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David M. ROCKE and David L. WOODRUFF

New insights are given into why the problem of detecting multivariate outliers can be difficult and why the difficulty increases
with the dimension of the data. Significant improvements in methods for detecting outliers are described, and extensive simulation

experiments demonstrate that a hybrid method extends the practical boundaries of outlier detection capabilities. Based on simulation
results and examples from the literature, the question of what levels of contamination can be detected by this algorithm as a function
of dimension, computation time, sample size, contamination fraction, and distance of the contamination from the main body of
data is investigated. Software to implement the methods is available from the authors and STATLIB.

KEY WORDS: Heuristic search; M estimation; Minimum covariance detenninant; S estimation.

1. INTRODUCTION

Although methods of detecting sporadic outliers in mul-

tivariate data have existed for many years (see Hawkins

1980), the problem of detecting clusters of outliers can be

extremely difficult. This essentially requires robust estima-

tion of multivariate location and shape, and most estima-

tors are known to fail when the fraction of contamination

is greater than (1/(P + 1), where p is the dimension of the

data. Thus detecting outliers or a disparate population that

compose more than a small fraction of the data has been

impractical in high dimension.

In this article we give new insights into why the problem

of detecting multivariate outliers is so difficult and why the

difficulty increases with the dimension of the data. We then

describe significant improvements in methods for detecting

outliers and demonstrate, using extensive experiments, that

a hybrid method extends the practical boundaries of outlier

detection ~~~~~~ti~n of the e~_~~
is complicated by the fact the probability of detecting out-

liers depends on many factors, such as the computer time

expended, dimension, number of data points, fraction of

data contaminated, type of contamination, and algorithm

parameters. Nonetheless, we are able to specify approxi-

mately what levels of contamination can be detected by

this algorithm under a variety of conditions.

The estimation of multivariate location and shape is

one of the most difficult problems in robust statistics

(Campbell 1980, 1982; Davies 1987; Devlin, Gnanadesikan,

and Kettenring 1981; Donoho 1982; Hampel, Ronchetti,

Rousseeuw, and Stahel 1986; Huber 1981; Lopuhaa 1989;

Maronna 1976; Rocke and Woodruff 1993; Rousseeuw

1985; Rousseeuw and Leroy 1987; Stahel 1981; Tyler

1983, 1991). For some statistical procedures, it is rela-

tively straightforward to obtain estimates that are resis-

tant to a reasonable fraction of outliers-for example, one-

tn(Ax + b) = Atn(X) + b.

A shape estimator Cn E PDS(p), the set of p x p positive

definite symmetric (PDS) matrices, is affine equivariant if
and only if for any vector b E IRP and any nonsingular p x p

matrix A,

~

This implies, for example, that stretching or rotating mea-
surement scales will change the estimates appropriately.

Dropping the requirement of affine equivariance does in-
crease the number of estimators that are available, and cer-

tainly there may be cases where a non-affine-equivariant
estimator provides superior performance, but it is also im-

portant to have robust, computable, affine-equivariant esti-
mators available for use.

Methods have been reported in the literature for a num-
ber of approaches for finding robust estimates of multi-
variate location and shape (and thus for identifying out-

liers). Combinatorial estimators, such as the minimum
volume ellipsoid (MVE) and minimum covariance determi-
nant (MCD) estimators of Rousseeuw (Hampel et al. 1986;

Rousseeuw 1985; Rousseeuw and Leroy 1987), have been

addressed with random search (Rousseeuw and Leroy 1987:

MINVOL), steepest descent with random restarts (Hawkins

1993, 1994: FSA), and heuristic search optimization efforts
(Woodruff and Rocke 1993, 1994). Smooth estimators such
as maximum likelihood and M estimators (Campbell 198O,
1982; Huber 1981; Kent and Tyler 1991; Lopuhaa 1992;
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dimensional location (Andrews et al. 1972) and regression
with error-free predictors (Huber 1981). The multivariate

location and shape problem is more difficult, because most
known methods will break down if the fraction of outliers is

larger than 1/ (p + 1), where p is the dimension of the data

(Donoho 1982; Maronna 1976; Stahel 1981). This means
that in high dimension, a very small fraction of outliers can
result in very bad estimates.

We are particularly interested in obtaining estimates that
are affine equivariant. A location estimator tn E JRP is affine

equivariant if and only if for any vector b E JRP and any

nonsingular p x p matrix A,

';'
~
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cation that the bad data are necessarily errors-they may

just arise from a distinct subpopulation-but the locution
is convenient.

A second aspect of our viewpoint on this problem is that

we aspire to methods that are affine equivariant, so that

measurement scale changes or other linear transformations
do not alter the behavior of analysis methods. An implica-
tion of this viewpoint is that Mahalanobis distances become

very important, because these are among the few potentially
affine-invariant outlier identification criteria.

Definition 1. Let n be a positive definite symmetric
p x p matrix. The Mahalanobis distance between points x

and y in JRP with respect to n is defined by

(1)~(x,y) = (x -y)Tn-1(X -y).

Maronna 1976; Rocke 1996; Tyler 1983, 1988, 1991) and
S estimators (Davie;; 1987: Hampel et a1. 1986; Lopuhaa

1989; Rousseeuw and Leroy 1987) can be computed with a
straightforward iteration from a good starting point (Rocke

and Woodruff 1993) or using an ad hoc search for the global

minimum (Ruppert 1992: SURREAL). Sequential point ad-

dition estimators (FORWARD) have been defined algorith-

mically by Atkinson (1992) and Hadi (1992) working sepa-

rately. Hadi (1992) suggested using a non-affine-equivariant

starting point, but the point addition portion of the algo-

rithm is affine equivariant and is nearly the same as the point
addition portion of Atkinson's completely affine-equivariant
algorithm. Maronna and Yohai (1995) reported some com-

putational results for the Stahel-Donoho projection estima-
tor (Stahel 1981; Donoho 1982); however, the method ap-

pears suitable only for small data sets in low dimension
(their largest case is n = 30,p = 6). We have omitted any

further analysis of this estimator, due to the current lack of

a computational method suitable for higher dimension.

