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Abstract

This paper discusses an algorithm to compute the Markov parameters of an observer or Kalman

filter from experimental input and output data. The Markov parameters can then be used for

identification of a state space representation, with associated Kalman gain or observer gain, for the

purpose of controller design. The algorithm is a non-recursive matrix version of two recursive

algorithms developed in previous works for different purposes, and the relationship between these

other algorithms is developed. The new matrix formulation here gives insight into the existence and

uniqueness of solutions of certain equations, and gives bounds on the proper choice of observer

order. It is shown that if one uses data containing noise, and seeks the fastest possible

deterministic observer, the deadbeat observer, one instead obtains the Kalman filter -- which is the

fastest possible observer in the stochastic environment. The results of the paper are demonstrated

in numerical studies and in experiments on a ten-bay truss structure.

Introduction

Many future spacecraft such as the space station will be large and flexible and will require control

of the vibrational motion induced by internal and external disturbances for fine pointing and shape

control. One can classify controllers for flexible structures into two types, namely, model-

independent controllers and model-dependent controllers. The model-independent controller 1 is

attractive because it provides stability without precise knowledge of the system. However, it

generally produces low authority control which may not meet the performance requirements. On

the other hand, model-dependent controllers require an accurate model to achieve high
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performance, but inaccuracies in the model may result in instability of the controlled system. 2

Current results indicate that an accurate model is necessary to design controllers with the needed

performance level.

In the past decade, many system identification techniques were developed and/or applied to identify

a state space model for modal parameter identification of large flexible space structures. The modal

parameters include frequencies, damping, and mode shapes. The identified state space model is

also used in controller design. Many satisfactory results were reported in the literature. 3,4 Most

techniques are based on sampled pulse or impulse system response histories which are known as

Markov parameters. The usual practice uses the Fast Fourier Transforms (FT_ of the inputs and

measured outputs to compute the sampled pulse response histories. The discrete nature of the FFT

causes one to obtain pulse response rather than impulse response, and a somewhat rich input is

required to prevent numerical ill-conditioning in the computation. Another approach is to solve

directly in the time domain for the Markov parameters from the input and output data. The

drawbacks of this method include the need to invert an input matrix which necessarily becomes

particularly large for lightly damped systems. 5

Recently, an approach was developed 6"s to address the problem of inverting a large-dimensional

input matrix. Reference 8 gives a more detailed presentation of the developments in Refs. 6 and 7

including additional examples. Rather than identifying the system Markov parameters which may

exhibit very slow decay, it uses an asymptotically stable observer to form a stable state space

discrete model for the system to be identified. The primary purpose of introducing an observer in

Ref. 8 is as an artifice to compress the data and improve system identification results in practice.

The system identification engineer can assign any poles desired, and hence specify the decay rate

of the observer Markov parameters to be determined from the data and simultaneously the number

of parameters needed before they have decayed to a negligible level. The desired poles can be real,

complex or deadbeat. The deadbeat means that all the poles are zero in the complex plane for a

discrete model.

The treatment in Ref. 8 is purely deterministic. When stochastic models are considered, it would

be desirable to identify not only the system matrices of a realization, but also the noise or

uncertainty characteristics of the model directly from the experimental data. This presumes that the

same sensors and actuators used in the identification tests will also be used in the control system

which is to be designed from the system identification results. There are basically two ways to

characterize system uncertainties including plant and measurement noises. One way is to describe

the input and output uncertainties directly in terms of their covariances. Another way is to specify

2



the Kalman filter equation with its steady state Kalman gain which is function of the input and

output covariances. Recently, a recursive identification method was presented in Ref. 9 to identify

Markov parameters for identification of not only the system matrices, but also the Kalman filter

gain. Note that the work in Ref. 9 was motivated by the unsolved problem in Ref. 10 in which

single-mode projection filters were developed for modal parameter identification. There exists

many unsolved issues such as the relationship between the order of the Kalman filter and the order

of the system using the approach of Ref. 9. Furthermore, the computation time and the data length

are too long to become attractive in practice. Examination of the mathematics involved in Ref. 8

for accelerated identification using observers, and that in Ref. 9 for direct identification of the

Kalman filter Markov parameters, shows striking parallels which are investigated here.

One objective of this paper is to present an algorithm to directly compute the Markov parameters of

a steady state Kalman filter from experimental data. From these parameters, one can use various

methods to obtain the Kalman filter state space realization. The approach used in this paper is to

reformulate in matrix form the equations presented in Ref. 8 for deadbeat observers, and in Ref. 9

for Kalman filters. This matrix form gives added insight into the uniqueness of the transformation

from observer or filter Markov parameters to the system Markov parameters, and also allows the

development of upper and lower bounds on the choice of observer order. Also, the recursive least

squares method of solution of the equations in Refs. 8 and 9 is replaced by a non-recursive least

squares solution. This results in an improved rate of convergence for the Kalman filter

identification process by comparison to Ref. 9.

Underlying this work is a second objective, to establish the relationship between the observer

identification equations in Ref. 8 and the Kalman filter identification equations in Ref. 9. When the

observer poles in Ref. 8 are all placed at the origin in the z-plane in order to obtain a deadbeat

observer of a sufficiently high order, and then data containing both plant and measurement noise is

used to develop the desired Markov parameters, the result is the Kalman filter Markov parameters.

