 UCUCUUGAUUCUAGAUGAUGU 21 Gm16 27653048 27653102 55 + 3p CDS

gma-MIR-Seq13 UGUUGCGGGUAUCUUUGCCUC 21 Gm04 28578972 28579075 104 - 5p intergenic

gma-MIR-Seq14a UGAGAAUUUGGCCUCUGUCCA 21 Gm09 28264427 28264515 89 + 5p intergenic

gma-MIR-Seq14b UGAGAAUUUGGCCUCUGUCCA 21 Gm09 28272488 28272562 75 + 5p intergenic

gma-MIR-Seq15a UUAGAUUCACGCACAAACUUG 21 Gm02 1041996 1042084 89 + 3p intergenic

gma-MIR-Seq15b UUAGAUUCACGCACAAACUUG 21 Gm10 1085223 1085322 100 + 3p intergenic

gma-MIR-Seq16 UUAUAGUCUGACAUCUGGAAU 21 Gm05 9279518 9279737 220 + 5p intergenic

gma-MIR-Seq17 ACUAUAGAAGUACUUGUGGAGC 22 Gm16 2916844 2917034 191 + 5p CDS/intronic

gma-MIR-Seq18 CCUCAUUCCAAACAUCAUCUAA 22 Gm09 16565935 16566025 91 - 3p intergenic

gma-MIR-Seq19 UGAAGAUUUGAAGAAUUUGGGA 22 Gm15 16900161 16900327 167 + 5p intronic

gma-MIR-Seq20 CAUCGUUGACGCUGACUGUACG 22 Gm04 35428794 35428950 157 - 5p 5’UTR/intronic

gma-MIR-Seq21 CUGAAGGAUCGAUGUAGAAUGCU 23 Gm02 39825520 39825641 122 + 3p intergenic

gma-MIR-Seq22 CAUCUGAAGGAUAGAACACAUA 22 Gm09 29816467 29816705 239 + 3p intergenic

gma-MIR-Seq23 AGUUUCGUGACUACAACUUCUGAA 24 Gm15 16900193 16900294 102 - 3p intergenic

gma-MIR-Seq24 AUGAAAAUCAUUCAUUAUGAUAUC 24 Gm16 28536014 28536181 168 - 3p intergenic

gma-MIR-Seq25a GAAAAUGAAUGAUGAGGAUGGGGA 24 Gm11 7787358 7787494 137 - 3p intergenic

a The number refers to a new family and the letter refers to the new gene in that family. b CDS: codon sequence.

Table 3 New Glycine max miRNA families conserved in other plants species.

Family Acronym miRNA Sequence Size (nt) Species

MIR170 gma-MIR170 UAUUGGCCUGGUUCACUCAGA 21 ath, aly

MIR395 gma-MIR395a CUGAAGUGUUUGGGGGAACUC 21 ath, ptc, vvi, sly, rco, aly, csi, osa,

gma-MIR395b CUGAAGUGUUUGGGGGAACUC 21 sbi, mtr, zma, tae, pab

gma-MIR395c CUGAAGUGUUUGGGGGAACUC 21

MIR397 gma-MIR397a UCAUUGAGUGCAGCGUUGAUG 21 ath, osa, ptc, bna, vvi, sbi, bdi, rco,

gma-MIR397b UCAUUGAGUGCAGCGUUGAUG 21 aly, csi, zma, pab, sly, hvu

MIR408 gma-MIR408a AUGCACUGCCUCUUCCCUGGC 21 ath, ptc, pta, vvi, ahy, aly, csi, osa,

gma-MIR408b-5p CUGGGAACAGGCAGGGCACG 20 sof, zma, ppt, smo,

gma-MIR408b-3p AUGCACUGCCUCUUCCCUGGC 21 tae, sbi, bdi, rco, aqc

gma-MIR408c AUGCACUGCCUCUUCCCUGGC 21

MIR2118 gma-MIR2118a-5p GGAGAUGGGAGGGUCGGUAAAG 22

gma-MIR2118a-3p UUGCCGAUUCCACCCAUUCCUA 22 pvc, gso, mtr, osa, zma

gma-MIR2118b-5p GGAGAUGGGAGGGUCGGUAA 20

gma-MIR2118b-3p UUGCCGAUUCCACCCAUUCCUA 22

MIR3522 gma-MIR3522a UGAGACCAAAUGAGCAGCUGA 21 gso

Arabidopsis lyrata (aly), Arabidopsis thaliana (ath), Brassica napus (bna), Ricinus communis (rco), Medicago truncatula (mtr), Phaseolus vulgaris (pvu), Arachis

hypogaea (ahy), Glycine soja (gso), Aquilegia coerulea (aqc), Seleginella moellendorffii (smo), Physcomitrella patens (ppt), Pinus taeda (pta), Picea abies (pab), Populus

trichocarpa (ptc), Citrus sinensis (csi), Vitis vinifera (vvi), Solanum lycopersicum (sly), Brachypodium distachyon (bdi), Hordeum vulgare (hvu), Oryza sativa (osa),

Saccharum officinarum (sof), Selaginella moellendorffii (smo), Sorghum bicolor (sbi), Triticum aestivum (tae), and Zea mays (zma).
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miRNAs (Table 3). MIR170 was only conserved in Ara-

bidopsis lyrata and Arabidopsis thaliana. MIR408 was

found in more different plants species than the other

families. It was found in 17 species: Arabidopsis thali-

ana, Populus trichocarpa, Pinus taeda, Vitis vinifera,

Arachis hypogaea, Arabidopsis lyrata, Citrus sinensis,

Oryza sativa, Saccharum officinarum, Zea mays, Physco-

mitrella patens, Selaginella moellendorffii, Triticum aes-

tivum, Sorghum bicolor, Brachypodium distachyon,

Ricinus communis and Aquilegia coerulea (Table 3). We

observed two families (MIR2118 and MIR3522) to be

conserved between Glycine max and Glycine soja; how-

ever, we expect that more miRNA families could be

conserved between these species considering that they

are closely related. This low number is probably due to

Glycine soja showing fewer miRNAs identified to date.

