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Abstract

Background: Human genome sequencing has enabled the association of phenotypes with genetic loci, but our

ability to effectively translate this data to the clinic has not kept pace. Over the past 60 years, pharmaceutical

companies have successfully demonstrated the safety and efficacy of over 1,200 novel therapeutic drugs via costly

clinical studies. While this process must continue, better use can be made of the existing valuable data. In silico

tools such as candidate gene prediction systems allow rapid identification of disease genes by identifying the most

probable candidate genes linked to genetic markers of the disease or phenotype under investigation. Integration

of drug-target data with candidate gene prediction systems can identify novel phenotypes which may benefit

from current therapeutics. Such a drug repositioning tool can save valuable time and money spent on preclinical

studies and phase I clinical trials.

Methods: We previously used Gentrepid (http://www.gentrepid.org) as a platform to predict 1,497 candidate genes

for the seven complex diseases considered in the Wellcome Trust Case-Control Consortium genome-wide

association study; namely Type 2 Diabetes, Bipolar Disorder, Crohn’s Disease, Hypertension, Type 1 Diabetes,

Coronary Artery Disease and Rheumatoid Arthritis. Here, we adopted a simple approach to integrate drug data

from three publicly available drug databases: the Therapeutic Target Database, the Pharmacogenomics

Knowledgebase and DrugBank; with candidate gene predictions from Gentrepid at the systems level.

Results: Using the publicly available drug databases as sources of drug-target association data, we identified a

total of 428 candidate genes as novel therapeutic targets for the seven phenotypes of interest, and 2,130 drugs

feasible for repositioning against the predicted novel targets.

Conclusions: By integrating genetic, bioinformatic and drug data, we have demonstrated that currently available

drugs may be repositioned as novel therapeutics for the seven diseases studied here, quickly taking advantage of

prior work in pharmaceutics to translate ground-breaking results in genetics to clinical treatments.

Background
The development of new therapeutics is essential to

improve the human condition and lower the burden of

disease. Due to our limited knowledge of the molecular

basis of complex diseases, comparatively few gene tar-

gets for therapeutics have been identified to date. The

standard approach to developing therapeutics involves

testing many thousands of compounds against a known

target in order to identify a lead compound. The lead

compound can then be further refined in silico and in

vitro before heading into the lengthy and costly clinical

trials pipeline. This process, which consists of phases I,

II, III and IV before final drug approval, involves 10-17

years of drug development, from target identification

until FDA/EMEA approval, with only a 10% probability

of success [1]. As a result, the pharmaceutical industry

spends an average of about 1.2 billion US dollars to

bring each new drug to market [2]. There is also a high

risk associated with de novo drugs due to unforeseen
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adverse side effects, as seen in the case of Thalidomide,

a drug used to treat morning sickness which resulted in

devastating birth defects [3].

A novel approach to therapeutic development is to

identify new applications for drugs that have already

been approved, or have successfully completed phase I

clinical trials which investigate toxicity [4,5]. This process

of “drug repositioning” aims not to develop drugs de

novo, but associate existing therapeutics with new pheno-

types. Here, we attempted to reposition existing drugs to

treat common complex diseases using recently acquired

Genome-Wide Association Study (GWAS) data.

Complex diseases are genetically intricate, polygenic

and multifactorial [6]; and frequently arise as a conse-

quence of interaction between genes and the environ-

ment. Recently, GWAS have begun to unravel the

complicated genetic basis of complex diseases. Sheer

statistical power has allowed GWAS to successfully

identify some associations between Single Nucleotide

Polymorphisms (SNPs) and complex diseases [7].

Despite high investment, far fewer genes have been

identified than can account for the heritable component

of complex diseases, and the clinical benefit remains

limited to date [8]. A factor that contributes to the miss-

ing heritability is likely to be noisy genotype-phenotype

association signals [9]. Also, analysis of GWAS data

using highly stringent thresholds for statistical signifi-

cance, by testing multiple isolated SNPs, has limited the

scope of gene discovery based on existing data [10]. As

shown in Manhattan plots, GWAS data obviously con-

tain far more information than the most significant

peaks, and more work needs to be done extracting data

from slightly less significant peaks [9,11].

Currently available gene discovery platforms can

enhance candidate gene identification from GWAS data

[9]. Candidate gene prediction tools are designed to find

a needle in the genetic haystack. These tools are based

on the assumption that genes with similar or related

functions cause similar phenotypes [12]. Specific candi-

date gene prediction tools differ in the strategy adopted

for calculating similarity, and the databases utilized for

prediction [13,14]. Gentrepid is one of the many bioin-

formatic tools developed to help geneticists predict and

prioritize candidate genes [9,15]. The Gentrepid tool

and its knowledge base utilizes two independent meth-

ods: Common Pathway Scanning (CPS), a systems biol-

ogy approach; and Common Module Profiling (CMP), a

domain-based homology recognition approach, to priori-

tize candidate genes for human inherited disorders (see

Methods for details). Compared to other prediction

systems, Gentrepid is designed to make fewer, more

conservative predictions which do not extensively extra-

polate existing bioinformatic data i.e. it tends to be

more specific than other systems [15].