Stated in different words, if one uses data containing noise, and seeks the Markov parameters for

the fastest possible deterministic discrete time observer, one instead obtains the Markov parameters

of the slower Kalman filter -- which is the fastest possible observer in the stochastic environment.

This paper starts by writing the relationship between the input and output histories in terms of

system Markov parameters without any observer. An observer is then introduced into the input

and output matrix relation, which is solved by a non-recursive least squares approach to compute

the observer Markov parameters. Formulations are derived to compute the system Markov

parameters and the observer gain from the observer Markov parameters. The relationship between

3



theidentified deadbeatobserveranda Kalmanfilter is thenestablishedthroughuseof theergodic

property of stationaryrandomprocesses.Theoptimal natureof the identified observeris also

discussed.Numericalandexperimentalresultsaregivento illustratethevalidity of thealgorithm

presentedin thispaper.Theexperimentalresultsareobtainedfrom a 10-baytrussstructurehaving

two accelerometersandtwothrusters.

Basic Formulation

Consider a discrete multivariable linear system described by

x(i + 1) = Ax(i) + Bu(i)

y(i) = Cx(i) + Du(i)
(1)

where x(i) E R n, y(i) E R q, u(i) E R m. Assuming zero initial conditions, x(0) = 0, the set of this

equations for a sequence of i can be written as

where

and

qxt mtxg

y = Y U

qxmg

y=[y(0) y(1) y(2).., y(/-1)]

Y:[D CB CAB "'-CAt-2B]

U_

-u(0) u(1) u(2)

u(0) u(1)

u(0)

-.- u(t-1)

--- u(t-2)

•-- u(t-3)

".o

u(0)

(2)

Equation (2) is a matrix representation of the relationship between input and output histories. The

matrix y is a q × t output data matrix where q is the number of outputs and t is the number of data

samples. The matrix Y, of dimension q ×mr with m the number of inputs, contains all the

Markov parameters D, CB, CAB, ..., CAt-2B to be determined. The matrix U is an ml x l

upper block triangular input matrix. It is square in the case of a single input system, and otherwise

has more rows than columns.
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Inspection of Eq. (2) indicates that there are q × mg unknowns in the Markov parameter matrix but

only q × g equations. For the case where m > 1, the solution for Y is not unique. However, it is

known that, for a finite-dimensional linear system, Y must be unique. The matrix Y can only be

uniquely determined from this set of equation for m = I. Even in this case, if the input has zero

initial value, i.e. u(0) = 0, or the input signals are not rich enough such as the case with sinusoidal

input signals, the matrix U becomes ill-conditioned and thus the matrix Y = yU-' cannot be

accurately computed.

Consider the case where A is asymptotically stable so that for some sufficiently large p, A _ = 0 for

all time steps i > p. Equation (2) can then be approximated by

where

qxt. mpxg

y = Y U

qxmp

y=[y(0) y(1) y(2) ... y(p) ... y(g-1)]

Y=[D CB CAB ... CAP-tB]

(3)

U_

-u(0) u(1)

u(0)

u(2) ..- u(p) ... u(g-1)

u(1) --- u(p-1).., u(g- 2)

u(O) ... u(p- 2)..• u(g- 3)

• . : ... :

u(O) ...u(g- p- 1)

Note that the script U (mp x g) and Y (q x mp) refer to truncated versions of the Roman bold U

and Y in Eq. (2). Choose the data length g greater than mp where again m is the number of inputs

and p is an integer such that CA_B-- 0 for i> p. Equation (3) indicates that there are more

equations (q x g) than unknowns (q x mp) because g > mp. We conclude that if the data has a

realization in the form of Eq. (1), then the first p Markov parameters approximately satisfy

Y = yU + where U ÷ is the pseudo-inverse of the matrix U, and the approximation error decreases

as p increases.

Unfortunately, for lightly damped space structures, the integer p and thus the g required to make

the approximation in Eq. (3) valid becomes impractically large in the sense that the size of the

matrix U is too large to solve for its pseudo-inverse U ÷ numerically. The question arises, is there

any way to artificially increase the damping of the system in order to allow solution of Eq. (3) for



the Markov parameters? A control engineer will immediately suggest that a feedback loop can

be added to make the system as stable as desired. The same effect can be achieved by considering

the following algebraic manipulation as presented in Ref. 8.

Add and subtract the term My(i) to the right hand side of the state equation in Eq. (1) to yield

x(i + 1) = Ax(i) + Bu(i) + My(i) - My(i)

= (A + MC)x(i) + (B + MD)u(i) - My(i)

or

where

m

x(i + 1) = Ax(i) + By(i)

y(i) = Cx(i) + Du(i)

A =A+MC

-B=[B + MD, - M]

= [u(i)]

v(i) Ly(i)_]

(4)

(5)

and M is an n x q arbitrary matrix chosen to make the matrix A as stable as desired. Although Eq.

(4) is mathematically identical to Eq. (1), it is expressed using different system matrices and has a

different input. In fact, Eq. (4) is an observer equation if the state x(i) is considered as an observer

state (see Ref. 7 or Ref. 8). Therefore, the Markov parameters of the system in Eq. (4) will be

referred to as the observer Markov parameters. The input-output description in matrix form for Eq.