In the remainder of the article, we discuss that nature of

multivariate outliers, with a special view to what sorts of

outliers are worth studying. We show that outliers with the

same shape as the main data are in some sense the hardest
to find, and that the more compact the outliers, the harder
they are to find. We adopt shift outliers as a reasonable

target, being of the hardest shape but of a feasible size to
locate. We also study more briefly outliers that are more

compact as well as shifted, and also pure radial outliers.

We then analyze the comparative performance of the

new hybrid algorithm and previous methods. Our algorithm,

which uses search techniques from both FSA (Hawkins

1993a) and FORWARDiA;tkiifsOif1Q93~::l~A~iuwC
~

and Mulira 1993), as well as from our own previous work

(Rocke 1996; Rocke and Woodruff 1993; Woodruff and

Rocke 1993, 1994), proves as a package to be superior to
other methods suggested for multivariate outlier identifica-

tion. Finally, we investigate the question of what problems
can be practically tackled with our methods.

We refer to the distance and the matrix that defines it in-
terchangeably as a metric.

For data like those we consider here, the true metric is the

covariance matrix of the population from which the good
data arise, and a good metric is one close to the true met-
ric. In particular, when the covariance of the whole sample

differs greatly from the covariance of the good data, a good
metric is one that resembles the latter rather than the for-
mer. The term all-data metric refers to the metric induced
by the covariance matrix of the entire sample; this may be

"good" or "bad," depending on the amount and type of con-

tamination.
We find it convenient to distinguish the size and shape of

a metric as follows.
"C ,."

Definition 2. Let n be a matriX defining a metric. The

size of the metric is the determinant Inl. The shape of
the metric is the equivalence class of metrics E such that
n/lnll/p = E/IEll/p. Equivalently, we may identify the

shape as the member of the equivalence class with deter-

minant 1; that is, n/lnll/p.
This leads to similar definition of shape and size for sam-

ples.2. THE NATURE OF MULTIVARIATE OUTLIERS

In this section we develop theory that leads to a char-
acterization of classes of data with outliers that are, in a

well-defined sense, the hardest to find. Armed with this,

we are in a position to conduct experiments that support
claims about the worst-case performance of algorithms. To

create this characterization, we investigate the difficulties

of locating multivariate outliers.
First, to frame the problem as this article deals with it,

we assume that there is a fraction greater than one-half of

the data from a well-behaved multivariate population; for

example, multivariate normal. Of course, in practical cases,

data transformations may be required before this plausibly

holds. In addition to the well-behaved data, other data do

not fit the pattern of this well-behaved majority; these may

arise from a distinct population or may be measurement er-

rors. We sometimes call the majority of the data that come
from that well-behaved population the good data, and the

remainder the bad data. There is supposed to be no impli-

Definition 3. Let X be an n x p matrix representing a
sample of n points in JRP. Let 8 = n-l(X -X)T(X -X)

be the sample covariance matrix. The size or scale of X is

the determinant 181 of its covariance matrix, and the shape
of X is 8/1811/p. By extension, we refer to the size and

shape of other covariance-like estimators, such as the robust

ones that are the subject of this article.
We now consider the question of what classes of outliers

are hard to find. We begin by examining the case in which
a good metric is available. This is the goal of most affine-

equivariant outlier identification methods-find a good met-
ric so that the outliers will reveal themselves. The following

lemma is a routine application of multivariate computations.

Lemma 1. Consider a sample of n points in JRP. Let the

"good" data have mean 1L0 and covariance ~o. Let the "bad"
data have mean 1L0 + IL and covariance matrix 0, and let

this comprise a fraction c of the overall data. Then the ex-
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2. If x is a bad point, thenpected sample mean and covariance matrix are

(2)E(x) = #.to + e#.t

and

T
(3)E(S) = (1 -e)Eo + en + e(l -e)1L1L

~

>"(p-l) l-c >"(p-l)
+ --+-+

1 -c + >..c n-+oo c 1 -c + >..c
Theorem 1. Consider a sample of n points in JRP. Let

the "good" data have mean /.Lo and covariance Eo. Let the
"bad" data have mean /.Lo + /.L and covariance matrix o.

Consider the Mahalanobis square distance 40 (x, /.Lo) of a

point from the true mean using the true metric. Then for a

fixed location displacement /.L and size 101 of the outliers,
the expectation of the Mahalanobis square distance of a bad
point from the true mean is least when the shape of 0 is
the same as the shape of Eo. This is thus the worst case
from a detection viewpoint.

Theorem 1 suggests that the hardest kind of outliers to
find, when a good metric is available, is the kind that has
a covariance matrix with the same shape as the good data.
For this situation, this reduces the infinitely variable kinds

of outliers to a single kind. If this kind of outlier can then

be detected, then other kinds should be as well. Thus we

intend to focus on a situation in which there are good data

drawn from a multivariate normal distribution and bad data

drawn from the same distrib1,ltion and then displaced. These
are often called shift outliers (Hawkins 1980; Rocke and

Woodruff 1993).
Shift outliers may be contrasted with classes of outliers

that may be easy to detect, in the sense of appearing dis-

parate even with"theJnetrlc obtained by ~ all th~~",

For easilyaetecTea'outliers.less e1ab(:irMe:-Iechniques:'"'«'
sufficient-examining the Mahalanobis distances from the

mean of the data using the covariance matrix of the data

will suffice. Although we have seen that the shape for bad

data that maximizes their masking is the shape of the good
data, we have not yet addressed the issue of size. The fol-

lowing theorem shows how easy detection is a consequence

of the number and size of the contamination.