We have previously developed protocols to analyze

GWAS data using a multilocus approach which com-

bines bioinformatic and genetic data [9,16,17]. To

demonstrate the usefulness of these protocols, we reana-

lysed the well-studied Wellcome Trust Case-

Control Consortium (WTCCC) data for seven complex

diseases [9]. Using a series of increasingly less conservative

statistical thresholds, we attempted to discriminate the sig-

nal from the noise in the more statistically significant data

(p ≤ 10-5, p ≤ 10-4, p ≤ 10-3). By incorporating bioinfor-

matic data, we were able to predict 1,497 candidate genes

for the seven complex diseases studied; namely, Type 2

Diabetes (T2D), Bipolar Disorder (BD), Crohn’s Disease

(CD), Hypertension (HT), Type 1 Diabetes (T1D), Coron-

ary Artery Disease (CAD) and Rheumatoid Arthritis

(RA) [9].

Here, we extend this pipeline to identify potential novel

drug targets among the predicted candidate genes by

associating drug information extracted from publicly

available drug databases. The three databases sourced in

this study were DrugBank [18], the Pharmacogenomics

Knowledgebase (PharmGKB) [19] and the Therapeutic

Target Database (TTD) [20]. The feasibility of this

approach is again illustrated for the seven complex dis-

eases investigated by the WTCCC [11]. This study shows

that it is possible to identify therapeutics for treatment of

specific complex diseases from genetic loci via the Gen-

trepid candidate gene prediction tool. Thus, in combina-

tion with drug target information, candidate gene

prediction systems can be utilized as drug discovery tools

to identify therapeutics which may be repositioned as

novel treatments for complex diseases.

Methods
We implemented a computational workflow to enable

repositioning of drugs by using Gentrepid as a bioinfor-

matic candidate gene discovery platform, with drug data

sourced from online databases (Figure 1). The two data

sets integrated were:

1. A candidate gene data set obtained by integration of

genotype-phenotype data from the WTCCC GWAS study

on seven complex phenotypes [11], with bioinformatic

data on structural domains and systems biology: identify-

ing proteins that share common features, or participate in

the same complex or pathway [21];

2. A drug-gene target association data set obtained

from three drug databases namely TTD, DrugBank and

PharmGKB [18-20].

Candidate gene data set
In previous work, we predicted a total of 1,497 candidate

genes for seven complex diseases by careful reanalysis of

the WTCCC GWAS data [11] using the Gentrepid candi-

date gene prediction system [9].
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In the original analysis, a highly stringent significance

threshold (p ≤ 5x10-7) was used in an attempt to correct

for multiple testing [11]. This conservative statistical

approach, combined with the selection of the nearest-

neighboring gene to the significant SNP, resulted in

identification of only a small number of loci associated

with each phenotype, with modest cumulative heritabil-

ity [9] (Additional file 1, Table S1).

We specifically addressed these two issues in our reana-

lysis of this noisy data by - (a) Considering a series of four

thresholds of decreasing stringency, starting with the

highly significant threshold used in the original study, and

decreasing to weakly significant(WS - p ≤ 10-3). This

resulted in a series of four SNP sets containing up to 1064

SNPs being considered for each phenotype [9]. The num-

ber of loci and SNPs considered in the four data sets for

each phenotype is shown in Table S1 (Additional file 1).

(b) Creating six different search spaces around each

SNP-based locus, three of fixed-widths and three proxi-

mity-based, for analysis by our candidate gene predic-

tion system [9].

Thus, for each of the seven phenotypes, twenty-four

search spaces were constructed; using four SNP signifi-

cance thresholds to obtain the loci, and six gene selection

methods to construct the gene search spaces. In total,

168 search spaces ranging in size from 2 to 4,431 genes

(up to 10% of the genome) were analyzed [9].

Gentrepid uses two modules: Common Pathway Scan-

ning (CPS) and Common Module Profiling (CMP) to

make candidate gene predictions.

The CPS module is based on the assumption that com-

mon phenotypes are associated with proteins that partici-

pate in the same protein complex or biochemical pathway

[22]. Such systems biology methods are currently favored

in candidate gene prediction because of the attractiveness

of their basic thesis. Their weakness is the lack of coverage

of the underlying systems biology knowledge bases [21].

Many tools attempt to ameliorate the deficits of the

human systems biology knowledge base by extensive

extrapolation of data from other species. Examples

are GeneSeeker, ToppGene and Endeavour [13,23-25].

Gentrepid CPS uses only human data to reduce the num-

ber of predicted false positives i.e. it makes fewer predic-

tions which are more often correct compared to other

prediction systems [15].