(4) becomes

q x l _ [q(l - 1) + m] x !

y = Y V

q x [q(/- 1) + m]
(6)

where

y=[y(O)

v:[o

y(l) y(2) -.-y(p)

Cg C%_ .--CZ"-'_
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Vz

"u(0) u(1) u(2)

v(0) v(1)

v(0)

•.. u(p) ... u(t- 1)

• .. v(p-1) --- v(g-2)

• .. v(p-2) -.- v(g-3)

".. : ... :

v(O) ... v(t- p-1)

v(O)

Equation (6) is obtained from Eq. (2) by replacing A by A, B by B and u by v except for the first

row partition. Because the n x q matrix M can be arbitrarily chosen, the eigenvalues of A may be

arbitrarily assigned for an observable system. Reference 8 considers the identification of observer

Markov parameters for any chosen observer pole locations for A = A + MC. The mathematical

development here can be interpreted from the point of view of Ref. 8 as attempting to place all the

eigenvalues of A at the origin, i.e. a deadbeat observer. This provides that CA'B = 0 for i > p.

When using real data including noise, the eigenvalues of A are in fact placed such that CA'B = 0

for i > p where p is a sufficiently large integer. Alternatively, if A represents the state matrix of

the Kalman filter including the steady state Kalman filter gain, the same property is satisfied as

used in Ref. 7, which will be discussed in a latter section.

When CA 'B = 0 for i > p, one can solve for the observer Markov parameters from real data, using

the same approach as in Eq. (3):

qxl i(m+q)p+m]xg

y = Y V (7)

q xI(m + q)p + rn]

where

y=[y(O) y(l) y(2) -.- y(p) ... y(g-1)]

Y:[D C-B CAB ... CAP-'-B]

V

u(0) u(1) u(2) -.. u(p) ... u(g- l)

v(0) v(1) --. v(p-1) ..- v(g-2)

v(O) ... v(p- 2) ..- v(g- 3)

", : ,,. :

v(O) ... v(g- p- 1)

7



m

Note that the script V and Y refer to truncated versions of the Roman bold V and Y in Eq. (6).

Similar to Eq. (3), if the data has a realization in the form of Eq. (1) or its equivalent, Eq. (4), then

the first p Markov parameters approximately satisfy 7 = y V ÷ where V ÷ is the pseudo-inverse of

the matrix V, and the approximation error decreases as p increases. Note that the observer Markov

parameters thus identified may not necessarily appear to he asymptotically decaying during the first

p-1 steps, although it produces CA'B = 0 for i > p for noise free data. Reference 8 allows one to

place the observer poles to produce more typical asymptotic decay of the observer Markov

parameters. To solve for Y" uniquely, all the rows of V must be linearly independent.

Furthermore, to minimize any numerical error due to the computation of the pseudo-inverse, the

rows of V should be chosen as independent as possible. As a result, the maximum p is the

number that maximizes the number, (m+q)p+m, of independent rows of V. The maximum p

means the upper bound of the order of the deadbeat observer. The lower bound of the order of the

observer will be addressed in the next section.

There are many ways of producing the least squares solution to equations such as Eq. (7) for Y.

Reference 5 presents three different approaches to solving equations similar to Eq. (7), including a

bootstrapping procedure, the singular value decomposition and a recursive algorithm. However,

the recursive least squares algorithm presented in Ref. 8 includes substitution of the desired

eigenvalues into Eq. (7) to minimize the unknown parameters in Y. This is probably a very

efficient computational procedure. However, it is not obtaining the least squares solution of Eq.

(7) but rather a somewhat modified problem which can be interpreted as a weighted least squares

solution. Disadvantages of the recursive formula include a problem-dependent choice of error

sensitivity which requires experiences in least squares methods.

All the above equations assume zero initial conditions, x(0) = 0. For nonzero initial conditions, a

somewhat different formula should be used. Rewrite Eq. (4) in another matrix form as

w ----

y=CAPx + YV (8)

where
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y=[y(p+l) y(p+2)..-y(l-1)] x=[x(O) x(1) -.- x(g-p-2)]

"u(p+l) u(p+2) -.. u(l-1)

v(p) v(p + 1) ... v(l- 2)

v(p- 1) v(p) ... v(t- 3)

: : : "..

v(O) v(1) ... v(t- p- 2)

For the case where A p is sufficiently small and all the states in x are bounded, Eq. (8) can be

approximated by neglecting the fhst term on the right hand side,

y=YV (9)

which has the following least squares solution

Y = yVT! V9 "_1-1 (10)

provided that [VVr] -1 exists. Equation (9) is identical to Eq. (7) except that the y in Eq. (7) is

replaced by y and V by V. The matrices 7 and V are subsets of y and V respectively

produced by deleting the first p columns. For nonzero unknown initial conditions, Eq. (9) must be

used in order to eliminate the effect of initial conditions, because the initial conditions become

negligible when they are multiplied by A-P. In other words, the initial conditions have negligible

influence on the measured data afterp time steps. When there are both system and measurement

noise present, the elimination of initial condition dependence makes the system response become

stationary, a fact which is used later to obtain the steady state Kalman filter gain.