Theorem 2. Consider a sample of n points in JR". Let

the "good" data be multivariate normal with mean /.Lo and
covariance Eo- Let the "bad" data be multivariate normal
with mean /.Lo + /.L, where I/.LI = 1J, and covariance matrix

0 = >'Eo, and let this comprise a fraction e of the overall

data. Let E be the expected covariance matrix of the mixed

sample as in Lemma 1 and consider 4(x,/.Lo + ell) the

Mahalanobis square distance in the all-data metric between

a data point x and the overall population mean. Then,

1. If x is a good point, then

Ao = (1 -e)(ep -_r!-=!!:)) (4)

Remark 3 Although pure shift outlIers IDlght seem to

be detectable, given that their mean Mahalanobis distance

from the sample mean is larger than that of the good points,

no method is known that can find the outliers with complete
assurance. This is because the overlap in the distributions of

distances can be very substantial if the amount of contami-
nation is large. Although shift outliers are realistic, and are
sufficiently challenging to separate the performance of dif-

ferent methods, we also examined some intermediate cases

in which 0 < >. < 1, particularly what we call crossover

outliers, in which>' is chosen in accordance with Equation
(4). These proved even more difficult (as predicted) for all

methods examined.

E(d~(x, lLo + elL»

1 + c:2772

1 -c: + AC: + c:(l -C:)1]2

p-l
l-C:+AE:

p-l+ --+
-~ + A~ n-oo ~+

E:

3. The difference in the value of E(d},(x, ILo + elL)) for

a bad point and the value for a good point for large 1/ is an
increasing function of >., so that>. = 0 is the worst case.

4. If >. = 0, so that the outliers fonn a point mass, and

if 1/ is large, then the value of E(d~(x, ILo + elL)) for a
bad point is less than the value for a good point whenever

e> 1/(P+ 1).
5. If >. = 1 (pure shift outliers), and if 1/ is large, then

the value of E(d~(X,ILo + elL)) for a bad point is always

larger than the value for a good point. However, for large
p, the standardized distribution of the distance of a good
point and the standardized distribution of the distance of a

bad point converge.
6. For large 1/, the value of >. at which E(d},(x, ILo

+ elL)) has the same value for good points and bad points

is

e((1-e)p-e) ,-I

whenever this is positive.

Remark 1. If a good starting estimate for the shape of

the- ~~..-~;J?~-,~l~',"~ ~h~_~o~oon: c

taIn1natlon to illscover IS iliat-w1i1ch hiiSilie same shape

as the good data. Because substantial contamination can be

found only by constructing a relatively good shape estimate,
this is the most difficult case for such search methods.

Remark 2. Although point-mass contamination is the

most difficult to detect by the Mahalanobis distance from
the sample mean, it is easy to detect in other ways, such
as pair-wise distances. Our hybrid algorithm has a prees-

timation phase that involves eliminating any exact dupli-

cates. This will avoid problems with accidentally replicated
data, for example, and will prevent exact point-mass out-

liers from being troublesome.

."- --~,-
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As we see later, pure shift outliers are sufficient to baffle
some previously proposed methods like the random search

algorithm in the program MINVOL (Rousseeuw 1985).

Others like those proposed by Atkinson (1993) turn out to
be better than random search. However, the hybrid method

proposed here dominates all other methods examined. Of
course, it should be kept in mind that the algorithm of
Hawkins (1992) has been incorporated into our hybrid algo-
rithm and that of Atkinson (1993) is also used at one stage
in the computations. We also examined some other types of

outliers, including multiple clusters and outliers that have
been reduced in scale as well as shifted.

Because we are interested mainly in high dimension,
we rely primarily on extensive computational experi-

ments to compare methods, rather than the standard, low-

dimensional examples often used in the literature. However,
we did examine the performance of the method on some of

these standard examples, the results of which are reported in
Section 5. For the reasons outlined in this section, the exper-
iments involve mainly shift outliers, although we examined
other cases to check for any sensitivity to this specification.

Dimensions as large as 40 were examined so that high-

dimensional cases would be represented, even though the

computation times can rise rapidly with the dimension. Pre-
viously, the literature has concentrated almost exclusively

on dimensions less than 10, and usually no larger than 5.

Methods that appear satisfactory for a problem with 3 di-

mensions and 20 data points can be completely impractical

for even somewhat larger problems (Woodruff and Rocke
1993). We examine a range of contamination fractions from

1/(P + 1), which is the smallest nontrivial amount of con-
tamination to 40% or 45% which canc.beccalmo~i_i- ~, ..~ ,,', "'~ ..c'"',c' "'~r".,:,-
ble to find. Therefiatheoretical" limit Oft the humber of

contaminated points that can be found, even in principle;
the number of good points must be at least h = L(n + p

+ 1)/2J (Lopuhaa and Rousseeuw 1991).

3. AFFINE-EQUIVARIANT METHODS FOR
OUTLIER DETECTION

All known methods for this problem consist of the fol-

lowing two phases:

.Phase I: Estimate a location and shape.

.Phase II: Scale the shape estimate so that it can be
used to suggest which points are far enough from the

location estimate to be considered possible outliers.

We now discuss these two phases and the steps within them

in reverse order.

3.1 Phase II

The output from Phase I of a multivariate outlier iden-

tification procedure is a location and shape, and thus a set

of distances of points from the location using Definition 1.
From this it is clear which points are the most distant, but
not whether any of the distances is too large to be consistent

with the absence of outliers.
A first step in answering the latter question is to apply

some sort of consistency adjustment; for example, multi-

plying all the distances by the ratio of the median distance

and the square root of the 50% point of a x~ distribution

(~). Because any affine-equivariant location and shape

estimation method gives an unbiased location estimator and

a shape estimator that has expectation a multiple of the

true shape for elliptically symmetric distributions (Grubel

and Rocke 1990), the square distances are asymptotically

some multiple of X~ for normal data. Thus standardization

is sufficient to ensure that the distances are asymptotically

x~. Alternatively, one can scale the shape matrix so that
it is consistent for the covariance matrix of a multivari-

ate normal distribution, which has the same effect. These

equivalent forms of standardization were used by, for ex-

ample, Maronna and Yohai (1995) and Rousseeuw and van
Zomeren (1990). We prefer to standardize the distances by

scaling the hth order statistic of the distances to the h/n
quantile of~, where h = l(n+p+ 1)/2J. .