The other module, CMP, is a novel sequence analysis

approach based on the principle that candidate genes have

similar functions to disease genes already determined for

the phenotype [26]. Gentrepid CMP differs from most

candidate gene prediction systems which describe func-

tional similarity via keywords, a procedure which also

lacks good coverage of the human genome [21]. In CMP,

sequences are parsed at the domain level, linking them

directly to function [21]. Although CMP’s performance

was disappointing in our original benchmark using a set of

nine oligogenic diseases with Mendelian inheritance [12],

it produced a surprising number of statistically significant

results when confronted with the GWAS data on seven

complex diseases [9]. This result was robust when com-

pared with simulations using random SNPs, and may arise

Figure 1 Workflow. The complete workflow designed to predict novel therapeutic targets and identify novel therapeutics. We used Gentrepid as

a platform for candidate gene prediction and DrugBank, TTD and PharmGKB as drug repositories.
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from an important underlying role for homologous genes

in complex diseases.

Drug-gene target data set
We compiled the drug-gene target data set from three

publicly available drug databases: DrugBank [18],

PharmGKB [19] and TTD [20]. Snapshots of these data-

bases were taken in June 2012.

DrugBank is a freely available online database that

combines detailed drug data and indication information

with comprehensive drug-target associations [18]. From

this database, we retrieved Drugbank IDs and drug

names (generic and brand) to represent drugs, and the

unique gene symbols to represent protein targets. We

extracted 6,711 drug entries active against 3,410 unique

drug targets from several species. We used the G-profiler

conversion tool to separate human drug targets repre-

sented by official HUGO gene symbols [27], yielding

2,022 human drug targets associated with 3,910 drugs.

The Pharmacogenomics Knowledgebase (PharmGKB)

is a drug knowledge base maintained by Stanford Uni-

versity, USA and funded by the US National Institute of

Health (NIH). PharmGKB captures information about

drugs, diseases/phenotypes and targeted genes [19].

From this database, we extracted the “drug-associated

genes” field along with “description” which contains the

disease information. This database contains around

3,097 drugs and 26,961 human genes, but not all these

genes are associated with drugs. We retrieved 382 drugs

for 566 human drug targets. For the PharmGKB data-

base, the number of drug targets exceeds the number of

drugs because some drugs target multiple genes.

The Therapeutic Target Database (TTD) is also a

freely available online drug database which integrates

drug data with therapeutic targets [20]. This database

contains 17,816 drugs (approved, clinical and experi-

mental) and 2,025 human and non-human (bacterial

and fungal) drug targets. It describes synonyms of 3,167

drug names. We extracted “Drug names” along with

“Disease” information, and “Uniprot accession numbers”

for targets. UniProt accession numbers were replaced

with official HUGO gene symbols using the G-profiler

conversion tool [27]. Finally, we extracted 2,960 drugs

for 544 unique human drug targets from TTD.

Mapping of candidate gene data set with the drug-gene

target data set

We mapped the list of 1,497 candidate genes with drug-

gene target association files obtained from the three

drug databases. The candidate genes for each disease

were mapped with the three drug-target association files

obtained from the three drug databases, and the results

retrieved.

Identification of novel therapeutics and therapeutic targets

In the next step, we identified novel therapeutic targets

and therapeutics for all seven diseases. If an associated

drug is not registered as a therapy for the phenotype of

interest, it is predicted as a novel therapeutic for the new

phenotype, directed towards the predicted candidate

gene target. The novel drugs may be suitable for reposi-

tioning towards treatment of the phenotype in question.

Validation of predicted therapeutic targets

The predicted therapeutic targets were validated using

two benchmarks. In the first benchmark, the ability of

the system to replicate known therapeutics de novo

from the genetic data was assessed. This benchmark

tests the system’s ability to retrieve existing knowledge;

however, this does not give any idea about the validity

of the novel predictions. To test the system’s ability for

knowledge discovery, we performed an additional

benchmark in which the validity of the candidate gene

predictions for the phenotype were assessed using text

mining of the literature.

In the first benchmark, genes present in the six search

spaces were classified as “candidates” or “non-candi-

dates”. We considered genes which are currently known

as drug targets for the phenotype of interest as “true

positives”. Targets with currently registered therapeutics

for the phenotype of interest which were not predicted

by Gentrepid but present in the search space were desig-

nated “false negatives”. Genes which were not predicted

and not targetable by drugs were “true negatives"; and,

for the purpose of this benchmark, predicted novel thera-

peutic targets were considered “false positives”. Receiver

Operation Characteristic (ROC) Curves were plotted in

GraphPad Prism 6 software considering six thresholds

obtained from the number of targets present in the six

search spaces for each phenotype. Linear, as well as non-

linear regression analysis, was performed (see section

Validation of predicted therapeutic targets in Results and

Discussion).

