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Pollen grains are complex three-dimensional structures, and are identified using specific 14 

distinctive morphological characteristics. An efficient automatic system for the accurate and 15 

rapid identification of pollen grains would significantly enhance the consistency, objectivity, 16 

speed and perhaps accuracy of pollen analysis. This study describes the development and 17 

testing of an expert system for the identification of pollen grains based on their respective 18 

morphologies. The extreme learning machine (ELM) is a type of artificial neural network, and 19 

has been used for automatic pollen identification. To test the equipment and the method, 20 

pollen grains from ten species of Onopordum (a thistle genus) from Turkey were used. In 21 

total, 30 different images were acquired for each of the ten species studied. The images were 22 

then used to 11 measure morphological parameters; these were the colpus length, the colpus 23 

width, the equatorial axis (E), the polar axis (P), the P/E ratio, the columellae length, the 24 

echinae length, and the thicknesses of the exine, intine, nexine and tectum. Pollen recognition 25 

was performed using the ELM for the 50–50%, 70–30% and 80–20% training-test partitions 26 

of the overall dataset. The classification accuracies of these three training-test partitions of 27 

were 84.67%, 91.11% and 95.00% respectively. Therefore, the ELM exhibited a very high 28 

success rate for identifying the pollen types considered here. The use of computer-based 29 
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systems for pollen recognition has great potential in all areas of palynology for the accurate 30 

and rapid accumulation of data. 31 

 32 
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1. Introduction and background 37 

 38 

Pollen grains are produced by seed plants to disseminate their haploid male genetic material. 39 

Each pollen grain contains a generative cell (the male gametes) and a vegetative cell or cells, 40 

surrounded by a cellulose cell wall and a tough outer wall made of the resistant 41 

polysaccharide sporopollenin (Edlund et al. 2004). The morphology of pollen grains is 42 

extremely characteristic and pollen can, by itself, be used as a proxy for the respective parent 43 

plant. These features are used to identify taxa and hence are useful for establishing 44 

phylogenies (e.g. Clark et al. 1980). Pollen analysis is an extremely important discipline and 45 

its practitioners, termed palynologists, study diverse topics such as the indications and timings 46 

of anthropological activity, limnology, rapid climatic/ecological change and vegetational 47 

history (e.g. Moore et al. 1991). Pollen morphology is an essential part of general plant 48 

morphology, and hence plays a critical role in research into taxonomy and evolution. Most 49 

morphological features of pollen allow identification only to the generic level. This is because 50 

the majority of morphological characters are very similar within a genus, and it is normally 51 

difficult to subdivide genera using conventional light microscopical techniques. 52 

The traditional method of pollen identification using a transmitted light microscope 53 

requires an experienced palynologist, and can be somewhat time-consuming. Hence an 54 

automated system for the location of pollen grains on microscope slides and their 55 

identification would be hugely beneficial in the interests of economics and efficiency in all 56 

types of pollen analysis. Several attempts at developing reliable expert systems have been 57 

made, and these are reviewed in section 2 below. 58 
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In this study, an automatic pollen recognition system using a neural network is trialled. 59 

A learning algorithm termed the extreme learning machine (ELM) was used to perform the 60 

analyses on ten species of a thistle genus Onopordum (Family Asteraceae, Subfamily 61 

Carduoideae, Tribe Cynareae). The ELM is a single hidden layer feed-forward neural network 62 

(SLFN), and is a specialised artificial neural network (ANN) model. With the ELM, the 63 

weightings belonging to neurons at the input layer, and the bias values belonging to neurons 64 

in the hidden and input layers are all randomly-generated. By contrast, the outputs from the 65 

hidden layer are computed analytically (Huang & Siew 2005, Li et al. 2005, Huang et al. 66 

2006a,b, Rong et al. 2008, Suresh et al. 2010). The most significant feature of the ELM model 67 

is that the learning process is very efficient. It can learn thousands of times faster than 68 

conventional learning algorithms for feed-forward neural networks. The learning speed of 69 

other feed-forward neural networks is typically relatively slow, largely due to the slow 70 

gradient-based learning algorithms used in the training procedure (Huang et al. 2006b). 71 

Automated recognition tools such as the ELM, and the necessary computer hardware, 72 

are presently at a stage where these methods can potentially be routinely applied to the 73 

analysis of pollen assemblages. In theory, automated pollen identification and classification 74 

should remove analytical subjectivity and inconsistencies between operators. Furthermore, 75 

analyses should be completed more rapidly than with an actual palynologist, hence making 76 

savings in terms of both time and labour. Automatic systems can be rapidly programmed to 77 

analyse different pollen assemblages in terms of geographical locus, geological age and 78 

taxonomic focus (families, genera, species etc.). This makes them potentially more adaptable 79 

than any single palynologist. 80 

 81 

 82 

2. 2. Previous research on the automated identification of pollen 83 

 84 

Several studies have attempted the digital identification of pollen using artificial intelligent 85 

systems, and selected relevant studies are briefly reviewed here. Early studies include 86 