Computation of Actual System Markov Parameters and Observer Gain

To recover the system Markov parameters in Y from the observer Markov parameters in Y-,

partition P such that

Y:[Y'_, Yo Y_ "'" Pp-,] (11)

where
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=[C(A + MC)t(B+ MD), -C(A + MC)kM]

-[_0,, _(2,]; k=0,1,2 ....

Note that the Markov parameter Y__ has a smaller dimension than the remaining Markov

parameters. From the second equation in Eq. (11), the Markov parameter CB of the system is

simply

Yo = CB= C(B + MD)-(CM)D

= _o0) + yo(2)D (12)

To obtain the Markov parameter CAB, first consider the product _o)

_o) = C(A + MC)(B + MD)

= CAB + CMCB + C(A + MC)MD

Hence,

Y1 = CAB

= Eli(!) + yo(2)yo + Ell(2)o ( 1 3)

Similarly, to obtain the Markov parameter CA2B, consider the product _(1)

Therefore,

Y2(1) = C(A + MC)2(B + MD)

= C(A 2 + MCA + AMC + MCMC)(B + MD)

= CA2B + CMCAB + C(A + MC)MCB + C(A + MC)2MD

Y2 = CA2B

= Y2°) - CMCAB - C(A + MC)MCB - C(A + MC)2MD

= _o) + po(2)yl + g(2)yo + _t2) o (14)

As established in Ref. 8, the general relationship between the actual system Markov parameters and

the observer Markov parameters is
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k-I

Yk = _'_) + _, _2)Yk-,-_ + _ '2'D (15)
i=0

Knowledge of the actual system Markov parameters allows one to obtain a state-space realization

of the system of interest. Modal parameters including natural frequencies, damping ratios, and

mode shapes can then be found. Note that there are only p+l observer Markov parameters

computed as a least squares solution from Eq. (7). By the choice of p, _°)and _2) are

considered to be zero for k > p.

The relationship between observer Markov parameters and system Markov parameters can be

further developed as follows. Let the matrices H, 712_ and Y be defined as

L -" v,,.

. . . ... •

.V, Yp+,l Yt,+2 "'" Yo+p-I

(16)

and

where N is a sufficiently large arbitrary integer and H is obviously a generalized Hankel matrix

consisting of a number of system Markov parameters. From Eq. (16), one obtains

7_2)H = Y ( 1 7 )

By using the definition of system Markov parameters, the Hankel matrix can be expressed by

C

CA

H= CA 2 A[B AB A2B ... AN-lB]=VAW

CAt'-I

(18)
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whereA is the system state matrix for a discrete model representation, V the observability matrix,

and W the controllability matrix. Then Eq. (17) becomes

y(2>H = P(Z)[VAW] = Y (19)

It is known that the rank of a sufficiently large H is the order of the controllable and observable

part of the system. From the experimental point of view, the identified state matrix A represents

only the controllable and observable part of the system. The size of the matrix H is qp by Nm

where N is an arbitrary integer Assuming that Nm > qp, the maximum rank of H is thus qp. Ifp

is chosen such that qp>n (the order of the matrix A) and _-(2_ is obtained uniquely, then a realized

state matrix A with order n should exist.

Therefore we conclude that the number of observer Markov parameters computed, p, must be

chosen such that qp>n where q is the number of outputs and n the order of the system and

obviously p can be smaller than the true order of the system for a multiple output system. For

a single output system, the number p must be greater than or equal to the true order of the

system. The number p determines the maximum number of independent system Markov

parameters as seen from Eq. (15). Therefore, p represents the upper bound on the identified

system model. When a Hankel matrix is formed for the purpose of system identification,

there is no benefit to include additional system Markov parameters beyond the necessary

number to create a full rank Hankel matrix.

Equation (15) can be written in the following matrix form

I

__(2) 1

__(2, __o(2, I

i °Oo

to

Y,

"_0_1)+ _0C2)D"

(20)

Note that 1 and all _(2_ (i=O, 1 ..... k ) are q x q square matrices. It is immediately seen that

back substitution for Y0,Y_ ..... Y_ from Eq. (20) yields Eq. (15). It is known that recursive back

substitution without pivoting may result in a significant error accumulation in the solution. For

numerical accuracy, it is better to use some type of pivoting procedure to minimize the error

accumulation, unless the diagonal terms are dominant. However, the recursive back substitution is
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superior in computational efficiency relative

computationis required.

To identifytheobservergainM, first recover the sequence of parameters

Y_=CAkM ; k=0, 1, 2 ....

in terms of the observer Markov parameters.