In the second benchmark, all Pubmed IDs of literature

related to Bipolar disorder, Type 1 diabetes, Type 2 dia-

betes, Crohn’s disease, Coronary artery disease, Rheuma-

toid arthritis and Hypertension were extracted from

Pubmed in Feb. 2013. For each target, we calculated the

number of citations using both the gene name and the

phenotype, by mapping the extracted Pubmed IDs to the

gene citation information from Entrez Gene (ftp://ftp.ncbi.

nih.gov/). Further, ROC curves were created in GraphPad

Prism 6 software considering four thresholds of at least

one, five, ten and fifteen citations. Non-linear regression

analysis was also performed to fit the ROC curves (see sec-

tion Validation of predicted therapeutic targets in Results

and Discussion).
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Results and Discussion
Comparison of drug databases

Firstly, we assessed coverage of the human genome by

the three drug databases both individually and in toto.

We extracted the following therapeutic drug-gene target

association data from the three databases:

1. 3,910 drugs against 2,022 human targets from

DrugBank [18];

2. 382 drugs against 566 human targets from

PharmGKB [19] and;

3. 2,960 drugs against 544 human targets from

TTD [20].

For more details about the content of these databases

see Methods.

The total number of unique targets from all the data-

bases was 2,494 genes, which is 8% of the entire human

genome (Figure 2). Previously, it was estimated that

3,000-5,000 genes are druggable (able to be modulated by

a small-molecule drug [28]) which is 10-17% of the entire

genome [29-32]. The gap between extracted targets from

the three drug databases (8%) and the estimated number

of druggable genes (10-17%) exists because many drug-

gable genes have not yet been mapped to a phenotype

and thus there has been no imperative to develop drugs

for these targets [33]. The targets searched in our study

cover 50-83% of the possible druggable genes mentioned

in previous studies [29-32].
We compared raw data such as drugs and drug targets

across the three drug databases to determine the redun-

dancy of the information in these databases. With respect

to drug targets, only 4% of human drug target entries were

common to all three databases (Figure 3). When the data-

bases were compared in a pairwise fashion, the proportion

of common targets ranged from 9-18%. Each of the data-

bases contains a significant amount of information that is

unique to that database. TTD has the fewest unique tar-

gets (129), while DrugBank and PharmGKB have 1,495

and 326 unique targets respectively (Figure 3).

Figure 2 Coverage of the human genome by targets annotated in the three drug databases. The Venn diagram shows that gene targets

annotated in drug databases comprise 8% of the entire human genome. It also describes the percentage of the genome covered by each

database individually and upon pairwise comparison.
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We also compared the number of drugs present in

three drug databases (Figure 4). Of the combined total of

9,991 unique drugs, DrugBank contributes 50% of the

unique drug compounds, while TTD and PharmGKB,

contribute 18% and 15% of the unique drug compounds

respectively (Figure 4). Using pairwise comparisons to

check redundancy of drugs between the databases, we

observed TTD and PharmGKB share 15-19% of their

listed drugs with DrugBank. Although there is significant

overlap among the three databases, the high number of

unique drugs in each database show the databases are

fairly complementary. In summary, all three drug data-

bases contain unique and valuable data and were thus all

used in the subsequent analysis.

Identification of therapeutic targets
We identified potential therapeutic targets for the seven

complex diseases from the Gentrepid predicted candi-

date genes generated by our reanalysis of the WTCCC

data. In total, Gentrepid predicted 1,497 candidate genes

for all seven diseases; comprising by phenotype: Type 2

Diabetes (291), Bipolar Disorder (212), Crohn’s Disease

(378), Hypertension (219), Type 1 Diabetes (358),

Coronary Artery Disease (264) and Rheumatoid Arthritis

(200) (Additional file 1 Table S1) [9]. We searched for

these candidate genes in the drug-gene target files

obtained from all three drug databases and found 452

potential therapeutic targets for the seven complex dis-

eases (Table 1). This illustrates that almost 30% of the

total number of predicted candidate genes by Gentrepid

are potential targets for therapeutic treatments using

currently available drugs (Figure 5). The disparity

between the 8% of the human genome that is targettable

(2,494 extracted targets - Figure 2) and the 30% of pre-

dicted candidate genes that are targettable (452 pre-

dicted targets - Figure 5) is interesting and should be

investigated further. The enrichment of druggable tar-

gets in the candidate gene set might be a selection

effect: either at the SNP level; or at the knowledgebase

level: it might suggest that we already know more about

disease genes than the genome in general. Alternatively,

it has been previously suggested that the genome can be

Figure 3 Comparison of human drug targets from three drug databases. Comparison of three drug databases to identify unique and

common human drug targets extracted from DrugBank, TTD and PharmGKB. DrugBank has the highest number of unique human targets

followed by PharmGKB and TTD.
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partitioned into “disease genes” and “non-disease genes”.

While such a Boolean distribution is likely to be overly

simplistic, a spectrum of levels of disease association

with specific gene subsets might explain this disparity.