Langford et al. (1990) and Vezey & Skvarla (1990), who undertook research into pollen 87 

recognition using the scanning electron microscope (SEM), and achieved promising results. 88 
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Both these studies developed computer systems which were designed to classify pollen grains 89 

based on their surface texture. However SEM analysis is relatively expensive and rather slow, 90 

and hence is unsuitable for applications which require data and interpretations in a short 91 

timeframe. Benyon et al. (1999) used image analysis to attempt to differentiate eleven 92 

allergenic fungal spore genera. This study was based on 24 morphological features extracted 93 

from digitised images. These authors found that using linear and quadratic discriminant 94 

analysis allowed the recognition of both genera and species with a high level of accuracy. 95 

France et al. (2000) developed a new approach to this problem based on improving the quality 96 

of the image processing with a traditional optical microscope. These authors were able to 97 

differentiate between pollen grains and palynodebris, and to classify three different pollen 98 

types correctly. Jones (2000) and Ronneberger (2000) investigated pollen recognition using 99 

two-dimensional statistical classification and three-dimensional greyscale invariants with 100 

confocal microscopy respectively. Boucher et al. (2002) developed a semi-automatic system 101 

for pollen recognition. Digitised three-dimensional photographs of Cupressaceae (cypress), 102 

Olea (olive), Poaceae (grasses) and Urticaceae (nettle) pollen were image-processed in two 103 

and three dimensions, and around 77% of the pollen grains were identified by this system, 104 

which worked especially well for pollen from the families Poaceae and Urticaceae. 105 

Rodriguez-Damian et al. (2006) developed an automatic system for the identification of 106 

species of pollen from the Family Urticaceae using a combination of shape and textural 107 

analysis. This system achieved 89% of reliable pollen identifications. 108 

Li & Flenley (1999) successfully used texture analysis to identify pollen using 109 

transmitted light microscope images with neural network analysis, which is a statistical 110 

classifier. Ranzato et al. (2007) developed a microscopic image analysis system. This four-111 

stage process was first used to classify 12 microscopic particle types found in human urine, 112 

where it achieved a 93.2% success rate. It was then trained and tested on a set of images of 113 

airborne pollen grains, where it generated 83% of positive identifications. Allen et al. (2008) 114 

and Holt et al. (2011) developed an automated system that locates, photographs, identifies and 115 

counts pollen on a conventional microscope slide. The images in Holt et al. (2011) were 116 

analysed with an array of mathematically-defined parameters defined by Zhang et al. (2004), 117 

and the feature sets obtained were classified using similar sets from known pollen types. The 118 

images produced were then checked by a palynologist. Holt et al. (2011) produced pollen 119 

counts which only vary within 1–4% of the results produced conventionally by a palynologist. 120 
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An innovative methodology to discriminate three species of pollen from the Family 121 

Urticaceae (Parietaria judaica, Urtica membranacea and Urtica urens) using computer 122 

techniques for the definition of digital shape parameters to represent a pollen grain was 123 

developed by de Sá-Otero et al. (2004). This system uses area, diameter, mean distance to 124 

centroid and roundness, and achieved an at least 86% success rate. 125 

Ticay-Rivas et al. (2011) used Fourier descriptors of the morphological details 126 

(geometrical parameters) of 17 honey plant pollen species using discrete cosine transform, 127 

together with colour information in order to effect automatic identifications. These authors 128 

used a multi-layer neural network, and their method acheived a mean of 96.49% ±1.15 for 129 

successful identifications. Recently Kaya et al. (2013) described an expert computer system 130 

using a rough set approach for the automatic classification of 20 types of Onopordum pollen. 131 

Each pollen grain was comprehensively photographed, with 30 different images captured. 132 

Key morphological parameters such as the colpus length, the P/E ratio and the echinae length 133 

were measured. The dataset of Kaya et al. (2013) comprised 600 pollen samples; 440 samples 134 

were used for training the expert system, and the remaining 160 were used for testing using 135 

the rough set approach. This method correctly identified 145 of the 160 pollen grains tested, a 136 

success rate of over 90%. 137 

 138 

 139 

3. The plant family Asteraceae and the genus Onopordum 140 

 141 

This study is an attempt to distinguish species of Onopordum L., a genus of thistles within the 142 