However, even in rather large samples, the asymptotic X2

approximation is rather poor when robust estimators of lo-
cation and shape are used, so more accurate small-sample

methods need to be used. Usually, this is from some sort

of simulation. For example, Rousseeuw and van Zomeren

(1991) determined the 97.5% point of the distances by sim-

ulation, and Atkinson (1994) standardized by the total of

the square distances, which is well known to be p( n -1)

for the mean and covariance estimator. We follow a sim-

ilar procedure; by simulation, we determine the empirical

(1 -(kl) point of the distances using the given estimation
method on multivariate normal samples. This gives a cutoff

~~"sueh that only~a !ractioo ~16fpoints~~~

erage-willnave-mstances above the cutoff point if the given
procedure is used on multivariate normal samples.

Although a standardization such as the foregoing can en-

sure that the type I error is maintained in multivariate nor-

mal samples, it can lead to insensitivity when large num-

bers of outliers exist. Suppose, for example, that a sample is

given in dimension 20 in which 600 points are multivariate

normal and 400 are outliers. Suppose that the estimation

method is capable of finding a shape matrix that is essen-

tially that of the good data. If the median square distance is

scaled to the median of a X~o' then the 500th distance will

be set to ~ = 4.397. However, the 500th distance is

actually at the 5/6 point of the good data, so the distance

should be Jx~~ = 5.096, and thus all the distances of

the good points are too small by a factor of .86. Now a

cutoff for distances of ~~ = 6.732 would result in

an average of only I false outlier per 1,000 with normal

samples, but in the present case, the probability of a good

point exceeding it is roughly the chance that a X~o exceeds
[(6.732)(5.096)/4.397]2 = 60.87, which is about 5 x 10-6.

Thus many points that are unequivocally outliers would

not be declared discordant because of this bias induced by

the presence of large numbers of outliers. The appropri-
ate cutoff for this sample is (6.732)(4.397)/5.096 = 5.801

(not 6.732), and any point with a distance in the interval
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[5.801,6.732] probably should be declared an outlier, but

will not be so declared under the rule.

To alleviate this problem, we add a second step to Phase
II. We take the points not declared outliers in the first step

of Phase II and calculate the mean and covariance matrix

of those points. If the data were really free of outliers, then

this should comprise a fraction 1 -Ql of the sample; but if
outliers are present, then the fraction may be much smaller.

The covariance of the nearest 1 -Ql fraction of a multi-

variate normal sample has as expectation a multiple of the
true covariance matrix, where the multiple is

(5)k(p, (rl) = Fv2 (X
p2.1-a l )/(1 -(rl)"-p+2 ,

so if we inflate the covariance matrix thus obtained, then

we asymptotically unbias the calculation, while retaining
sensitivity to outliers. Finally, we reject points beyond the

X;;l-Q~ point using this new shape estimator. The entire

Phase II process can be summarized as follows:

Phase u: Scaling and outlier determination.

some of which are embedded in the algorithm. We refer
to the complete method as the hybrid algorithm because

it uses both combinatorial and smooth features, as well as

incorporating several other useful heuristics.

Phase I: Hybrid robust estimation with roughly T sec-

onds allowed (large T)

.Step O. On entry, we have data consisting of n points
in dimension p, a total available CPU time T in sec-

onds, and a function ,(p) that detennines the size of

partition to be used for any dimension p.

.Step 1. Remove any exact duplicate points.

.Step 2. Randomize the order of the data points.

.Step 3. Partition the data into Ln/,(p)J cells indexed

by j.
.Step 4. For each cell:

a. Spend T/Ln/,(p)J seconds on a search for the
MCD (Hawkins 1993b; Woodruff and Rocke 1994).

b. Use the MCD as a starting point for a sequen-

tial point addition algorithm (Atkinson 1992; Hadi
1992), using the entire sample of size n starting

from the p + 1 points that have the smallest dis-
tance from the MCD location using the MCD

metric.
c. Use this result as the starting point for translated

biweight M estimation (Rocke 1996), using the en-
tire sample of size n. This yields estimates fLj and

Ej of location and shape.

.Step 5. Select the index j for which IEj I is least, and

-set f.I. ~f!-j and ~ = Ei'~:~~~~~~~

Step O. On entry, we have data consisting of n points
in dimension p and Phase I estimates it and E, with
the shape matrix standardized so that the hth ordered

distance is equal to ~, where h = l(n + p +

1)/2J.
Step 1. Determine by simulation a cutoff point Lal

so that when multivariate normal samples of size n

in dimension p are submitted to the Phase I pro-

cess, a fraction £Xl of the points on the average lie

~:;!J;:~Jffit~~~i~ lnatiii-;~5ig1is:
where S is the covariance matrix of all points whose
distance in the first step is less than Lal. The new

location estimator is the mean of those points.
Step 3. Reject as outliers any point whose distance
using the revised location and shape is larger than

2
Xp;l-a2.

3.3 M and S Estimation

An S estimate of multivariate location and shape is de-
fined as that vector t and PDS matrix C that minimizes I C I

subject to

n-l LP([(Xi -t)TC-

which we write as

(6)(Xi -t)P/2) = bo

We have generally used al = a2 = .01, but smaller num-

bers may be used at the cost of more simulation time if one

wishes to reject fewer good points. n-l L p(di) = boo (7)

It has been shown by Lopuhaa (1989) that S estimators are

in the class of M estimators with standardizing constraints
with weight functions VI (d) = W(d),V2(d) = pw(d), and
V3(d) = v(d), where 1/J(d) = p'(d),w(d) = 1/J(d)jd, and

v(d) = 1/J(d)d, with constraint (7) (Rocke and Woodruff

1993).
Rocke (1996) showed that S estimators in high dimension

can be sensitive to outliers even if the breakdown point is
set to be near 50%. We use the translated biweight (or t-

biweight) M estimation method defined by Rocke (1996),
with a standardization step consisting of equating the me-

dian of p(di) with the median under normality. This is then

not an S estimate, but is instead a constrained M estimate.