To drill a little further into the data, we assessed the

therapeutic potential of each phenotype using currently

available repositioned drugs. We calculated an empirical

Targetability Index (TI), defined here as the ratio of the

number of predicted targets to the number of predicted

candidate genes for each phenotype (Table 1). The distri-

bution was bimodal with four phenotypes (CAD > RA >

CD > HT) being more targetable (TI = 0.35-0.39) than the

other three (T2D > T1D ~ BD) (TI = 0.27-0.29). A factor

which is likely to influence the targetability is our underly-

ing knowledge of the phenotype. If the molecular path-

ways involved have been previously characterized, there is

more likely to be drug-target information in the existing

drug databases, even if the phenotype has not previously

been associated with the molecular system. The low TIs

for BD (0.28) and the diabetes phenotypes (0.27-0.29)

likely arises from lack of knowledge of underlying path-

ways. More basic research in this area is required.
All three drug databases made significant contributions

to target identification, with the highest contribution from

DrugBank (400), followed by TTD (156) and PharmGKB

(61). DrugBank is a chemical as well as a clinical drug

Figure 4 Comparison of coverage of drugs in three drug databases. Comparison of drug coverage of three drug databases to identify

unique and common drugs. DrugBank has the highest number of unique drugs followed by TTD and PharmGKB.

Table 1 Repositioning potential and known therapeutic

targets by phenotype.

PH ≠ TT TI RN RTT NTT NV RN

T2D 84 0.29 5th 7 77 0.92 5th

T1D 97 0.27 6th 2 95 0.98 2nd

RA 77 0.38 2nd 6 71 0.92 5th

HT 78 0.35 4th 5 73 0.94 4th

BD 59 0.27 6th 1 58 0.98 2nd

CD 135 0.36 3rd 0 135 1.00 1st

CAD 102 0.39 1st 4 98 0.96 3rd

Abbreviations - PH - Phenotypes; ≠TT - Number of Therapeutic Targets; TI -

Targetability Index; NTT - Novel Therapeutic Targets; RTT - Replicated

Therapeutic Targets; NV - Novelty; RN - Rank; T2D - Type 2 Diabetes; BD -

Bipolar Disorder; CD - Crohn’s Disease; HT - Hypertension; T1D - Type 1

Diabetes; CAD - Coronary Artery Disease; RA - Rheumatoid Arthritis.

Description of therapeutic targets and novel therapeutic targets. Total 452

unique therapeutic targets and total 428 unique novel therapeutic targets

obtained for seven complex diseas
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database which contains broader coverage of drug targets

and broader depth of information compared to the chemi-

cal drug database TTD and the clinical drug database

PharmGKB. PharmGKB, being a clinical drug database,

has a lower coverage of drug-target associations, but

broader depth of information compared to TTD. To sum-

marize, the total coverage of the predicted targets from all

three databases was estimated to be 30% of the candidate

genes predicted by Gentrepid, with the maximum contri-

bution from DrugBank (Figure 5).

Discovery of novel therapeutic targets
For the seven diseases considered in our study, we per-

formed a binary classification of the 452 targets to dis-

tinguish therapeutic targets which were “rediscovered”

(or replicated) from novel potential therapeutic targets.

Novel genes are targeted by therapeutics registered for

other uses but not for the phenotype of interest. We

found 428 novel therapeutic targets accounting for

almost 94% of the targets identified in the previous sec-

tion. The remaining 24 targets have therapeutics which

either are approved, are in ongoing clinical trials, or

have been discontinued as therapeutics for the phenotype

of interest (Table 2). We considered these 24 known tar-

gets as “true positives” for the phenotypes of interest

in one of the benchmarks described below (see section

Validation of predicted therapeutic targets in Results and

discussion).

Figure 6 shows the number of novel therapeutic targets

obtained for each of the seven diseases, along with the

contribution from each drug database. The novelty of the

predicted targets for each disease was assessed by calcu-

lating the ratio of the number of novel therapeutic targets

to the number of therapeutic targets predicted for each

disease. The novelty ratio for all diseases was between

0.92 and 1.0 (Table 1). We observed the highest novelty

ratio for CD (1.0) and the lowest for RA (0.92). The high

ratio of novel targets for all phenotypes to predicted tar-

gets suggests repositioning could have a large impact on

clinical studies.

Identification of novel therapeutics
To identify novel drugs, we compared our phenotype of

interest (from the pool of seven diseases considered in our

Figure 5 Predicted therapeutic targets from three source databases. The Venn diagram represents the identified 30% of 1,497 candidates

are potential therapeutic targets for all the seven diseases. 17% of the targets were unique to one of the three drug databases (DrugBank), 1-2%

of targets were found in at least two databases (PharmGKB, TTD) and only 1.6% of targets are common to all the three drug databases.
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study) with indications associated with the drug. In total,

we retrieved 7,252 drugs associated with human drug tar-

gets from all three drug databases. We found 2,192 (30%

of the extracted drugs) unique drugs that target the 452

potential therapeutic targets.