Family Asteraceae using automatic pollen identification. The Asteraceae are commonly 143 

referred to as the aster or daisy family. It is the largest family of flowering plants, and was 144 

formerly known as the Compositae (Wagenitz 1976, Bremer 1994, Funk et al. 2005, Panero & 145 

Funk 2008). This major plant family is extremely geographically widespread, and is 146 

represented by over 1600 genera and approximately 23000 species of herbs, shrubs and trees 147 

throughout the world (Kubitzki 2007). Of these taxa, 143 genera and approximately 1484 148 

species are present in Turkey (Davis 1975, Özhatay et al. 2009). Pollen grains of the 149 

Asteraceae are relatively similar in overall morphology throughout the family. The genus 150 
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Onopordum L. is a thistle genus within the Subfamily Carduoideae of the Asteraceae, and 151 

includes around 60 species which inhabit north Africa, west and central Asia, the Canary 152 

Islands and Europe (Kubitzki 2007). In Turkey, Onopordum comprises 19 species, and 2 153 

subspecies (Danin 1975, Davis et al. 1988, Özhatay et al. 1994, Güner et al. 2000). 154 

Onopordum pollen is oblate-spheroidal in shape and the grains occur as monads (Plate 1). 155 

Most of the measurable morphological characters are similar in Onopordum, and it is difficult 156 

to consistently distinguish the species from one another using normal microscopy techniques. 157 

 158 

 159 

4. Material studied 160 

 161 

The pollen grains of the constituent genera within the Family Asteraceae are morphologically 162 

very similar, hence they are eminently suitable for the testing of digital identification 163 

methods. Material used in this study was 10 species of Onopordum which were collected 164 

from wild populations in Turkey. Plant specimens and permanent pollen slides have been 165 

deposited in the herbarium and the pollen reference collection respectively of the Department 166 

of Biology, Faculty of Science, Yüzüncü Yıl University, 65080 Van, Turkey. 167 

Pollen was prepared using the technique of Wodehouse (1959); the mounting medium 168 

used was glycerin-jelly mixed with 1% Safranin. The slides were studied using an Olympus 169 

CX31 light microscope with a 100x oil immersion objective. Measurements were based on 30 170 

images of each of the specimens studied, which were manipulated manually where necessary. 171 

The specimens were photographed; the resolution of the digital images was 710×720 pixels. 172 

All measurements of the pollen grains were made using Olympus Stream micro-imaging 173 

software, a computer program; that automatically calculates the distance from any two points. 174 

The polar axis (P) and the equatorial axis (E) were measured in all the specimens, and 175 

the P/E ratio calculated. It should be noted that the term equatorial axis is often 176 

inappropriately used as a synonym for the equatorial diameter (Punt et al. 2007). Additionally, 177 

the colpus length and width, the lengths of the columellae and echinae, and the thicknesses of 178 

the exine, intine, nexine and tectum were also measured (Plate 1). These 11 parameters are all 179 

used for the identification of pollen grains in the Family Asteraceae, and were deemed to be 180 
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appropriate for use in digital identification. The pollen terminology of Faegri et al. (1989) and 181 

Punt et al. (2007) was used. 182 

 183 

 184 

5. The methodology of the extreme learning machine (ELM) 185 

 186 

Feed-forward neural networks (FFNNs) are ideal classifiers for nonlinear mapping 187 

investigations that utilise a gradient descent approach for weights and bias optimisation. The 188 

important factors that influence the performance of a traditional FFNN algorithm include 189 

three important features. The first are small values for the learning parameters which cause 190 

the learning algorithm to converge slowly, whereas higher values lead to instability and 191 

divergence to a local minimum. The second is that conventional neural networks may be 192 

over-trained using back propagation and normally generate inferior generalisation 193 

performance. Finally, gradient descent-based learning is an extremely time consuming 194 

process for most applications. To overcome these problems, Huang & Siew (2005), Li et al. 195 

(2005) and Huang et al. (2006a,b) proposed a learning algorithm called the extreme learning 196 

machine (ELM) for single-hidden layer feed-forward networks (SLFNs). The ELM is a SLFN 197 

model in which the input weights are random, and the output weights are obtained 198 

analytically (Liang et al. 2006, Yuan et al. 2011). The SLFN structure is illustrated in Figure 199 

1. The authors believe that the ELM should be tested in the automatic identification of pollen 200 

grains. This method is potentially superior to other methods such as decision tree and linear 201 

discriminant analysis. Furthermore, the ELM offers faster learning times than other neural 202 

networks. Specifically, the five most important features of the ELM are listed below: 203 