The convergence criterion for the algorithm is subject
to choice. We use the maximum change in the weights to
decide on termination. The specifics of the iteration for

3.2 Phase I

The established methods for this problem fall into two

classes: combinatorial and smooth. Combinatorial estima-
tors construct estimates of location and shape from a sub-
set of the data that itself is hoped to be at least mostly
outlier-free. Smooth estimators attempt to satisfy a continu-
ous equation by iteration from a starting point. Unless itera-

tion from the whole sample mean and covariance suffices-

an easy case-this requires either a direct search or use of

a prior combinatorial estimator as a starting point.
Our proposed method is outlined as Phase I. Step 2 is

included so that the resulting algorithm is sure to be per-
mutation invariant in expectation. As a practical matter, this

step is not important. The rest of this section is devoted to
describing the other steps in more detail in reverse order.

We also compare the method to methods in the literature,
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Table 1. Percentage of Successful Estimation Runs With

Biweight S Estimation and t-Biweight M Estimation

~

e

.30

.30

.35

35

.30

.30

.35

.35

50

50

50

50

200

200

200

200

NOTE: The last two columns are the fraction of runs out 01 20 that the indicated method found

the "good" root of the estimating equations. The experiments were in dimension 10 with outliers

at a distance of d = 2.

both M and S estimators was given by Rocke and Woodruff

(1993).
In accord with the theory of Rocke (1996), we have found

that using the t-biweight M estimator greatly improves the

performance of the hybrid algorithm compared to using bi-
weight S estimation, at least when the outliers lie relatively
close in (d = 2, as defined in Sec. 4). When d = 4, the

smooth estimation method used made no important differ-
ence. Some detailed evidence is given in Table 1. The situ-
ation here is that twenty replicates of shift outliers at d = 2

in dimension 10 and with indicated sample size, fraction
of outliers, and computation time allowed. The response is

the percentage of replicates for which the indicated estima-
tor achieved the good root. Note that the t-biweight per-

formance exceeds that of the biweight S estimate by large
amounts in every case. A large number of additional exper-

iments confirm this important difference in performance.
We use the t-bi~~i~!:M~!!!!!!:t~f!:-~~~~c~~!;

good starting point presents severe computational difficul-
ties. Regardless of which algorithms are used to compute

them, combinatorial estimators such as the MCD search a
space that increases exponentially with the sample size and
the dimension. In fact, when using the MCD as a first stage

in a two-stage estimator, one can have the perverse situa-
tion of being made worse off by having more data. To cope
with this problem, the data must be partitioned so that the

search space for the MCD is kept in a reasonable range.
After some modest experimentation, we settled on a cell
size of l' = 5p. This possibly may be too small for high

dimension, but determining the optimal value was beyond
the scope of this article.

As shown by Woodruff and Rocke (1994), using data par-

titioning in this fashion allows for acquisition of the good
root with high probability with a computational time in-

creasing only linearly with n (instead of exponentially). We
use data partitioning in Step 3 of Phase I.

3.5 Sequential Point Addition

Working separately, Atkinson (1992) and Hadi (1992)
have proposed algorithms that begin with an estimate of

shape and location based on (p + 1) points and then select

successively larger sets. The set with k + 1 points consists
of those points whose Mahalanobis distances from the mean

of the k set using the covariance of the k set as a metric
are smallest.

Hadi suggested using coordinatewise medians as a pre-

liminary location estimator and the covariance of the whole
data with that as center for a preliminary shape estimator.
The initial set of p + 1 points consists of those whose Ma-

is least, using the preliminary shape estimator-~-a'i11etric.

The algorithm proposed by Hadi breaks down if the con-

tamination is extremely far away from the good data in the
correct metric. Also, the coordinatewise median is not affine

equivariant and consequently can work extremely well on
a suite of data sets, but then perform horribly on the same

data after an affine transformation. For example, with out-

liers clustered on a diagonal and not very far from the good
data, our experiments suggested near-perfect outlier detec-

tion. If the same data are transformed to have a covariance
that is the identity matrix, then the performance is degraded

significantly.
Atkinson's method is affine equivariant. He suggested

restarting the procedure many times with randomly selected

sets of p + 1 points. For each trial, sequential addition is
performed and for each stage in the sequential addition,

ihe covariance matrix is calculated, and the resulting shape
matrix is expanded (or contracted), so that half (or (n + p
+ 1)/2) of the points are included in the ellipsoid defined
by the current location and shape. The estimate over all

trials and over all stages of each trial in which the scaled
shape matrix has minimum determinant may be taken as
the robust estimate of the shape and location of the data.

As we see later, Atkinson's algorithm is a large improve-

ment over Min Vol. In our tables and graphs, we refer to this
procedure, following Atkinson, as the forward algorithm, or

Forward for short.

3.4 Search and Partitioning

The simple iteration scheme for M estimation fails with-

out a good starting point. An M estimator that begins it-
eration using an estimate based on all of the data breaks
down with 1/ (p + 1) of the data contaminated (Maronna

1976). Two methods of addressing this problem seem pos-
sible. One is to look directly for the global minimizer of the

S criterion. The other is to find a good starting point for the

iteration by using a preliminary combinatorial estimator.