We retrieved the maximum number of drugs from

DrugBank (1,618) and the remainder from TTD (735)

and PharmGKB (91). In order to identify the novel drugs

i.e. drugs not targeting our phenotype of interest, we fil-

tered the above list of 2,192 drugs to retrieve 2,130 novel

therapeutics. On a phenotype by phenotype basis, T1D

and CAD had the maximum number of novel predicted

therapeutics. Although CD had the highest number of

novel targets, it had comparatively few novel therapeutics

suggesting new drug development is needed for this phe-

notype. BD had the fewest therapeutics as expected based

on the small number of predicted therapeutic targets. We

found that the total percentage of drugs that may be

repositioned towards identified novel targets was around

29% of the total number of extracted drugs.

Table 2 shows the 24 replicated targets with examples of

replicated drugs found in our study. For example, the drug

“Aleglitazar” is in phase III clinical trial for the T2D target

PPARA, a predicted candidate gene for T2D. “Rosiglita-

zone” known to target PPARG as a therapeutic for diabetes

mellitus, has a potential use in the related phenotype T1D.

Examples of novel therapeutics for the seven phenotypes

are shown in Table 3. For example, “Pirenzepine”, which

acts upon the CHRM1 gene product, is approved as a

therapeutic drug for peptic ulcers. Our study predicts

CHRM1 is a predicted candidate gene and novel therapeu-

tic target for T2D, suggesting that the drug Pirenzepine

may be repositioned as a novel therapeutic for T2D.

Hence, the associated therapeutics for the novel therapeu-

tic targets may be repositioned against the phenotypes of

interest, accelerating the drug discovery process.

FDA-approved and clinical targets

Identification of therapeutic targets targeted by approved

and clinical trial drugs can help us to prioritize drugs for

Table 2 Predicted known therapeutics

PH Target *Drug name Status Action *Database

T1D PPARG Rosiglitazone Approved Agonist TTD

DGKA Vitamin E Approved Unknown DrugBank

T2D CTSD Insulin Regular Approved Unknown DrugBank

PPARA Aleglitazar Phase III Agonist TTD

NR3C1 ISIS-GCCR Preclinical Antisense TTD

TCF7L2 Repaglinide Unknown Unknown PharmGKB

PPARD Bezafibrate Approved Agonist DrugBank

RB1 Insulin, porcine Approved Unknown DrugBank

HSD11B1 INCB13739 Phase IIa Inhibitor TTD

RA TNF Infliximab Approved Inhibitor DrugBank

ITGA4 CDP323 Phase II Antagonist TTD

JAK2 INCB18424 Phase III Inhibitor TTD

IL15 AMG-714 Discontinued in phase I Inhibitor TTD

CCL2 MCP-1 Preclinical Inhibitor TTD

PRKCA Vitamin E Approved Unknown DrugBank

HT DRD1 Fenoldopam Approved Agonist TTD

AGTR1 Valsartan Approved Antagonist TTD

CNR1 AZD1175 Discontinued in phase I Antagonist TTD

AGT Benazepril Unknown Unknown PharmGKB

GUCY1A2 Isosorbide Mononitrate Approved Inducer DrugBank

BD SLC6A2 Imipramine Approved Inhibitor DrugBank

AGTR1 Valsartan Approved Antagonist DrugBank

CAD MYC AVI4126 Phase I/II Antisense TTD

PLG Urokinase Approved Activator DrugBank

NOS3 ACCLAIM Phase III Stimulator TTD

Abbreviations - PH - Phenotypes; T2D - Type 2 Diabetes; BD - Bipolar Disorder; HT - Hypertension; T1D - Type 1 Diabetes; CAD - Coronary Artery Disease; RA -

Rheumatoid Arthritis; TTD - Therapeutic Target Database; PharmGKB - Pharmacogenomics Knowledgebase.

Therapeutic targets with predicted known therapeutics for phenotypes of interest.

(* Drugs mentioned in the table are only examples as one target may have multiple drugs);

(* Drug databases in the table are only examples as one drug-target association may be present in more than one database).
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repositioning against phenotypes of interest. Both

approved and clinical targets are potential drug targets,

however, approved targets will undoubtedly be on the

priority list for further experimental studies. We classi-

fied the predicted targets as FDA-approved and clinical

targets for the seven complex diseases. An example

depicted in Figure 7 shows comparison between T2D tar-

gets from the TTD database and targets predicted by

Gentrepid for T2D. Of the 84 targets predicted for T2D

by Gentrepid (Table 1), 28 are listed in TTD (Figure 7).

Figure 6 Predicted therapeutic targets for each of the seven phenotypes. Abbreviations - T2D - Type 2 Diabetes; BD - Bipolar Disorder; CD

- Crohn’s Disease; HT - Hypertension; T1D - Type 1 Diabetes; CAD - Coronary Artery Disease; RA - Rheumatoid Arthritis. For each phenotype, the

contributions of each of the three drug databases are shown in primary colours on the left, and the set of total unique targets is shown in

green on the right. The cross-hatched portion of the bar shows targets replicated by the system which are already targeted by therapeutics for

that phenotype. The solid portions of the bars are novel predictions, which may potentially be utilized in repositioning.