Identification of conserved soybean miRNAs

To identify conserved soybean miRNAs, all 256

sequences were searched using BLASTn against the soy-

bean miRNAs in miRBase. We identified 22 families of

conserved soybean miRNAs in our libraries. Only 20

miRNA soybean genes that were registered in the miR-

Base were observed (indicated by the number five in

Table 1). From the remaining 71 miRNA genes, 12 were

miRNAs antisense (in the opposite arm) to the miRNAs

presents in miRBase (indicated as group four in Table

4), and 59 were new members detected from new loci of

known families (indicated by number three in Table 4).

Of the 12 miRNAs identified from the opposite strand

of previously known miRNAs, six were in the 5’ arm

and six in the 3’arm. For the 59 new members of con-

served soybean families, 45 miRNAs were 21 nt in

length. The family with the largest number of new

miRNA genes (nine genes) was MIR319 (Table 4). Inter-

estingly, in family MIR166, we found three new mem-

bers with sense and antisense miRNAs. Also, in

MIR159, two new genes with sequences originated from

both the 3’and 5’arms were identified. One new gene

was detected in MIR169, MIR172, MIR396 and MIR482

with mature sequences originated from both the 3’and

5’arms (Table 4). Similar to the observation for the

novel soybean miRNAs (Table 2), the new genes in

these conserved soybean families were compounded for

a majority of mature miRNAs with a uracil as the first

nucleotide in the 5’ end.

Identification of miRNAs isoforms

Isoforms of microRNAs (isomiRNAs) are a population

of known miRNA variants. They are caused by an

imprecise or alternative cleavage of Dicer during pre-

miRNA processing [10]. We detected numerous

miRNAs with additional nucleotides in the 5’or 3’ termi-

nus compared to the recorded mature miRNAs. As

isomiRNAs were previously reported in soybean high-

throughput sequencing [31], we found 121 isomiRNAs

in our libraries (Table 5). These isoforms were observed

in 22 conserved miRNA families and in four novel

families. These miRNA isoforms occurred in both

strands from the 5’ or 3’ arm. The conserved MIR1507a

and MIR1507b were found with the most isomiRNAs

detected (eight isoforms each). MIR1507a showed a var-

iation of three nucleotides in the 5’end and six nucleo-

tides in the 3’end, and MIR1507b showed a variation of

three and five nucleotides in the 5’and 3’ terminal region

respectively (Table 5). From the novel miRNAs identi-

fied, the MIR-Seq07 was the read with the most iso-

forms detected in our sequencing. This miRNA

presented a total of 14 different sequences with 14 vary-

ing nucleotides in both the 5’and 3’ ends from six fixed

nucleotides (Table 5). All isoforms and their respective

nominated mature miRNAs can be found in Additional

File 1.

Validation of miRNAs validation and expression profile by

RT-qPCR

The stem-loop RT-qPCR was used to validate and

measure the expression of the respective miRNAs:

MIR166a-5p, MIR166f, MIR169f-3p, MIR397ab,

MIR482bd-3p, MIR1513c, MIR4415b, MIR-Seq07, MIR-

Seq11, MIR-Seq13 and MIR-Seq15ab, detected by

Solexa sequencing. These miRNAs were validated in all

genotypes analyzed during dehydration and rust stress.

The relative expressions of these miRNAs in the same

eight conditions are shown in Figure 1.

Expression patterns of miRNAs during water deficit

To identify water deficit-responsive miRNAs, we com-

pared the expression profiles of the 11 miRNAs in both

genotypes before and after stress (Figure 1A). A set of

five different miRNAs (MIR166-5p, MIR169f-3p,

MIR1513c, MIR397ab and MIR-Seq13) presented the

same behavior during the water deficit stress. These

miRNAs were commonly up-regulated during the stress

condition in the sensitive genotype, and the opposite

occur in the tolerant genotype, where they were down-

regulated during the water deficit. MIR-Seq11 and MIR-

Seq15 demonstrated a similar expression across the four

conditions. Water deficit significantly increased MIR-

Seq11 and MIR-Seq15 expression in the roots compared

to the control condition in the sensitive genotype, but

both miRNAs did not vary in the tolerant plants.

MIR166f had its level increased in the sensitive genotype

and decreased in the tolerant during the stress com-

pared to the control situation. Interestingly, both geno-

types presented the same level during the control

condition. In the sensitive plants, MIR-482bd-3p showed

a strong decrease when submitted to water deficit, being

this low level equally observed in the tolerant genotype
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Table 4 Families of conserved soybean miRNAs.

Groupa miRNA ID miRNA ID sequence Size(nt) Ch Start End Arm Members registered in
miRBaseb

5 gma-MIR156d UUGACAGAAGAUAGAGAGCAC 21 Gm08 3891365 3891489 5’ a*,b*,c*,d,e*,f*,g*

3 gma-MIR156h UUGACAGAAGAUAGAGAGCAC 21 Gm02 7812526 7812628 5’

3 gma-MIR156i UUGACAGAAGAUAGAGAGCAC 21 Gm05 38621690 38621813 5’

3 gma-MIR156j UUGACAGAAGAGAGUGAGCAC 21 Gm06 4699149 4699240 5’

3 gma-MIR156k UUGACAGAAGAUAGAGAGCAC 21 Gm07 9347139 9347259 5’

3 gma-MIR156l UUGACAGAAGAUAGAGAGCAC 21 Gm09 37843750 37843864 5’

3 gma-MIR156m UUGACAGAAGAGAGUGAGCAC 21 Gm14 10664512 10664600 5’

3 gma-MIR156n UUGACAGAAGAGAGUGAGCAC 21 Gm17 37759446 37759535 5’

5 gma-MIR159a-3p UUUGGAUUGAAGGGAGCUCUA 21 Gm09 37672410 37672586 3’ a(3’),b(3’),c*,d*

4 gma-MIR159a-5p GAGCUCCUUGAAGUCCAAUUG 21 Gm09 37672410 37672586 5’

5 gma-MIR159b-3p AUUGGAGUGAAGGGAGCUCCA 21 Gm07 5386107 5386292 3’

4 gma-MIR159b-5p GAGUUCCCUGCACUCCAAGUC 21 Gm07 5386107 5386292 5’

3 gma-MIR159e-3p UUUGGAUUGAAGGGAGCUCUA 21 Gm07 9524917 9525127 3’

3 gma-MIR159e-5p GAGCUCCUUGAAGUCCAAUU 20 Gm07 9524917 9525127 5’

3 gma-MIR159f-3p AUUGGAGUGAAGGGAGCUCCA 21 Gm16 2794128 2794307 3’