Yo = CM : __(2)

The next parameter in the sequence is obtained by considering _(2>

g<2) = -CAM = -(CAM + CMCM) = -Yl ° + Po<2)Yo

which yields

Similarly,

which yields

yo=_g<2,+Z0<2,ro

to other methods, particularly when real-time

In fact, the fhst parameter in the sequence is simply

Y2(2' =-C-A2M=-(CA2M +CMCAM +C-XMCM)=-Y_ + _C2)Yt° + g'2)Y o

Y; =-_<_>+_0<_>y,o+_<2'yo

(21)

By induction, the general relationship is

k-I

y: =__,2, + '_ g,2,y_,_,_,
i=0

(22)

(23)

(24)

(25)

Having obtained the sequence Yk = CAkM ; k = 0, 1, 2 .... where C and A can be realized by an

identification method 11-12 from the Markov parameter sequence Yk = CA_B ; k = O, 1, 2 ....

obtained from Eq. (20), the observer gain M can be computed from

(26)

where

M =(OrO)-_ory °

13



_,,

"C

CA

CA 2

CA k

o ..,

r:

Y;=

y.°._J

"CAr "

C/M

C,_ZM

CA tM

(27)

Equation (25) can be written in matrix form as

I

-Yo (2) I

-Y2;

I

r:

"__0(2)"

-Y11 (2)

- _y2 (2)

__(2)

(28)

The above italiciz_stamment about Eq. (15)regardingthenumbex of independentsystem Markov

parametersalsoappliestotheobservergainMarkov parameters,Yk°,inEq. (25)or (28)• Note that

I and all_a) (i = 0, I....) are q x q square matrices.Therefore,the leftmost matrix inEq.

(28)is square and fullrank and identicalto thatin Eq. (20). Hence, Y° isdeterminexluniquely

from an identifiedsetof observerMarkov parameters.Equation (26)impliesthattheobsewvergain

M computed from Eq. (26)isautomaticallyinthe same coordinatesas thosefora setofA, C, (and

B) resultedfrom any realization.Recallthatthe the setof system Markov parameters used for

realization of the system is also uniquely determined from the same identified set of observer

Markov parameters, Eq. (15) or Eq. (20). Computationally, Eqs. (15) and (25) or Eqs. (20) and

(28) can be combined as a single matrix equation to solve for Yk and Y[ simultaneously, i.e.

Pk=[Yi, Yk°]=[CAkB CA'M]=CA'[B M]

k-I

i=O

(29)

Conventional system identification methods would use only the impulse response history, Yk to

determine A, B, C and D. Here, the combined system and observer gain Markov parameters, Pk,

are used in a Hankel matrix to identify A, [B M], C and D by some time domain method such as

ERA 11 or ERA/DC 12. There arc several advantages for this approach. First, the observer gain,
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M, is obtained directly, which will be shown to be related to the Kalman filter gain in the next

section. Second, the number of independent Markov parameters has been compressed by using

the observer. This allows one to use a smaller Hankel matrix and thus reduce the computational

effort in the identification algorithm. Third, one can identify the number of independent system

Markov parameters from a single set of data for lightly damped systems with multiple inputs and

multiple outputs. This is a result of increased stability produced by adding an observer gain which

allows one to use a smallerp in Eq. (7) than in Eq. (3).

Relationship Between the Identified Observer and a Kalman Filter

Let Eq. (1) be extended to include process and measurement noise described as

x(i + 1) = Ax(i) + Bu(i) + w(i)

y(i) = Cx(i) + Ou(i) + v(i)

(30)

where w(k) is the process noise assumed to be Gaussian, zero mean and white with the covariance

matrix Q, and v(i) is the measurement noise with the same assumption as w(k) but a different

covariance matrix R. The sequence w(i) and o(i) are assumed statistically independent of each

other.

A typical Kalman filter for the above equation can then be written as

A

2+(0 = 2(0 + Kly(i) -_:(i)]=2(i)+ Kt,(i)

:C (i) = Afc+(i - I) + Bu(i- 1)

_(i) = C_- (i) + Du(i)

(31)

where fc+(i) is the estimated state. The term er(i ) is called the residual and is defined as the

difference between the real measurement y(i) and the predicted measurement _,(i). Combination of

the first two equations in Eq. (31) yields

or

_'(i + I) = A[I - KCIYC(i) + [B - AKDlu(i) + AKy(i)

YC(i + 1) = AYc-(i) + By(i)

y(i ) = CfC (i) + Du(i) + e.,.(i )

(32)
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where

= A[I - KC]

B=[B-AKD, AK]

[u(i)]

v(i) = Ly(i)J

Comparison of Eqs. (4) and (32) reveals that they are identical ifM=-AK and e,.(i) = 0, and so are

their Markov parameters. An question immediately arises as to whether K=-A-1M ifM is

computed using the computational procedure developed above. It is known that the Kalman filter

gain K depends on the process covariance Q and the measurement covariance R. There must

exist some conditions such that the equation M=-AK is valid due to the fact that the same

equations are used to solve for the Kalman filter gain K and for the observer gain M. The key is

the error term. The conditions will be derived in the following.

Equation (32) can be written in the following matrix form

y = I:aT+c + CA"_-

where Y and V'are defined in Eq. (8) and

(33)

._-=[._-(0) ._-(1) £-(2)... £-(/-p-2)]

e=[e,(p+l) er(p+2) G(p + 3) -.- e,(/-1)]

and e is the residual error as defined in Eq. (31), and ! is the data length. This equation applies to

any equation with the same observer structure as Eq. (31). If the observer happens to be a Kalman

filter, then the residual is white, zero-mean, and Gaussian.