Ruppert (1992) proposed an algorithm called Surreal for
direct search for the global minimizer of an S estimator

used in multiple regression. He reported computational ex-

periments that demonstrated the effectiveness of the Surreal

for this purpose. In the same paper, he also proposed an ex-

tension of the method to robust estimation of multivariate
location and shape. It appears that Surreal is not as effective
for this problem as for regression. In dimension 10, Surreal
rarely found the good root when the fraction of contami-

nation was greater than about 12%. Because this was not
competitive with other algorithms examined, detailed re-

sults are not presented.
We also have examined direct search as a method of find-

ing the good root for S or M estimation and have found that

it seems better to use a preliminary combinatorial estima-
tor such as the MCD (Rousseeuw 1985). As pointed out

by Woodruff and Rocke (1994), using the MCD to find a
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We found that including a sequential addition step be-

tween the search for the MCD and the smooth estimator

improved the results in many cases. We ran more than 200

simulated data sets in dimension 20 with n values of 200,

400, and 800 and various fractions of "bad" data from .2-
.4. In these experiments, inclusion of Step 4b in the Phase

I algorithm resulted in an improved estimate in over 70%

of the data sets. In many cases the improvement was very

modest and did not affect Phase II results. Nonetheless, in-
clusion of the step seems well worth the small amount of

computer time required to execute it (small relative to the
time required for the MCD search). We use sequential point

addition in Step 4b of Phase I.

been thought possible. Our primary model is shift outliers,

in which the good data are defined to be multivariate stan-

dard normal and the bad data to be multivariate unit normal

with a shifted mean. We also take a more abbreviated look

at outliers in which the covariance matrix is multiplied by

AO of Equation (4) so that the expected distance is equalized

between a good point and a bad point in the metric of all
the data (crossover outliers).

We measure the amount of shift in terms of the unit of

measurement Qp = ~~, which is more or less the ra-

dius of a sphere around the mean that contains almost all of

the good points. If the outliers are centered at a distance of

2Qp, then these spheres should not overlap. We implement

outliers at a distance of dQp by adding dQ; to each com-

ponent, where Q; = ~~~. This places the outliers at

the correct distance out on a diagonal. In the experiments
here with A = 1 and A = AO, we use d = 2, which we call

close outliers, and d = 4, which we call far outliers. To ob-

tain radial outliers, we generate each outlier separately as a

multivariate normal with mean m, where m is in a different
random direction for each outlier and Iml = dQp.

This generation mechanism is sufficient for affine-

equivariant methods; but for non-affine-equivariant meth-
ods, the data should then be standardized so that the entire

sample has mean 0 and covariance I. This can be done

using the singular value decomposition as follows. Let S
be the covariance matrix of the whole sample of good and

bad data. This can be written as S = QTDQ, where Q

is an orthogonal matrix and D is the diagonal matrix of

eigenvalues. If X is the centered sample, then the sample~~;!!9~~e:

--One---convertient-aspect -of~-using shift outliers (or
crossover outliers) in this problem is that in our experi-

ence, smooth methods such as M and S estimation usually
have at most two roots: one that can be found by iterat-

ing from the good data (the good root) and one that occurs

when iterating from all the data (the bad root). For small

amounts of contamination or very large amounts of con-

tamination, these roots may not be distinct, but only when

they differ is the problem interesting. This leads naturally
to a fairly strict criterion of success for a Phase I algorithm.

If the method yields a location it and a metric E, then the

method is successful if the largest value of di:(x, it) for
a good point is smaller than the smallest value for a bad

point. F9r the overall performance of both phases, we use
the less-strict type I and type II error measurement.

3.6 Minimum Covariance Determinant

Faced with a subsample of contaminated data, our exper-
iments indicate that the best way to find a good starting

point for sequential point addition (or for M iteration) is
to search for the MCD. It was originally thought that the

MVE would be preferable for computational reasons (see

Rousseeuw and Van Zomeren 1990), even though the MCD
has greater asymptotic efficiency. This was based on the

notion that MVE algorithms would make use of elemen-

tal subsets. Woodruff and Rocke (1993) demonstrated that

heuristic search algorithms that use larger subsample sizes

perform better. Given this fact, there is no longer any rea-
son to prefer the MVE to the MCD. Simulations done by

Woodruff and Rocke (1994) strongly support the contention

that the MCD is in fact the better estimator to use.
The MCD for any set of data is defined by the half sam-

ple whose covariance matrix has minimum determinant.

It is convenient tg s~~blQ~.M~GcQ,,_~~1!!~~o~~~
from half sample--t{}-half~ampl~bY-Temoving one point

in the current half sample and adding one point not cur-

rently in the half sample. NeighbOrhoods defined in this
way can form the basis of a steepest descent to a local

minimum. Hawkins (1993b) suggested using steepest de-

scent with random restarts, which he called FSA. Woodruff

and Rocke (1994) advocated using a steepest descent-based

meta-heuristic called tabu search (TS) (Glover 1989, 1990).

Our experiments indicate that FSA can outperform the

simple TS algorithm given by Woodruff and Rocke, es-

pecially when not much time is allocated for the search.
A much more complicated ghost image processing algo-

rithm (Woodruff 1995) performs better than FSA given

large amounts of time and data, but it does not perform
better with small amounts of time and, furthermore, in our

tests, the improved performance does not seem to be suf-

ficient to make a major difference in Phase II performance

for the search durations of interest to us. Given the lack

of a qualitative difference in the performance envelope and

the relative elegance of pure steepest descent with random

restarts, we used the FSA algorithm in Step 3a of Phase I
in the tests described here.

4.1 Null Behavior

Table 2 gives some simulation results to support the good

behavior of the proposed two-phase method when the data
are multivariate normal. Each line of the table is based on 20

instances in which the entire algorithm, Phase I and Phase

ll, was applied to multivariate normal data. The third col-
umn is the fraction out of the total of 20np points that were

rejected as outliers. It is easily seen that these numbers are
all quite near the nominal rejection fraction of .01.