3 gma-MIR159f-5p GAGUUCCCUGCACUCCAAGUC 21 Gm16 2794128 2794307 5’

5 gma-MIR162a UCGAUAAACCUCUGCAUCCAG 21 Gm06 20176238 20176339 3’ a

3 gma-MIR162b UCGAUAAACCUCUGCAUCCAG 21 Gm05 7692594 7692698 3’

3 gma-MIR162c UCGAUAAACCUCUGCAUCCAG 21 Gm17 10181489 10181607 3’

5 gma-MIR166a-3p UCGGACCAGGCUUCAUUCCCC 21 Gm16 1912570 1912715 3’ a(3’),b*

4 gma-MIR166a-5p GGAAUGUUGUCUGGCUCGAGG 21 Gm16 1912570 1912715 5’

3 gma-MIR166c-3p UCGGACCAGGCUUCAUUCCCC 21 Gm02 14340767 14340863 3’

3 gma-MIR166c-5p GGAAUGUCGUCUGGUUCGAG 20 Gm02 14340767 14340863 5’

3 gma-MIR166d-3p UCGGACCAGGCUUCAUUCCCG 21 Gm08 14990547 14990731 3’

3 gma-MIR166d-5p GGAAUGUUGUUUGGCUCGAGG 21 Gm08 14990547 14990731 5’

3 gma-MIR166e-3p UCGGACCAGGCUUCAUUCCCG 21 Gm15 3688764 3688931 3’

3 gma-MIR166e-5p GGAAUGUUGUUUGGCUCGAGG 21 Gm15 3688764 3688931 5’

3 gma-MIR166f UCUCGGACCAGGCUUCAUUCC 21 Gm20 43105394 43105500 3’

5 gma-MIR167c UGAAGCUGCCAGCAUGAUCUG 21 Gm07 39778512 39778886 5’ a*,b*,c,d*,e*,f*,g*

3 gma-MIR167h UGAAGCUGCCAGCAUGAUCUG 21 Gm20 44765096 44765173 5’

5 gma-MIR168a UCGCUUGGUGCAGGUCGGGAA 21 Gm09 41353226 42353350 5’ a

3 gma-MIR168b UCGCUUGGUGCAGGUCGGGAA 21 Gm01 48070311 48070420 5’

5 gma-MIR169a CAGCCAAGGAUGACUUGCCGG 21 Gm09 35771804 35771924 5’ a,b*,c*,d*,e*

3 gma-MIR169f-3p UUUCGACGAGUUGUUCUUGGC 21 Gm02 46876643 46876727 3’

3 gma-MIR169f-5p UAGCCAAGAAUGACUUGCCGG 21 Gm02 46876643 46876727 5’

3 gma-MIR169g CAGCCAAGAAUGACUUGCCGG 21 Gm09 5263992 5264096 5’

3 gma-MIR169h CAGCCAAGAAUGACUUGCCGG 21 Gm14 5324798 5324911 5’

3 gma-MIR169i CAGCCAAGGAUGACUUGCCGG 21 Gm10 40332790 40332926 5’

3 gma-MIR169j CAGCCAAGGAUGACUUGCCGG 21 Gm13 368563 368441 5’

3 gma-MIR169k CAGCCAAGGGUGAUUUGCCGG 21 Gm15 14150069 14150183 5’

3 gma-MIR169l CAGCCAAGGAUGACUUGCCGG 21 Gm17 4861963 4861816 5’

3 gma-MIR171d UUGAGCCGUGCCAAUAUCACG 21 Gm06 48920631 48920715 3’ a*,b*,c*

3 gma-MIR171e CGAUGUUGGUGAGGUUCAAUC 21 Gm13 26271135 26271232 5’

3 gma-MIR171f CGAUGUUGGUGAGGUUCAAUC 21 Gm17 9101701 9101798 3’

4 gma-MIR172b-5p GUAGCAUCAUCAAGAUUCAC 20 Gm13 40401688 40401809 5’ a*,b(3’)*,c,d*,e*,f*

5 gma-MIR172c GGAAUCUUGAUGAUGCUGCAG 21 Gm18 2968986 2969138 3’

3 gma-MIR172g GCAGCACCAUCAAGAUUCAC 20 Gm10 31592576 31592689 5’

3 gma-MIR172h-3p AGAAUCUUGAUGAUGCUGCAU 21 Gm10 43474725 43474831 3’

3 gma-MIR172h-5p GCAGCAGCAUCAAGAUUCACA 21 Gm10 43474725 43474831 5’

3 gma-MIR172i GCAGCAGCAUCAAGAUUCACA 21 Gm15 2892962 2893122 5’
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during the control condition and decreasing when sub-

jected to stress. MIR4415b presented an effective rise in

its expression level during the water deficit in the sensi-

tive plants, and its high level was also observed in the

tolerant genotype independent of the condition. Both

sensitive and tolerant genotype exhibited the same

expression pattern for MIR-Seq07 and its level was

increased during the stress compared to the control

situation.

Expression patterns of miRNAs during soybean rust stress

The RT-qPCR analyses of four libraries from the rust

assays are shown in Figure 1B. The differential

Table 4 Families of conserved soybean miRNAs. (Continued)

3 gma-MIR172j GCAGCAGCAUCAAGAUUCACA 21 Gm20 40895747 40895836 5’

3 gma-MIR319d UUGGACUGAAGGGAGCUCCUUC 22 Gm02 43885398 43885595 3’ a*,b*,c*

3 gma-MIR319e UUGGACUGAAGGGAGCUCCCU 21 Gm02 45704227 45704412 3’

3 gma-MIR319f UUGGACUGAAGGGGAGCUCCUUC 23 Gm04 46348798 46348991 3’

3 gma-MIR319g UUGGACUGAAGGGAGCUCCCU 21 Gm11 1374020 1374198 3’

3 gma-MIR319h UUGGACUGAAGGGAGCUCCCU 21 Gm11 32902062 32902247 3’

3 gma-MIR319i UUGGACUGAAGGGAGCUCCCU 21 Gm14 47959350 47959535 3’

3 gma-MIR319j UUGGACUGAAGGGAGCUCCUUC 22 Gm14 45953433 45953649 3’

3 gma-MIR319k UUGGACUGAAGGGAGCUCCUUC 22 Gm17 9436178 9436279 3’

3 gma-MIR319l UUGGACUGAAGGGAGCUCCCU 21 Gm18 4278883 4279072 3’