Postmuhiplying Eq. (33) by _r yields

y9 "_= yFF _ + eF _ + CA_._-F_

Let V be partitioned in rows as

v0q

(34)

Equation (34) can then be rewritten as
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r Vp+l vT÷I V T ... T -p+lVp Vp+l VO

i

Vo VoV,\, VoVo

Let us examine a term from eV r

t-p-I

Cv_r= Zer(p+j)vr(i+j_l)., i=O ..... p+l (35)
)=1

If this term is divided by g-p-l, it represents the time average of the product e(k)vr(k- i) from

k=p+l to g-1. By the ergodic property 13, if the product is a sample function of a stationary

random process, it can be replaced by its ensemble average provided t goes to infinity, l --->oo

l-I

EIe,(k)vr(k-i)l=lim 1 _e,(j)vr(j-i); k > p.

t-_- g - p - 1 j:p+j
(36)

Physically, ergodicity implies that a sufficiently long record of a stationary random process

contains all the statistical information about the random phenomenon. In practical applications, the

ergodic property makes it possible to obtain the noise-related moment functions of a stationary

random process from a single long record. The conversion from a time average to an expected

value is performed similarly for the other terms including yv r, Yc-v_, v,vf ( i, j = 0 ..... p + 1).

The concept of stationarity in a random process is analogous to the steady-state behavior of a

deterministic process. In practice, no random process can be truly stationary. However, a long

segment of a random process exhibiting uniform characteristics can be treated as stationary. One

must allow sufficient time for the system transients to decay before the data sequence starts. In

addition, the choice ofp in Eq. (33) has to be sufficiently large that the transients of the Kalman

filter are negligible.

Equation (34) can now be written as
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lim 1 [y_'r_ ]7_r] = E[e,(k)vr(k) E,(k)vr(k_ 1) -.-
t--,-l-p-1

+ CA'E[i-(k)vr(k + p + 1) _-(k)vr(k + p)

(37)

for all k > p. If we choose the observer such that

],7 -. y_'T[_'_'T]-I

in the limit l --_ *,,, then

E[e,(k)vr(k) e,(k)vr(k-1)

=-CA'E[_-(k)v r(k + p+ 1)

• .. e,(k)vr(k- p- 1)]

_-(k)vr(k+p) ... _-(k)vr(k)]

(38)

(39)

Because ,4 for an observer is asymptotically stable, let p be chosen sufficiently large that the right

hand side of the above equation is negligible, i.e.,

E[e,(k)vr(k - i)] = 0 (40)

for i=O ..... p+l and k>p. Substitution of the definition for v(k-i) from Eq. (32) in Eq. (40) yields

E[e,(k)ur(k -i)] = 0; i = 0 ..... p+ 1

E[e,(k)yr(k - j)] = 0; j = 1.... ,p + 1 (41)

for k>p, which implies that the residual error e.,(k) at any time k is orthogonal to the input function

u(k-i) with the time delay i from 1 up top+l, and the output function y(k-j) with the time delayj

from 0 up to p+l. In other words, if we choose the observer with the observer Markov

parameters which satisfy the least square Eq. (38), the residual describing the difference between

the estimated output measurement and real measurement is orthogonal to the given input and the

measured output with time delay. This has application to model reduction based on the

orthogonality of the output measurements and the residuals, representing the output errors between

the full model and the reduced model. 14

Now given a set of data from a finite-dimensional system of Eq. (30), there exists a Kalman filter

with the property that the residual is white, zero-mean, and Gaussian, i.e.

E[e,(k)]=0; E[e,(j)ey(k)]=O; j¢k (42)

18



and satisfies the principle of orthogonality

E[e,(k)yr(k - i)] = 0; i=1 ..... k (43)

If the experimental process is stationary and random, the Kalman filter gain is a constant which

produces the Kalman filter Markov parameters in the limit ! --->,,,, satisfying the least squares Eq.

(36) provided the inverse [vvr] -t exists. For a sufficiently rich input, the inverse always exists.

We conclude that any observer satisfying Eq. (10), or its equivalent Eq. (38), produces the

same input-output map as a Kalman filter does if the data length is sufficiently long and the

order of the observer is sufficiently large so that the truncation error is negligible. Therefore,

when reduced to the system order, the identified observer has to be a Kalman filter and thus

the M computed from the combined Markov parameters of Eq. (29) gives the steady state

Kalman filter gain

K = -A-_M (44)

Computational Algorithm

Given a set of experimental input and output data, the identification algorithm proceeds as follows.

Step 1: Choose a value of p (see Eq. (7)) which determines the number of observer Markov

parameters to be identified from the given set of input and output data. In general, p is required to

be sufficiently larger (at least four or five times) than the effective order of the system for

identification of the Kalman filter gain with accuracy.

Step 2: Form the two data matrices y and V as shown in Eq. (7) for zero initial conditions, or y

and V as shown in Eq. (9) for nonzero initial conditions, and compute the least squares solution of

the observer Markov parameter matrix Y.

Step 3: Recover the combined system and Kalman filter Markov parameters, Pk, from the

identified observer Markov parameters using Eq. (29). To solve for more Markov parameters than

the number of identified observer Markov parameters, simply set the extra observer Markov

parameters to zero.
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Step 4: Realize a state space model of the system and the corresponding Kalman filter gain from

the recovered sequence Pk using ERA or ERAJDC.