 The ELM is extremely fast 204 

 The ELM has better generalisation performance 205 

 The ELM tends to reach solutions in a straightforward manner without extraneous 206 

issues such as local minima, learning rate, momentum rate and over-fitting, which are 207 

all encountered in traditional gradient-based learning algorithms 208 
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 The ELM algorithm can be used to train SLFNs, with many non-differentiable 209 

activation functions 210 

 The ELM randomly chooses and fixes the weights between the input and hidden 211 

neurons based on continuous probability density functions, which is a uniform 212 

distribution function in the range -1 to +1. Then it calculates analytically the weights 213 

between the hidden neurons and the output neurons of the SLFN. 214 

 215 

According to Figure 1, on determining that ).....,,( 321 NXXXXX   is input and 216 

).....,,( 321 NYYYYY   is output, the mathematical model with M hidden neurons is defined as 217 

in Suresh et al. (2010): 218 





M

i
kikii NkObXWg

1

.......3,2,1,)(       (1) 219 

Where ).....,,( 321 iniiii WWWWW   and ).....,,( 321 imiiii    are the input and output 220 

weights; ib  is the bias of the hidden neuron and kO  is the output of the network. (.)g  denotes 221 

the activation function (Rong et al., 2008). 222 

In a network of N training samples, the aim is zero error: 0)(
1




N

k
kk YO or with 223 

minimum error: 



N

k
kk Yo

1

2)( . Therefore, Equation 1 can be shown as below (see Huang et 224 

al. 2006b): 225 

 226 





M

i
kikii NkYbXWg

1

.......3,2,1,)(       (2) 227 

 228 

This is because, in the equation above, )( iki bXWg   denotes the output matrix in the hidden 229 

layer; Equation 2 is therefore as in Huang et al. (2006b): 230 

 231 

YH            (3) 232 
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 238 

This is where H is the hidden layer output matrix. Training of a network in a traditional feed-239 

forward ANN means seeking a solution for the least squares in a linear equation of YH   240 

in the ELM (Suresh et al., 2010). 241 

YH ̂  is the smallest norm least-squares of YH  . In addition, H  denotes the Moore-242 

Penrose generalised inverse of the hidden-layer output matrix H. The norm of ̂  is the 243 

smallest solution among all the least-squares solutions of the YH   equation (Huang et al., 244 

2006b). Therefore the ELM can minimise the training error. 245 

The ELM algorithm can be summarised in three stages as follows: 246 

1. The ).....,,( 321 iniiii WWWWW   input weights and hidden layer ib  bias values 247 

are produced randomly 248 

2. The H hidden layer output is computed 249 

3. The ̂  output weights are computed according to YH ̂ . Y is a decision 250 

feature. 251 
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In this study, an automatic model based on the ELM method was used for the 252 

identification of Onopordum pollen. A block diagram describing this model is illustrated in 253 

Figure 2. The process comprises five blocks, which are summarised below: 254 

Block 1: Obtaining 30 images in different orientations for each of the 10 species 255 

studied 256 

Block 2: Obtaining the key 11 morphometric measurements for each pollen 257 

image 258 

Block 3: Division of the pollen data sets into training-test partitions at different 259 

rates, i.e. 50–50%, 70–30% and 80–20% 260 

Block 4: Classification of the training-test partitions through the ELM 261 

Block 5: Presentation of the classification results, i.e. the decision stage 262 

 263 

 264 

6. Results 265 

 266 

6.1. Parameter selection 267 

 268 

In this study, morphological features that were measured from pollen images were processed 269 

by the ELM to effect pollen identification. The 11 parameters used in the ELM network are 270 

listed in Table 1. The performance of the ELM network depends on the number of neurons in 271 

the hidden layer and the activation function that was used. Consequently, the appropriateness 272 

of the parameters in Table 1 were decided as a result of trials. Hence, activation functions 273 

such as sigmoid, tangent sigmoid, sine and radial basis were used for the training and testing 274 

of the network. The numbers of neurons in the hidden layer between 10 and 100 were 275 

finalised by being tested, and this figure was iterated by increasing it one-by-one. The most 276 

appropriate activation function and neuron number were finalised only after exhaustive 277 

training and testing of the network. For the identification of Onopordum pollen, the most 278 

appropriate activation function was tangent-sigmoid. 279 
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 280 

 281 

6.2. Results derived from the experiments using the extreme learning machine 282 

 283 

The pollen identification experiments were conducted by performing training test sets at the 284 

rates of 50–50%, 70–30% and 80–20% through the ELM with the overall pollen dataset. The 285 

classification accuracies of these training-test partitions were 84.67%, 91.11% and 95.00%, 286 

respectively (Table 2). These accuracies demonstrate that the ELM is consistently very 287 

effective. It was found that the ELM has sufficient identification resolution to discriminate 288 