4 gma-MIR396a-3p UUCAAUAAAGCUGUGGGAAG 20 Gm13 26338134 26338273 3’ a,b(5’),c,d(3’)*,e*

5 gma-MIR396a-5p UUCCACAGCUUUCUUGAACUG 21 Gm13 26338134 26338273 5’

4 gma-MIR396b-3p GCUCAAGAAAGCUGUGGGAGA 21 Gm13 26329931 26330056 3’

5 gma-MIR396b-5p UUCCACAGCUUUCUUGAACUU 21 Gm13 26329931 26330056 5’

5 gma-MIR396c UUCCACAGCUUUCUUGAACUU 21 Gm13 43804777 43804893 5’

4 gma-MIR396d-5p UUCCACAGCUUUCUUGAACUU 21 Gm17 9053051 9053155 5’

3 gma-MIR396f UCCACAGCUUUCUUGAACUG 20 Gm14 13971419 13971566 5’

3 gma-MIR396g UUCCACAGCUUUCUUGAACUU 21 Gm15 556707 556796 5’

3 gma-MIR396h-3p GUUCAAUAAAGCUGUGGGAAG 21 Gm17 9044850 9044984 3’

3 gma-MIR396h-5p UUCCACAGCUUUCUUGAACUG 21 Gm17 9044850 9044984 5’

4 gma-MIR482b-3p UCUUCCCUACACCUCCCAUACC 22 Gm20 35360312 35360406 3’ a*,b(5’)

5 gma-MIR482b-5p UAUGGGGGGAUUGGGAAGGAAU 22 Gm20 35360312 35360406 5’

3 gma-MIR482c AUUUGUGGGAAUGGGCUGAUUGG 23 Gm18 61452904 61453003 5’

3 gma-MIR482d-3p UCUUCCCUACACCUCCCAUACC 22 Gm10 48569629 48569723 3’

3 gma-MIR482d-5p UAUGGGGGGAUUGGGAAGGAAU 22 Gm10 48569629 48569723 5’

5 gma-MIR1507a UCUCAUUCCAUACAUCGUCUGA 22 Gm13 25849777 25849883 3’ a,b

5 gma-MIR1507b UCUCAUUCCAUACAUCGUCUG 21 Gm17 6190604 6190701 3’

5 gma-MIR1508b UAGAAAGGGAAAUAGCAGUUG 21 Gm09 28530168 28530271 3’ a*,b

5 gma-MIR1509a UUAAUCAAGGAAAUCACGGUCG 22 Gm17 10099759 10099869 5’ a, b*

4 gma-MIR1510b AGGGAUAGGUAAAACAACUACU 22 Gm02 6599299 6599392 5’ a*,b(3’)

5 gma-MIR1510b UGUUGUUUUACCUAUUCCACC 21 Gm02 6599299 6599392 3’

3 gma-MIR1512b UAACUGGAAAUUCUUAAAGCAU 22 Gm02 8618692 8618781 5’ a*

5 gma-MIR1513a UGAGAGAAAGCCAUGACUUAC 21 Gm07 43245809 43245901 5’ a

3 gma-MIR1513b UAUGAGAGAAAGCCAUGAC 19 Gm17 1401433 1401523 5’

3 gma-MIR1513c AAAGCCAUGACUUACACACGC 21 Gm20 223679 223766 3’

4 gma-MIR2109a GGAGGCGUAGAUACUCACACCU 22 Gm04 28532441 28532537 3’ a(5’)*

4 gma-MIR4376a-3p AGCAUCAUAUCUCCUGCAUAG 21 Gm13 40845925 40846034 3’ a(5’)*

5 gma-MIR4413a AAGAGAAUUGUAAGUCACUG 20 Gm19 1788518 1788617 5’ a

3 gma-MIR4413b UAAGAGAAUUGUAAGUCACU 20 Gm13 5170460 5170527 5’

4 gma-MIR4415a-3p UUGAUUCUCAUCACAACAUGG 21 Gm18 60474198 60474369 3’ a(5’)*

3 gma-MIR4415b UUGAUUCUCAUCACAACAUGG 21 Gm08 23142767 23142922 3’

a The group number refers to: (3) the new miRNAs identified in the conserved soybean miRNAs families; (4) miRNAs originated from the opposite arm of miRNAs
previously identified; and (5) miRNAs registered in the miRBase that were detected in our libraries. b * miRNAs registered in the miRBase database that were not
detected in our libraries.
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Table 5 miRNA isoforms identified in the soybean.