Numerical Example

As an example, a spring/mass three-degree-of-freedom system is used to simulate data with known

noise properties. The simulated system, used in Ref. 9, has one input and two outputs. The

continuous system is discretized at a sampling frequency of 10 Hz. The discrete time model for this

system is

rr 0.9856 0,6  1F0.8976 04 0 1r0_ 0.56901_

a=diagl[-o.1628 0.9856J'L-0.4305 0.8976J'L-0.5690 0.8127jj

B=[0.0011 0.0134 -0.0016 -0.0072 0.0011 0.0034] r

l.5119 0.0000 2.0000 0.0000 1.5119 0.0000] (45)

C=L1.3093 0.0000 0.0000 0.0000 -1.3093 0.0000 d

D- [0.00000.0000]T

where the matrix A is in block diagonal form for later comparison with the identification results.

The process noise and measurement noise covariances are specified respectively to be

Q=diag[O.0242 3.5920 0.0534 1.034 0.0226 0.2279]x10 -4

R=diag[2.785 2.785]×10 -2

(46)

These covariances were chosen by the following procedure. First a simulation was performed

using random u(k) with a standard deviation of 20 to determine the noise free sequences Bu(k) and

y(k). The standard deviation of the process noise was computed to be 5% that of the sequence

Bu(k). Similarly, the standard deviation of the measurement noise was chosen as 5% that of the

sequence y(k). To examine the stochastic properties of the system, one must assume that the

sample histories are infinitely long but in practice they are not. Therefore, the effect of short time

records must be examined. Also in the theoretical development the observer order p is specified a

priori. In the simulations, two different values for the observer order parameter p are used and the

results are compared.
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The computational algorithm is applied to identify the system and the corresponding Kalman filter

gain in the presence of the prescribed noise levels. Examination of Table 1 shows that the

frequencies are accurately identified in all cases to within 0.2%. Damping estimates, however, vary

up to 28% with improved results obtained when the number of data samples is increased.

Computation of the frequencies and damping values is based on a realization of the system matrix

A from the Markov parameter sequence. The realization algorithm presented in Ref. 12 is used,

and a minimum order realization is obtained from the Hankel correlation matrix HH T, where H is

as in Eq. (16). For deterministic systems, the rank of the correlation matrix is equal to the system

order. For stochastic systems the problem of rank determination is not as clear and the method of

singular value decomposition is used to determine the system order. Retaining only those singular

values with significant contribution to the correlation matrix renders a model of the same order as

the number of retained singular values. The value ofp is chosen to be either 40 or 50 and only the

first 6 singular values are retained.

Table 1. Comparison of identified modal parameters

Case

No.

0

1

2

3

4

5

6

Mode 1

Freq. Damp.

(Hz) (%)

0.261 0.63

0.261 0.55

0.261 0.56

0.261 0.59

0.261 0.59

0.261 0.65

0.261 0.65

Mode 2

Freq. Damp.

(Hz) (%)

0.712 1.01

0.712 0.96

0.712 0.95

0.712 0.99

0.712 1.00

0.712 0.99

0.712 0.98

Mode 3

Freq. Damp.

(Hz) (%)

0.972 1.30

0.970 1.65

0.970 1.67

0.971 1.52

0.971 1.51

0.971 1.52

0.971 1.53

Case

Case

Case

Case

0: True Values

1: 1000 data points, p--40

2:1000 data points, p=50

3:2000 data points, p=40

Case 4:2000 data points, p=50

Case 5:4000 data points, p=40

Case 6:4000 data points, p=50

Kalman filter gains are shown in Table 2. Although the numerical comparison in terms of

frequencies and damping values is good, the estimated Kalman filter gains for the different cases

could be quite different from the true value because of the finiteness of the data lengths. Table 2

shows that as the number of data points used in the identification is increased, the identified

Kalman filter gains approach the true value.
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Case No.

0

i

2

i

Table 2. Comparison of Kalman filter gains

Kalman Filter Gain Matrix

_r0.0293_0.0012 0.0025 0.0000 0.0241 0.00471T

K L0-0295 0.0012 0.0000 0.0005 --0.0251 0.00421

"0.0261 -0.0166 0.0198 0.0046 0.0236 0.0086 "'T

0.0253 -0.0020 -0.0010 0.0116 -0.0328 0.0241

,0.0255 _0.0066 0.0196 -0.0047 0.0246 0.0071 aT
K=

0.0265 _0.0052 0.0008 0.0037 _0.0298 0.0062
Y

The corresponding realized system matrices for Case No. 6 are,

rr0.9856 o.,6 91r0.8977 o.  o lr0.8,20o. o °1l
A=diag L-0.1629 0.9856fL-0.4306 0.8977fL-0.5676 0.8120jj

B=[0.0011 0.0132 -0.0016 -0.0068 0.0011 0.0034]T

['1.5107 0.0000 2.0000 0.0000 1.5133 0.0000]

C=L1.3107 0.0011 -0.0087 -0.0104 -1.3073 0.0288J (47)

D = [0.0007 0.0012]"

Comparing the B and C matrices with the true ones in Eq. (45) shows excellent agreement but a

nonzero direct transmission term is picked up by the identification. The reconstruction (not shown)

of the system response using the identified observer parameters in Eq. (47) and the identified

Kalman f'flter gain in Table 2 when compared to the actual response shows excellent agreement.