Table 3 Novel therapeutics suitable for repositioning for the seven diseases

PH Target *Drug name Status Current Indication Action *Database

T1D RARA Alitretinoin Approved Kaposi’s sarcoma Agonist TTD

GSK3B Lithium Unknown Bipolar disorder Unknown PharmGKB

T2D CHRM1 Pirenzepine Approved Peptic ulcer disease Antagonist TTD

LPL Gemfibrozil Approved Hyperlipidemia Activator TTD

CAD FLT1 Sorafenib Launched Advanced renal cell carcinoma Inhibitor TTD

KDR Sunitinib Launched Advanced renal cell carcinoma Inhibitor TTD

BD ESR1 Trilostane Approved Cushing’s syndrome aModulator DrugBank

ABCC1 Methotrexate Unknown Psoriasis Unknown PharmGKB

HT TACR1 GSK1144814 Phase I Schizophrenia Antagonist TTD

NRP1 Palifermin Approved Oral mucositis Unknown DrugBank

CD CRHR1 CRF-1 antagonist Phase II completed Irritable bowel syndrome Antagonist TTD

INSR Insulin Detemir Approved Type I and II Diabetes Agonist DrugBank

RA HLA - DRB 1 Glatiramer Acetate Approved Multiple sclerosis Binder TTD

ACE Ramipril Approved Hypertension Inhibitor DrugBank

Abbreviations - PH - Phenotypes; T2D - Type 2 Diabetes; T1D - Type 1 Diabetes; CAD - Coronary Artery Disease; BD - Bipolar Disorder; HT - Hypertension; CD -

Crohn’s Disease; RA - Rheumatoid Arthritis; TTD - Therapeutic Target Database; PharmGKB - Pharmacogenomics Knowledgebase.

Examples of novel therapeutics suitable for repositioning towards cure of seven diseases. (* Drugs mentioned in the table are only examples as one target may

have multiple drugs); (* Drug databases in the table are only examples as one drug-target association may be present in more than one database); (a Allosteric

Modulator).
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Comparing these 28 targets with the 32 targets indicated

for T2D in TTD, we found products of three genes

(HSD11B1, PPARA, NR3C1) are targeted by drugs cur-

rently in clinical trials for T2D. In addition, PPARA is

already targeted by FDA-approved drugs. Hence, we pre-

dicted 25 novel therapeutic targets from the TTD data-

base for T2D. In total for the seven diseases, we found

291 approved therapeutic targets and 95% of these as

novel approved targets. We also found 334 targets in

clinical trials and 96% of these being novel (Table 4). To

summarize, both approved and clinical novel targets are

associated with therapeutics, which may be repositioned

as novel treatments towards the cure of complex diseases.

Validation of predicted therapeutic targets

To assess the validity of targets predicted by Gentrepid for

each phenotype, we used two different benchmarks. In the

first benchmark, validity of the association of the gene

with the phenotype was based on whether they are desig-

nated as targets in the drug databases or not. This was

repeated for all six search spaces investigated for each phe-

notype. In the second benchmark, the validity of the asso-

ciation of the gene with the phenotype was assessed by the

existence or the absence of abstracts in the literature citing

both the gene name and the phenotype.

For the first benchmark, we performed a binary classifi-

cation of genes in the six search spaces as “candidates” or

“non-candidates”. As described in Table 5, targets with

therapeutic drugs for the phenotype of interest were

Figure 7 FDA-approved and clinical therapeutic targets. Abbreviation - T2D - Type 2 Diabetes; Comparison of Gentrepid predicted targets for

Type 2 diabetes targeted by FDA-approved and clinical trial drugs with targets obtained from the TTD database for Type 2 Diabetes. Three

predicted therapeutic targets (HSD11B1, PPARA, NR3C1) targeted by drugs currently in clinical trials for T2D. In addition, PPARA is also targeted by

FDA-approved drugs.

Table 4 Approved and clinical targets for seven complex

diseases

PH AT NAT CT NCT

T2D 45 41 65 62

T1D 57 55 73 72

HT 71 68 43 40

RA 55 53 59 54

CD 93 93 135 135

CAD 63 61 80 76

BD 37 36 44 44

Unique sum 291 277 334 318

Abbreviations - PH - Phenotypes; AT - Approved Targets; NAT - Novel Approved

Targets; CT - Clinical Targets; NCT - Novel Clinical Targets; T2D - Type 2 Diabetes;

T1D - Type 1 Diabetes; HT - Hypertension; RA - Rheumatoid Arthritis; CD - Crohn’s

Disease; CAD - Coronary Artery Disease; BD - Bipolar Disorder.