Groupa Acronym Sequenceb N isosc Pre-miRNA

Ch Start End

5 gma-MIR156g +2/ACAGAAGATAGAGAGCAC/+2 2 Gm19 8895390 8895493

5 gma-MIR159a-3p +2/TGGATTGAAGGGAGCTCT/+1 4 Gm09 37672410 37672586

4 gma-MIR159a-5p GAGCTCCTTGAAGTCCAATT/+1 2 Gm09 37672410 37672586

3 gma-MIR159e-3p +2/TGGATTGAAGGGAGCTC/+2 5 Gm07 9524917 9525127

3 gma-MIR166f TCTCGGACCAGGCTTCATTC/+1 2 Gm20 43105394 43105500

5 gma-MIR167g TGAAGCTGCCAGCATGATCTG/+1 2 Gm10 39044877 39044954

3 gma-MIR169g +1/AGCCAAGAATGACTTGCCGG 2 Gm09 5263992 5264096

3 gma-MIR169h +1/AGCCAAGAATGACTTGCCGG 2 Gm14 5324798 5324911

5 gma-MIR172c +1/GAATCTTGATGATGCTGCAG 2 Gm18 2968986 2969138

5 gma-MIR172d +1/GAATCTTGATGATGCTGCAG/+3 3 Gm14 5548752 5548901

5 gma-MIR172e +1/GAATCTTGATGATGCTGCAG/+3 3 Gm11 35957808 35957960

3 gma-MIR172h-5p GCAGCAGCATCAAGATTCAC/+1 2 Gm10 43474725 43474831

3 gma-MIR172i GCAGCAGCATCAAGATTCAC/+1 2 Gm15 2892962 2893122

3 gma-MIR172j GCAGCAGCATCAAGATTCAC/+1 2 Gm20 40895747 40895836

5 gma-MIR319a TTGGACTGAAGGGAGCTCCC/+1 2 Gm05 40832097 40832279

5 gma-MIR319b TTGGACTGAAGGGAGCTCCC/+1 2 Gm08 1647815 1647987

3 gma-MIR319d +2/GGACTGAAGGGAGCTCCTTC 2 Gm02 43885398 43885595

3 gma-MIR319f +1/TGGACTGAAGGGGAGCTCCTTC 2 Gm04 46348798 46348991

3 gma-MIR319j +2/GGACTGAAGGGAGCTCCTTC 2 Gm14 45953433 45953649

3 gma-miR319k +2/GGACTGAAGGGAGCTCCTTC 2 Gm17 9436178 9436279

4 gma-MIR396a-3p +1/TTCAATAAAGCTGTGGGA/+2 3 Gm13 26338134 26338273

5 gma-MIR396a-5p +1/TCCACAGCTTTCTTGAACTG 2 Gm13 26338134 26338273

4 gma-MIR396b-3p +1/CTCAAGAAAGCTGTGGGAGA 2 Gm13 26329931 26330056

5 gma-MIR396d-3p +4/AAGAAAGCTGTGGGAGA/+7 3 Gm17 9053051 9053155

4 gma-MIR396d-5p TTCCACAGCTTTCTTGAACT/+1 2 Gm17 9053051 9053155

5 gma-MIR396e +1/TCCACAGCTTTCTTGAACT/+2 4 Gm17 35366535 35366668

3 gma-MIR396g TTCCACAGCTTTCTTGAACT/+1 2 Gm15 556707 556796

3 gma-MIR396h-3p +1/TTCAATAAAGCTGTGGGA/+2 3 Gm17 9044861 9044973

3 gma-MIR396h-5p +1/TCCACAGCTTTCTTGAACT/+1 3 Gm17 9044850 9044984

5 gma-MIR482a-5p +12/AATGGGCTGATTGG/+5 5 Gm01 7783819 7783913

5 gma-MIR482b-5p +1/ATGGGGGGATTGGGAAGGA/+2 4 Gm20 35360312 35360406

3 gma-MIR482d-5p TATGGGGGGATTGGGAAGGA/+2 3 Gm10 48569629 48569723

5 gma-MIR1507a +3/CATTCCATACATCGTC/+6 8 Gm13 25849777 25849883

5 gma-MIR1507b +3/CATTCCATACATCGTC/+5 8 Gm17 6190604 6190701

5 gma-MIR1508a +4/GAAAGGGAAATAGCAGT/+2 6 Gm16 32903737 32903831

5 gma-MIR1508b +2/GAAAGGGAAATAGCAGTTG 3 Gm09 28530168 28530271

5 gma-MIR1509b TTAATCAAGGAAATCACGGTT/+1 2 Gm05 7774098 7774206

5 gma-MIR1510a +3/TTGTTTTACCTATTCCA/+6 7 Gm16 31518908 31519000

5 gma-MIR1510b-3p TGTTGTTTTACCTATTCCA/+3 4 Gm02 6599299 6599392

4 gma-MIR1510b-5p +3/GATAGGTAAAACAACTA/+2 5 Gm02 6599299 6599392

5 gma-MIR1511 AACCAGGCTCTGATACCATG/+1 2 Gm18 21161236 21161334

5 gma-MIR1514a TTCATTTTTAAAATAGGCATT/+1 2 Gm07 43175810 43175908

5 gma-MIR1523 +1/ATGGGATAAATGTGAGCTC/+1 2 Gm02 12253303 12253397

5 gma-MIR2109a-5p TGCGAGTGTCTTCGCCTCTG/+1 2 Gm04 28532441 28532537

4 gma-MIR2109a-3p +2/AGGCGTAGATACTCACAC/+2 4 Gm04 28532441 28532537

5 gma-MIR4345 +9/ACTTACAAAGAT/+12 3 Gm14 49069099 49069193

5 gma-MIR4413a +1/AAGAGAATTGTAAGTCACT/+1 3 Gm19 1788518 1788617

3 gma-MIRSeq07 +14/GACTTG/+14 14 Gm01 44787899 44787988

3 gma-MIRSeq14b +2/AGAATTTGGCCTCTGTCCA 2 Gm09 28272488 28272562

3 gma-MIRSeq10-3p +20/G/+20 4 Gm15 31542836 31543058
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Table 5 miRNA isoforms identified in the soybean. (Continued)

3 gma-MIRSeq20 CATCGTTGACGCTGACTGT/+3 2 Gm04 35428794 35428950

2 gma-MIR408a +1/TGCACTGCCTCTTCCCTGGC 2 Gm02 837416 837548

2 gma-MIR408c +1/TGCACTGCCTCTTCCCTGGC 2 Gm10 36557005 36557130

2 gma-MIR2218a-5p GGAGATGGGAGGGTCGGTAA/+2 2 Gm10 48574017 48574137

2 gma-MIR3522a +8/AGACCAAATGAGC/+6 4 Gm15 4318787 4318873

a The group number refers to: (2) the miRNAs previously identified in other plant species as described in Table 2; (3) the new miRNAs identified in the families of
conserved miRNAs in soybean; (4) miRNAs originated from the opposite arm of miRNAs previously identified; and (5) miRNAs registered in the miRBase database
that were detected in our libraries. b Sequence conserved between all isoforms and the number of nucleotide variations in each end. c Total number of isoforms
(isos) including the typical member for that gene.

Figure 1 Effects of biotic and abiotic stresses on miRNA relative expression evaluated by RT-qPCR. A) Comparative analyses of four

libraries from the water deficit experiment. For the water deficit-stress assay, the four libraries were named as: DSRC (drought-sensitive seedlings
root submitted to 0 minutes of stress); DSRT (drought-sensitive seedlings root submitted to 125 minutes and 150 minutes of stress); DTRC

(drought-tolerant seedlings root submitted to 0 minutes of stress) and DTRT (drought-tolerant seedlings root submitted to 125 minutes and 150

minutes of stress). B) Comparative analyses of four libraries from the rust infection experiment. For the rust-stress assay, the four libraries were

named as: RSLC (rust-susceptible seedlings leaves mock inoculation); RSLI (rust-susceptible seedlings leaves with rust-spore inoculation); RRLC
(rust-resistant seedlings leaves with mock inoculation) and RRLT (rust-resistant seedlings leaves with rust-spore inoculation). Samples that

significantly differs (P < 0.05) according to a Students t-test statistical analysis, were label as: “*” effective differences between cultivars in control

conditions; “a” effective differences between control and stressed conditions for sensitive or susceptible plants; “b” effective differences between
control and stressed conditions for tolerant or resistant plants and “1” when an effective difference was also observed between sensitive or

susceptible and tolerant or resistant under stress conditions.
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expression analyses revealed that MIR166a-5p, MIR166f,