Experimental Results

To demonstrate the identification procedure using real experimental data, the structure shown in the

photograph in Fig. (1) is used. The truss is 100 inches long with a square cross section of 10 in x

10 in. All the tubing 0ongerons, battens, and diagonals) and ball joints are made of aluminum. The

structure is in a vertical configuration attached from the top using an L-shaped fixture to a

backstop. Two cold air thrusters acting in the same direction are placed at the beam tip. The

thrusters which are used for excitation and control have a maximum thrust of 2.2 lb each. A mass
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of approximately 20 lb is attached at the beam tip to lower the fundamental frequency of the truss.

Two servo accelerometers located at a comer of the square cross section provides the in-plane tip

acceleration.

The structure was excited using random inputs to both thrusters for 30 seconds. The input signals

were filtered to concentrate the energy in the low frequency range. A total of 7498 data points at a

sampling rate of 250 Hz is used for identification. The two output acceleration signals were filtered

using a three pole Bessel filter with a break frequency of 20 Hz. The value ofp is set to 10. Recall

that the maximum identified system order can not exceed the number of outputs times the value of

p. Therefore, the system order is chosen is to be 14 for realization of the system matrices, using

the identified Markov parameters. Since the noise properties of the test structure are unknown,

comparison of the identified Kalman filter gain is not possible. Instead the identified Kalman filter

model is used to reconstruct the output. Figure (2) shows overlaping 8 seconds of the

reconstruction and the test data for the two accelerometers used. The dashed line is reconstruction

and solid is test data. Only one plot is seen because the prediction error for both outputs is less that

0.1%. If one uses the predictor part of the Kalman filter which includes only the matrices A,B,C

and D, the reconstruction is shown in Fig. (3). There are some visible differences between test

and reconstruction but overall the model is very accurate. It is important that the predictor pan be

accurate because it is this pan that is used as a model for control design. There have been cases

where the identified model including Kalman filter gain showed good agreement but the predictor

pan did not. In those cases it is important to examine the realization parameters, truncation error

and residual error to ensure that the proper order has been selected. The identified discrete system

matrices are given in the appendix. This identified system was obtained using a single pair of time

histories. To check the validity of the model with different tests, a second experiment is performed

and the time histories compared with the prediction from this model. The results are as good as

those in Fig. (2) and (3). The test structure has three dominant modes with frequencies at 5.8, 7.3,

and 48.5 Hz and damping values of 0.5, 0.5, and 0.9 %, respectively.

Concluding Remarks

An algorithm for the direct computation of observer/Kalman filter Markov parameters, and from

them the observer/Kalman filter matrices, has been presented. The matrix formulation developed

here allows one to establish the uniqueness and invertability of the transformation from

observer/Kalman filter Markov parameters to the system Markov parameters. The matrix

formulation also establishes bounds on the choice of the observer/Kalman filter order for the data.

The algorithm is a non-recursive matrix version of two previous algorithms, one is a recursive
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algorithm for Kalman filter identification, and the other is an algorithm for direct identification of

observers with chosen pole locations, specialized to have all poles at the origin (the deadbeat

observer). The non-recursive form of the least squares solution used here results in a substantial

improvement in the convergence rate to the true Kalman gain that was reported before. The

relationship between the deadbeat observer and the Kalman filter Markov parameter identification

problems is established here. It is shown that using the equations for deterministic deadbeat

observer parameters on noisy data, results in obtaining the Kalman f'dter parameters, in the limit as

the amount of data used tends to infinity. When a finite set of data is used, the resulting filter

satisfies an optimality condition indicating that it is the best filter that can be obtained with the data

length available.
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Appendix

Identified discrete time system matrices for truss structure. Sampling frequency is 250 Hz.

[--0.8500

". 1L-0.2936

A= atag][ 0.9824

tL-0.1819

0.2936],F--0.5531

-0.85001 L-0.6185

0.1819]f 0.2519

0.9824.1 L-0.8203

0.6185], "-0.2663 0.9207],[ 0.9885

-0.5531.1 -0.9207 -0.2663J I_-0.1466

0.8203],[ 0.3410 0.9286]

0.25191 L-0.9286 0.3410-1

B_

0.4262 -0.5070"

0.2259 -0.5824

0.1531 0.2496

-0. 3463 -0.1154

-0.1863 0.2382

0.0792 0.0805

0.0999 -0.1017

-0.0438 0.0484

0.0630 -0.0676

-0.0138 0.0196

O. 1496 -0.0304

-0.4487 -0.0154

0.0270 0.0903

0.2419 0.1165

C T =

"0.5828

0.0000

1.5925

0.0000

0.6539

0.0000

1.8031

0.0000

0.8830

0.0000

1.2509

0.0000

1.3514

0.0000

1.8975"

0.2,447

-1.1030

-0.4972

1.8091

O. 5474

0.8654

0.0034

-1.7941

-0.0393

-1.3068

0.8530

-1.4671

0.1463

"-0.2955 -0.1710"

-0.1296 -0.0384

-0.0176 -0.0638

0.2171 -0.0307

-0.0281 0.0050

-0.1451 0.1529

0.2175 0.2670

O.2234 O. 1295

0.0684 0.0661

0.0439 0.0436

0.1461 0.1301

-0.0104 0.0195

-0.0198 0.0210

0.0092 -0.1252

-0.1260 0.0044]D = k 0.0362 0.1865
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Fig. 1 Truss structure test configuration.
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