4. COMPUTATIONAL EXPERIMENTS

The results given in Section 2 allow the construction of a
less arbitrary set of simulations than might otherwise have
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Table 2. Actual Type 1 E"ors When the Nominal Type 1 E"o, is .01

50
100

200

200

400

800

800

1,600

3,200

NOTE: Each line of the table represents 20 replicates applying the algorijhm fo multivariate

standard normal data. The third column is the fraction of the 20np points that were iabeled as

outliers by the aigorijhm

search over elemental subsets at all levels of contamina-

tion. The hybrid algorithm in turn is noticeably more effec-

tive than Forward. Similar results obtain for other sample

sizes, times, distances, and dimensions. In higher dimen-
sions, limited trials suggest that the superiority of the hy-

brid algorithm is even greater. However, given the finite

time available for computer simulations in high dimension,

most of the runs were devoted to determining the envelope

of feasible solution for the hybrid algorithm, rather than to

documenting the exact degree of superiority over compet-

ing algorithms.
Another feature of the plots is worth noting. A small

addition to the fraction of outliers converts a problem that

is easy to solve into one that is quite difficult. For example,
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4.2 A Comparison of Algorithms

In this section we compare results using three different

strategies for Phase I: the hybrid algorithm, random search
over elemental subsets (Rousseeuw 1985: MinVol), and the

forward algorithm (Atkinson 1992: Forward). In all cases

Phase n is as given in Section 3.1. The steepest descent

algorithm (FSA) (Hawkins 1993b) is not shown separately,
because it has been incorporated into the hybrid algorithm.
Surreal was also tried, but its performance was not compet-

itive with the others, and so it has been omitted from the

summaries.

Given that some runs in high dimension may take up to

an hour of CPU time, and that there are many conditions

under which one should compare estimators, a fully com-

prehensive Monte Carlo study is impractical. The database
used in the comparison study comprises more than 10,000

runs. The dimension pW8Sc~i,2{}"""~~fwiths~ple
sizes of n = 50 to n=6,~th--largersample sizes used

in higher dimensions. Several processing times t were tried

for each case, varying from a few seconds to several hours

in high-dimensional examples. The degree of contamination

c was varied from levels where the solution could almost

always be found by most methods to levels where none of

the methods could get them right.

To increase the utility of the number of runs that were

practical to perform, a generalized linear model was fit to
the outcomes of the experiments, each of which consisted

of 20 trials at each case. The logit of the probability that

a given estimator would succeed in identifying the outliers

was taken to be a linear function of n, c, and log(tjn). Dif-

ferent models were fit for each estimator, distance of out-

liers, and each dimension examined. We defined success to
consist of identifying at least 90% of the outliers correctly

as outliers. In almost every case, the hybrid algorithm had
no errors if it succeeded at all, but we used the more liberal

definition of success, because sometimes a method identi-

fied almost all of the outliers but missed a few, and it was

thought to be unfair to call that "failure."

Figure 1 shows plots of the fitted probability of success

as a function of the amount c of contamination for three
estimators in dimension 20, with n = 400 and t = 1,600

seconds. Figure la is for outliers set at a distance of
d = 2; Figure 1 b is for outliers at d = 4. The message is

clear. The Forward algorithm is greatly superior to random~

Figure 1. Predicted Performance of Outlier Detection Methods in

Dimension 20 with n = 400. The dotted line represents MINVOL; the

dashed line. FORWARD; the solid line. HYBRID. (a) Outliers at a distance
of d = 2; (b) outliers at a distance of d = 4.



Rocke and Woodruff: Outliers in Multivariate Data 1055

Table 3. Effect of Outliers in One or Multiple Clusters Table 5. Effect of Dimension

Predicted success rate

(percent)

Predicted success rate

(percent)Number of clusters Time (sec)d

2

2
2
2

2
2

2

2

2

2

2

2

2

2

2

2

4
4

4

4

4

4

4
4

4

4

4

4

4

4

4
4

t: (percent) p n e (percent)

1 30 55.6 10
2 30 98.6 10
4 30 99.9 10

radial 30 100.0 10
10

1 35 4.1 10
2 35 70.4
4 35 99.2 20

radial 35 100.0 20
20

1 40 0.1 20
2 40 7.5 20
4 40 81.9 20

radial 40 100.0
40

1 45 0.0 40
2 45 0.3 40
4 45 13.4 40

radial 45 100.0 40

1 30 92.9 40

2 30 99.9
4 30 99.9

radial 30 100.0

1 35 44.4
2 35 97.8 dimensions, sample sizes, outlier distances, fractions of out-
4 35 99.9 liers, type of outliers, and computation times is the hybrid

radial 35 100.0 1 . hID a . ? Th h . al 1 f "1 druff da gont euectlve. e t eoretlc resu ts 0 ",,00 an

1 40 4.6 Rocke (1994) demonstrated that any amount of contami-

: :~ ~~:~ nation below 50% can be handled with sufficient data and

radial 40 100.0 sufficient processing time. Here we ask a different question:

1 45 0.3 What amount of contamination can be practically detected

2 .45 14.1 with the amount of data given and with practical processing

.of outlier, dimension, samp1eSize:and computation time on

the effectiveness of the algorithm. A series of tables show

some results, which are based on simulations. To produce

the predicted success rate, a generalized linear model was

fit as described previously.