MIR169-3p, MIR397ab and MIR-Seq13 were dow-regu-

lated in the susceptible genotype during pathogen infec-

tion, and equally expressed in the resistant plants. The

level of MIR482bd-3p did not vary significantly between

the two different conditions in the susceptible. However

in the resistant genotype, its level is higher during the

control condition and decrease with the pathogen

attack. MIR1513c presented unchangeable expression in

the control and stressed condition for both genotypes,

but when we compared the two genotypes; the resistant

was down-regulated compared to the susceptible. A

strong decrease was observed for MIR4415b in the rust

infection when compared with the control in the sus-

ceptible plants, and its level is higher in the resistant

genotype showing no expression alteration between the

conditions. MIR-Seq07 was down-regulated with respect

to the soybean rust infection in both genotypes. Signifi-

cant difference was observed in MIR-Seq11 expression

between the mock and infected plants from the suscep-

tible genotypes. This miRNA presented a low expression

level after rust inoculation, and its level decreased in the

resistant genotypes remaining similar in the both condi-

tions. MIR-Seq15ab expression level was significantly

decreased in the rust compared to the mock treatment

in the susceptible genotype, the opposite occurs in the

resistant genotype, when the control showed a lower

level of expression compared to the stressed condition.

Target prediction of the soybean miRNAs

MiRNAs suppress gene expression by inhibiting transla-

tion, promoting mRNA decay or both [9]. Target gene

identification is challenging due to many factors includ-

ing the following: binding to their target mRNAs by par-

tial complementarity over a short sequence, suppression

of an individual target genes is often small, and targeting

rules are not completely understood. We predicted the

potential miRNAs targets in the psRNA database using

all identified miRNAs as queries. The results of the ana-

lysis were divided into two tables, showing the targets

predicted for the novel (Table 6) and for the conserved

miRNAs families (Additional file 2).

Among the 24 novel identified miRNAs families, only

14 families had targets predicted (Table 6). The miRNAs

families MIR-Seq01, MIR-Seq03, MIR-Seq06, MIR-

Seq07, MIR-Seq08, MIR-Seq12 and MIR-Seq13 had

multiple distinct targets. MIR-Seq10, MIR-Seq15 and

MIR-Seq18 targeted only one locus. Although, MIR-

Seq05, MIR-Seq11, MIR-Seq16 and MIR-Seq19 pre-

sented several loci as targets, all of them are coding for

the same proteins. Fructose-bisphosphate aldolase, LRR

(leucine-rich-repetitions)-containing proteins, translation

elongation factor were predicted to be potential targets

of the novel MIR-Seq07 which was investigated by RT-

qPCR. The search for a target of the novel MIR-Seq11,

also analyzed by RT-qPCR, showed a match to Glycine

max peroxidase precursors mRNAs as potential targets.

The oxidoreductase and a transcription regulator factor

were predicted to be targeted by MIR-Seq13; and for

the MIR-Seq15 only a translation initiator factor was

predicted as a target.

After a comparative analysis of our novel identified

miRNAs and the degradome libraries of developing soy-

bean seeds it was possible to identify specific sequences

in the degradome that corresponds to the downstream

sequence of the predicted miRNA recognition site. We

identified target sequences to six among the 24 novel

soybean miRNAs (MIR-Seq01, MIR-Seq 06, MIR-Seq07,

MIR-Seq11, MIR-Seq12 and MIR-Seq16). The list of the

10 identified genes is composed by a glucosyl transfer-

ase, serine carboxypeptidase, fructose biphosphate aldo-

lase, three leucine-rich repeat protein, two peroxidases

and two ATP dependent RNA helicases (Additional file

3).

Although many soybean conserved miRNAs targets

have been predicted and validated by previous studies

[26,27,30,31], we also investigated the possible targets

for the 28 known families of miRNAs detected in our

sequencing. Of these, only 21 families had predicted tar-

gets and they are listed in the Additional file 2. The

conserved miRNA families showed multiples targets,

however families MIR156, MIR172, MIR396, MIR397,

MIR1510 and MIR1513 were highly conserved about

their targets. For example, all members from the

MIR156 family (which had a predicted target) targeted

SBP (squamosa promoter binding)-domain protein. AP

(2) APETALA 2 transcription factors were targeted by

MIR172 family. The same occur with MIR396, MIR397,

MIR1510 and MIR1513 families that targeted various

genes families as GRF (growth regulating factor) tran-

scription factor, multicopper oxidases, LRR (leucine-

rich-repetitions)-containing proteins and F-BOX domain

proteins respectively. These results were already

observed across several plant species (except for

MIR1510 and MIR1513) [25,49-53].

Gene Ontology analysis

The targets of those miRNAs which the expression was

analyzed by RT-qPCR were also investigated in respect

to their gene ontology (GO) [48]. Among the 11

miRNA genes, six presented target predictions, which

were: MIR397ab, MIR1513c, MIR-Seq07, MIR-Seq11,

MIR-Seq13 and MIR-Seq15ab. The putative soybean

miRNAs targets presented diverse functions, however

the most representative group was the proteins involved

in oxidoreductase activity followed by the proteins

involved in the catabolic process (Figure 2). The result

demonstrates that more than 76% of the target proteins
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are involved in oxidoreductase activity is consistent with

the fact that some of the miRNAs libraries are origi-

nated from stressed plants. A consequence of many

environmental stresses - including water deficit and

pathogen attack - is a oxidative stress, i. e. the accumu-

lation of reactive oxygen species (ROS), which damage

cellular structures [49,54]. As miRNAs MIR397, MIR-

Seq11 and MIR-Seq13 were predicted to match proteins

with oxidative activity, they may act in some level of

regulation during water deficit or ASR stress.

Discussion
The use of deep-sequencing technology was efficient to

identify 256 miRNAs of Glycine max. These miRNAs

were identified from eight different libraries from pre-

cursors with stem-loop secondary structures that also

map to the soybean genome (Additional file 1). They

were detected from water deficit and rust libraries and

were characterized as following: detected for the first

time, already detected in some plant species, conserved

in soybean, or a variant of a known miRNA (isoform).