Onopordum pollen at the species level. In Figures 2, 3, 4 and 5, the ELM performance values 289 

related to changes in neuron number used in the hidden layer are illustrated for the training-290 

testing rates of 50–50%, 70–30% and 80–20%, respectively. 291 

Different machine learning methods were also used here for automatic pollen 292 

identification using the same dataset and images. The accuracies of an artificial neural 293 

network (ANN), a support vector machine (SVM; see Chang & Lin 2001), the J48 decision 294 

tree method (Quinlan 1993), PART (Eibe & Witten 1998), a logistic regression and the ELM 295 

machine learning methods for different training-test partitions were given in Table 2. The 296 

ELM gave the highest accuracy for Onopordum pollen identification (Table 2). 297 

 298 

 299 

7. Conclusions 300 

 301 

Specific features of pollen can help to identify grains to family or genus level using 302 

automated diagnostic systems. These methods potentially allow the accurate and rapid 303 

identification of pollen grains, and will be useful in all areas of palynology. In this study, 304 

pattern recognition methods were used to determine the pollen type. 305 

Morphological characteristics are normally used for identification in plant systematics 306 

at all levels from classes to subspecies/varieties. However, at the lower levels, other 307 

techniques may be useful to complement the morphological parameters. Pollen morphologies 308 
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are relatively diverse, and the classification at the family and genus level should be relatively 309 

straightforward using traditional microscopy. Computer systems, however, have great 310 

potential for performing automatic identifications at the species level and below, due largely 311 

to apparent morphological similarities. Hence, the development of automated digital 312 

identification systems is predicted to be a significant growth area in the future. The positive 313 

results obtained herein from the large and diverse Family Asteraceae, should facilitate more 314 

studies on the digital identification of the pollen of other plant families. This field is a rapidly-315 

developing one, and much more experimentation is needed using different characters and 316 

criteria in order to improve taxonomic accuracies. 317 

In this study, a highly successful approach to automatic pollen recognition and 318 

classification using the ELM is demonstrated. The classification process was accomplished 319 

using 11 morphological characters for 10 different types of pollen. The identification 320 

accuracies of the training-test sections of 50–50%, 70–30% and 80–20% were 84.67%, 321 

91.11% and 95.00% respectively (Table 2). The results herein using the ELM compare very 322 

well with other expert systems for identifying pollen grains. The identification rate of 323 

automatic diagnostic systems will potentially be higher than results obtained manually 324 

because of the strict morphometric approach of the former. 325 

 326 
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 515 
Morphological feature/parameter Definition 

P The length of the polar axis 

E The length of the equatorial axis 

P/E The P/E ratio 

Colpus (L) The length of the colpus 

Colpus (W) The width of the colpus 

Exine The thickness of the exine 

Intine The thickness of the intine 

Nexine The thickness of the nexine 

Tectine The thickness of the tectine 

Echinae The length of the echinae 

Columellae The length of the columellae 

 516 

Table 1. The 11 training parameters (morphological features) used with the extreme 517 

learning machine (ELM) network in this study. 518 

 519 

 520 
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Name of automatic system 50–50% 

training-test (%) 

70–30% 

training-test (%) 

80–20% 

training-test (%) 

Artificial Neural Network 80.00 80.66 84.44 

Extreme Learning Machine 84.67 91.11 95.00 

J48 Decision Tree 72.00 81.11 85.00 

Logistic Regression 68.88 76.00 76.66 

PART 75.33 75.55 83.33 

Support Vector Machine 78.66 86.66 88.33 

 521 

Table 2. The performance values of automatic pollen identifications using six different 522 

automatic systems. The extreme learning machine (ELM) results are in bold font. 523 

 524 

Display material captions: 525 

 526 

Figure 1. The structure of a single-hidden layer feed-forward (SLFN) artificial neural 527 

network. 528 

 529 

Figure 2. A block diagram illustrating the method for pollen identification used herein. 530 

 531 

Figure 3. Training and test efficiencies for the 50–50% training-test partition. 532 

 533 

Figure 4. Training and test efficiencies for the 70–30% training-test partition. 534 

 535 

Figure 5. Training and test efficiencies for the 80–20% training-test partition. 536 

 537 

Plate 1. Two images of Onopordum pollen illustrating the various morphological 538 

measurements made in this study. 1 – grain in polar view. 2 – grain in equatorial/lateral view. 539 