Predicted therapeutic targets targeted by FDA-approved drugs and drugs in

clinical trials.
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considered “true positives”. Targets with currently regis-

tered therapeutics for the phenotype of interest which

were not predicted by Gentrepid, but were present in the

search space as “false negatives”. Genes which were not

predicted and not targetable by drugs as “true negatives”

and Gentrepid-predicted novel therapeutic targets were

considered as “false positives” (Table 5). ROC curves were

plotted considering targets based on the six search spaces

from the weakly significant data set (Additional file 1,

Figure S1). Area Under Curve (AUC) values obtained

from these ROC curves were significantly greater than 0.5

(p < 0.05) (Additional file 1, Table S2). This suggests that

our predictions of novel therapeutic targets for all the

seven diseases are significant.

For the second benchmark, ROC curves for the seven

complex diseases were created by considering four thresh-

olds for targets cited by at least one, five, ten and fifteen

article citations as true positives and targets without any

citations or less than five, ten and fifteen citations as false

positives. Figure S2 (Additional file 1) contains all the

ROC curves and Table S2 (Additional file 1) contains the

AUC values. The AUC values for all the seven diseases

were significantly greater than from 0.5 (p < 0.05) meaning

that our results were significantly better than by chance.

This also suggests that our predictions of novel therapeu-

tic targets for all seven diseases are significant.

Significance of the work
The primary purpose of our work was to identify poten-

tial therapeutics and their targets by integrating publicly

available genetic, bioinformatic and drug data using the

Gentrepid candidate gene prediction platform. As the

method involves repositioning of currently available

drugs, it allows immediate translational opportunities

for drug testing [8]. Other bioinformatic tools have been

used to identify potential therapeutic targets for com-

plex diseases and other conditions. For example,

TARGET gene was used to identify and prioritize poten-

tial targets from hundreds of candidate genes for differ-

ent types of cancer [34]. Another study identified

potential drug targets for three neurological disorders -

Alzheimer’s disease, Parkinson’s disease and Schizo-

phrenia. This study involved the prediction of candidate

genes using the ToppGene and ToppNet prediction

systems [24,35]. The repositioning tools could be used

as an initial screening tool for potential drugs which

can be used for further evaluation [34]. It is important

to note that not all repositioning opportunities will

be successful as there are always some limitations

[36,37].

Conclusion
There is a need to develop new approaches for the iden-

tification of therapeutic targets to accelerate the process

of therapeutic drug discovery which has not kept pace

with discoveries in genetics. In this study, we integrated

detailed drug data with predicted candidate genes for

seven complex diseases. We found 29% of the predicted

candidate genes could serve as novel therapeutic targets

and 29% of the extracted drugs are potential novel ther-

apeutics for at least one of the seven complex diseases

considered in our study. We have utilized both FDA-

approved drugs and drugs in clinical trials. Further

investigation is required to verify the action of these

drugs. This study enables efficient identification of pos-

sible novel therapeutic targets and alternative indications

for existing therapeutics. Hence, these drugs may be

repositioned against seven phenotypes of interest,

quickly taking advantage of already done work in phar-

maceutics to translate ground-breaking results in genet-

ics to clinical treatments. Gentrepid, thus can be utilized

as a drug screening tool to save time and money spent

on the initial stages of drug discovery.

Additional material

Additional file 1: Gentrepid annotated SNPs, ROC curves and AUC

values for seven phenotypes. Table S1 - Gentrepid annotated SNPs

(clusters) for four data sets, WTCCC study associated loci (HS - p ≤ 5 x10-7 )

and Gentrepid predicted candidate genes per phenotype. Figure S1 - ROC

curves for seven diseases based on six thresholds obtained from targets

present in six search spaces in weakly significant data set. Table S2 AUC

values for ROC curves. Figure S2 ROC curves for seven diseases based on

four thresholds obtained using four cutoff of Pubmed citations (at least one,

five, ten and fifteen).

Table 5 Binary classification of therapeutic targets

PH Total genes in all
search spaces

Binary classification

T2D 4,292 TP = 7 FP = 77

FN = 9 TN = 4,199

T1D 5,339 TP = 2 FP = 95

FN = 9 TN = 5,233

HT 8,427 TP = 5 FP = 73

FN = 15 TN = 8,334

RA 4,970 TP = 6 FP = 71

FN = 9 TN = 4,884

BD 5,667 TP = 1 FP = 58

FN = 6 TN = 5,602

CD 5,644 TP = 0 FP = 135

FN = 0 TN = 5,509

CAD 4,715 TP = 4 FP = 98

FN = 8 TN = 4,605

Abbreviations - TP - True Positives; FP - False Positives; TN - True Negatives;

FN - False Negatives; TN - True Negatives; PH - Phenotypes; T2D - Type 2

Diabetes; T1D - Type 1 Diabetes; HT - Hypertension; RA - Rheumatoid Arthritis;

CD - Crohn’s Disease; CAD - Coronary Artery Disease; BD - Bipolar Disorder.

Binary classification of therapeutic targets considering targets present in six

search spaces from weakly significant data set.
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