Table 6 Predicted Glycine max mRNA targets for the novel miRNAs.

miRNA ID Locus targeta Target descriptiona miRNA/mRNA pairingb

gma-MIR-Seq01 Glyma13g01690 glucuronosyl/glucosyl transferase - | | | | | | | | | | | | | | | - : |

Glyma14g35220 glucuronosyl/glucosyl transferase - | | | | | | | | | | | | | | | - : |

Glyma15g00330 GTPase-activating protein | | | - | | : | | | | | | | | | | - |

gma-MIR-Seq03 Glyma08g22900 LRR-containing proteins - | | | | | | | | | : | | | | | | : |

Glyma07g03200 LRR-containing proteins - | | | | | | | | | : | | | | | | : |

Glyma05g33790 methyltransferase | - | : | | | | | | | | | | | : | : |

Glyma04g00810 EF-hand-containing proteins | | : | | | | | - : : | | | | | | | |

Glyma11g34320 EF-hand-containing proteins | | : | | | : | | | : - | | | | | | |

Glyma10g06740 triosephosphate isomerase – | | | | : | | | | | | | | | | | |

gma-MIR-Seq05 Glyma07g18570 pyruvate decarboxylase | - | | - : | | | | | | | | | | | | | |

Glyma01g29190 pyruvate decarboxylase | - | | - : | | | | | | | | | | | | | |

Glyma18g43460 pyruvate decarboxylase | - | | - : | | | | | | | | | | | | | |

gma-MIR-Seq06 Glyma08g37480 mt transcription factor | : : - | | | | | | | : | | | | | | : |

Glyma16g26070 serine carboxypeptidase | | | | | - | - | : | : | | | | | | | |

gma-MIR-Seq07 Glyma04g01020 fructose-bisphosphate aldolase | | | | - | : | | | | | | | | | | | - |

Glyma16g05500 LRR-containing proteins | | : | | : : | : | : | : | | | | | | |

Glyma19g27280 LRR-containing proteins | | : | | : : | : | : | : | | | | | | |

Glyma19g07240 translation elongation factor | | - | | | - | | | | | | | | | | | | -

gma-MIR-Seq08 Glyma14g23860 oxidoreductase activity | | - | | | | | | | | | | | | | | | | - |

Glyma13g03430 oxidoreductase activity | | - | | | | | | | | | | | | | | | | - |

Glyma01g20670 nucleotide excision repair factor | | | | | | | | | - | | | : | | | | | : -

gma-MIR-Seq10 Glyma04g09770 mt oxoglutarate/malate carrier | : | | | : : | | | | | | : | : | | | | :

gma-MIR-Seq11 Glyma15g13500 peroxidase activity : : | | - | | | | | | | : | : | | | | | |

Glyma09g02600 peroxidase activity | : | | - | | | | | | | : | : | | | | | |

gma-MIR-Seq12 Glyma08g20670 ATP-dependent RNA helicase : | | | | | | | | | | : | | : | | | | | -

Glyma07g01260 ATP-dependent RNA helicase : | | | | | | | | | | : | | : | | | | | -

Glyma20g16950 predicted alpha/beta hydrolase | | - | | | | | | | | : | | | | | | : | :

Glyma10g23470 predicted alpha/beta hydrolase | | - | | | | | | | | : | | | | | | : | :

Glyma19g35390 serine/threonine protein kinase | | | | | | | | | – | | - | | | | | | |

Glyma03g32640 serine/threonine protein kinase | | | | | | | | | – | | - | | | | | | |

gma-MIR-Seq13 Glyma02g26160 oxidoreductase activity | - | | - | | | | | | | | : | | | | | : |

Glyma10g31690 transcription regulator activity | | | | | | | | - | - | | | | | : : | | |

gma-MIR-Seq15 Glyma20g02820 translation initiation factor – | | | | | | | | | | | | | | | | | | |

gma-MIR-Seq16 Glyma17g20860 LRR-containing proteins | | | | | | | | | | | | - | | : | | | | |

Glyma05g09440 LRR-containing proteins | | | | | | | | | | | | - | | : | | | | |

gma-MIR-Seq18 Glyma11g21200 LRR-containing proteins | | : | | | | | | | | | | | | | | | | | –

gma-MIR-Seq19 Glyma15g37290 LRR-containing proteins - | | | | | - | | | | | | | | | | | | | | -

Glyma09g34200 LRR-containing proteins | : | | | : | | | : | - | | | | | : | | | |

a The Data from Phytozome version 6.0. b Pairing obtained in psRNATarget Server: “|” indicates a Watson-Crick base pairing; “:” is a G:U base pairing, and “-”
indicates a mismatch.
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From these analyses, we found 24 novel families that

had not been detected before, six families that had

already been detected in Coniferophytes, Embryophytes

and Magnoliophytes (dicotyledons and monocotyle-

dons), and 22 conserved soybean families. In terms of

conserved soybean miRNAs, we only detected 20 known

miRNAs in our sequencing. This small number of

known miRNA genes detected in our libraries could be

due to the two filters used in our processing. These fil-

ters may have missed some known, conserved soybean

miRNAs because they discarded reads with low fre-

quency and those with more than five matches in the

genome.

We detected 121 miRNAs with additional nucleotides

in the 3’ or 5’ terminus compared to the recorded

mature miRNA. These miRNA variants (isomiRNAs)

were very common in our population of small, detected

RNAs. Out of the isomiRNAs, we observed 21 pairs of

sense and antisense miRNAs. The duplex presents the

antisense strand paired to the corresponding miRNA

with two nucleotides 3’ overhangs (Additional file 1).

This shows that the sense and antisense miRNAs

originated from DCL1 processing and supports their

validation as true miRNAs [26,55,56].

In addition, we validated the conserved miRNAs in

our libraries based on homology to known miRNAs in

miRBase. The phylogenetic conservation of miRNA

sequences is one rule proposed by Ambros et al. [7] to

characterize miRNAs. In this study, we established new

miRNAs in soybean that were already detected in other

plants species. However, as opposed to some studies

that only blast the candidate to the known miRNA

mature sequence, our identifications were determined

by precursor sequence folding and verification of the

genuine hairpin structures.

The complexity of the plant response to biotic and

abiotic stresses involves many genes and biochemical

and molecular mechanisms, and adaptation to these

stresses is achieved through regulating gene expression

at the transcriptional and post-transcriptional levels.

With regard to post-transcriptional regulation, miRNAs

are associated with water deficit response in others

plants, but this was the first time that differential

expression of these small RNAs were observed in

Figure 2 Go analysis of miRNAs target genes. Blue bars indicate the enrichment of miRNA targets in GO terms. Green bars indicate the

percentage of total annotated soybean genes mapping to GO terms. Only the predicted target genes for miRNAs analyzed by RT-qPCR were
considered.
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soybean during water deficit. In order to validate 11 of

the novel miRNAs detected in sequencing by the RT-

qPCR method, we constructed primers stem-loop and

analyzed their expression during abiotic and biotic stres-

ses (Figure 1). We observed that several miRNAs were

up-regulated during the water deficit in the sensitive

genotype (Figure 1A). However, during the same stress,

these miRNAs had a different expression in the tolerant

genotype. This distinct miRNAs behavior between the

two contrasting genotypes under the same conditions

could be involved with the drought-tolerance that is

observed in the tolerant genotype. One of these miRNAs

with this expression pattern is the new MIR-Seq11.

Interestingly, MIR-Seq11 was predicted to target peroxi-

dase protein. As known, stress conditions can produce

excess concentrations of reactive oxygen species (ROS),

resulting in oxidative damage at the cellular level [57].

The increase of this miRNA in the sensitive genotype,

when subjected to water deficit, could be one of the fac-

tors associated with vulnerability of these sensitive

plants. Whereas in tolerant genotype during the two

conditions, the expression levels of MIR-Seq11 are

lower than in the sensitive cultivar during stress. This

situation could indicate that the unchangeable MIR-

Seq11 levels in the tolerant genotype may be related to

its drought-tolerance capacity.

Another interesting point is the expression of a novel

miRNA MIR-Seq07 that showed increased expression

levels during the water deficit stress for both genotypes.

This result allows us to associate this miRNA with

water deficit stress mechanism independently of the

genotype background. Our computational approach

showed that one of the loci targeted by MIR-Seq07 cor-

responds to a fructose-bipfosphato-aldolase enzyme

which is a constituent of both the glycolytic/gluconeo-

genic pathway and the pentose phosphate cycle in plants

[58]. Therefore increase and/or activation of aldolase

appear to be implicated in the plant growth mainly

through promotion of the glycolytic pathway function to

synthesize ATP [58]. Since, MIR-Seq07 expression was

increased during the stress condition in both genotypes

and assuming that it can inhibit or degrade aldolases, it

could be associated to metabolism decreasing during

water deficit in roots.

Plants possess several adaptive traits to support patho-

gen attacks. In Glycine max, ASR is responsible for sig-

nificant losses in soybean growth areas. Nevertheless, no

study investigating miRNAs and ASR disease had been

preformed to date. To determine if miRNAs act as key

factors during rust infection or for resistance mainte-

nance, we performed expression analyses with the same

11 miRNAs during mock and infected conditions in two

different genotypes (Figure 1B). In general the miRNAs

under the fungus infection were down-regulated in the

susceptible genotype (except MIR482bd-3p). For exam-

ple, MIR-Seq11, MIR-Seq13 and MIR-Seq15 which had

predicted peroxidases, oxidoreductases and translational

initiation factor respectively as targets proteins, were

down regulated when infected with ASR. The peroxi-

dases enzymes help to metabolize H2O2 in higher plants,

and these proteins, as also others proteins with oxidore-

ductase activity, have already been reported to be up-

regulated after pathogen infection and especially after

ASR [57], indicating a possible involvement of MIR-

Seq11 and MIR-Seq13 with the responses to ASR infec-

tion. Considering, that a translational initiator factor

was predicted to be targeted by MIR-Seq15, we could

speculate about the participation of this miRNA in the

protein synthesis machinery.

In the resistant plants, most of the miRNAs analyzed

by RT-qPCR (except MIR482bd-3p, MIR-Seq07, MIR-

Seq15ab) did not vary across the mock and rust infec-

tion. Surprisingly, MIR-Seq07 was the unique miRNA

that was down-regulated during the fungi infection for

both genotypes analyzed in our study. We already men-

tioned that the MIR-Seq07 had predicted protein target

related to metabolism and thus its possible association

with water stress. However MIR-Seq07 also had pre-

dicted LRRs (leucine-rich repeats)-domain target which

are known to be present in disease resistance proteins

[59,60]. This suggested a good candidate for the investi-

gation of the miRNAs’ regulatory mechanisms during

ASR stress. Although we investigated the expression

patterns of some miRNAs detected in our sequencing

and predicted the target genes that it regulates, addi-

tional experimental approaches must be addressed to

confirm these hypotheses.

Conclusions
The present study detected a large number of small

RNA sequences that were characterized as novel and as

already known soybean miRNAs. We grouped some of

these unique sequences into 24 novel soybean miRNAs

and further classified several of new members in known

families or as new loci in the soybean genome. Valida-

tion of new miRNA with quantitative RT-qPCR revealed

that Solexa sequencing is a powerful tool for miRNA

discovery. Many miRNA expression patterns were up-

or down-regulated by water deficit and rust stresses,

which is an important discovery. Future investigations

should use supplementary experimental approaches to

verify the targets and to understand the complex gene

regulatory network of these miRNAs. This work will

contribute to improve systems to support soybean crop

production and to mitigating crop losses during biotic

or abiotic stresses.
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Additional material

Additional file 1: Predicted precursor structures of all miRNAs

identified. The mature miRNAs (red) and pre-miRNA sequences with
chromosome and locus information. The pre-miRNA length (nt) and its
directional information (sense (+) or anti-sense (-) compared to the
soybean genome sequence) is provided. The fold-back structure with
respect to the free energy value (dG) was predicted using the Mfold
program.

Additional file 2: Identified targets of known conserved plant

miRNAs families. a The Data from Phytozome version 6.0. b Pairing
obtained in psRNATarget Server: “|” indicates a Watson-Crick base pairing;
“:” is a G:U base pairing, and “-"indicates a mismatch.

Additional file 3: The soybean transcript loci which were identified

as new-miRNA families target by degradome sequencing. The
miRNA target site is indicated in red and underlined while the
degradome sequence is highlighted.
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