4.3.1 Type of Outliers. Most of our results are based

on the use of shift outliers, in which the outlying values

are generated from a distribution with the same covariance

matrix and a shifted mean. Theorem 1 implies that this is

the hardest shape that outliers can take. We tested this em-

pirically by generating outliers that were in more than one

200

200

200

200

200

200

800

800

800

800

800

800

3,200

3,200

3,200

3,200

3,200

3,200

100.0

99.9

99.3
93.7

59.7

12.9

100.0
100.0

99.5
85.4
14.6

0.5

100.0
99.8
79.4

3.3
0.0

0.0

NOTE: The experiments in th~ table were performed with outliers at a distance of d = 2 The

last column represents the fitted value from a generalized linear model fitted to the results of theexperiment.

NOTE: The experiments in this table were performed in dimension 20 with n = 400 and 1,600

seconds of processing time. The iast column represents the fitled value from a generalized linear

model fitled to the results of the experiment.

the hybrid algorithm presented with a data set of 800 points

in dimension 20 with 30% shift outliers at a distance of
d = 2 is predicted to succeed 85% of the time with 3,200

seconds of processing time. The success rate falls to 15%

if the fraction of outliers rises to 35%.

4.3 Estimating the Envelope

This section is devoted to the following question: For what
Table 6. Effect of Sample Size

Table 4. Effect of Outlier Shrinkage

200

400

800

200

400

800

200

400

800

90
98

99

46

62

85

2

4

14

76

56

94

89

85
82

98

97

NOTE: The experiments in this table were performed in dimension 20 with outliers at a distance

of d :2 The last column represents the fitted value from a generalized linear model fitted to

the results of the experiment.

NOTE The experiments in this table were performed in dimension 20 with n = 800 and 30%

outliers. The last column represents the fitted value from a generalized linear model fitted to the

resu~ of the experiment

.8

.3

.5

.8

.3

.4

.5

.6

.6
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Table 7. Effect of Computation Time

E: (percent) Predicted success rate (percent)
-

~

25

25

30

30

35

35

99.1
99.5

76.2
85.4

8.6
14.6

NOTE: The experiments in this table were performed in dimension 20 with n = 800 and outiiers

at a distance of d = 2. The last column represents the fitted value frorrl a generalized linear

model fitted to the resu~ 01 the experiment.

-

; -~"' -~C "-

cluster. Each cluster had a mean the same distance from the
center as before (d = 2 or d = 4), but lying along one of

the 2P random diagonals (:j::l, :j::l, ..., :j::l). This provides a

different overall outlier shape. The ultimate in this is to use

a different random direction for each point, which amounts

to radial outliers.
Table 3 shows some results of simulations with multiple

clusters. These were done in dimension 20 with n = 400 and

1,600 seconds allowed for processing. It is apparent from

these results that if the outliers lie in more than one cluster,

then the process of identifying the good data becomes dra-

matically easier, culminating in radial outliers, for which

we were successful in every trial of the experiment.

Another issue involves outliers that have a distribution

with the same shape as the main data but of a different size.

Theorem 2 implies that the smaller the size, the harder the

problem. Point mass outliers have the smallest size but are

easily detected with our pairwise comparison front end. A

reasonable compromise as-an-.aItemative to shift outliers is

what we call crossover outliers, in which the shiiriKagels
set just sufficiently large to make the mean distance of the

Table 8. Critical Contamination Level for 90% Success

With the Hybrid Algorithm

d t (sec) e: (perc:ent)np

50

100

200

50

100

200

200

400

800

200

400

800

800

1,600
3,200

800

1,600
3,200

10 2 100

10 2 200

10 2 400

10 4 100

10 4 200

10 4 400

20 2 800

20 2 1,600

20 2 3,200

20 4 800

20 4 1,600

20 4 3,200

40 2 3,200

40 2 6,400

40 2 12,800

40 4 3,200

40 4 6,400

40 4 12,800

NOTE: The last column .how. the percentage 01 contamination at which a predicted 90% 01

the instances could be successfully completed. The predictions were trom a generalized linear

model fitted to the results of the experiment.

4.3.5 The Current Envelope. By "the envelope" we

mean the limits of the size and difficulty of problem that

can be handled with current technology. This is dependent
on the dimension, the sample size, the fraction and type of

outliers, the distance of the outliers from the main data, and

the available processing time.
Table 8 shows some results. For each indicated combina-

tion of dimension and outlier distance, a generalized linear

model was fit as described earliek Then the level of con-

outliers the same as the mean distance of the good data

in the metric of the covariance of all the data; see Equa-

tion (4). Table 4 shows some example results for dimension
20 with n = 800 and 30% outliers. Shrinking the outliers

alwa'j~ make~ the ~earch harder, but the effect is lessened

if the search time is increased or if the outliers are rela-

tively distant. Qualitatively, other comparisons remain the

same whether shift or crossover outliers are used as the test

bed, and so we have continued to use shift outliers in most
instances.

4.3.2 Dimension. Outlier problems in higher dimen-
sion are harder than those in lower dimension. More data

usually will be needed, if only because the number of pa-

rameters to be estimated is higher, and more processing

time will be needed. Even with some adjustments in this

direction, the greater difficulty of problems in high dimen-

sions shows up. In Table 5 we have let the sample size
n grow with p2 and allowed the processing time to be 4n
seconds. Clearly, as the dimension rises, the amount of con-

tamination that can be coped with falls, even after raising
the amount of data and the computational time. Neverthe-
less, many problems in dimension 40 and higher will still

be feasible, if the amount of contamination does not rise

too high.

4.3.3 Sample Size. The results of Woodruff and Rocke

( 1994) show that for large enough sample sizes, even the
hardest outlier problem can be tackled. Table 6 shows this

effect in practice. These experiments use shift outliers at
d = 2 in dimension 20. Whatever the amount of contam-

ination, increasing the sample size (and the computational

.~P. ~_rti~.!!ely) in~s~~~_u~~:1:!~~.~~
to detect outliers at 35-40% in dimension 20 may require

very large samples and long computation times.

4.3.4 Time. Often, increasing the available data is not

a feasible option. Table 7 addresses the question of applying

increasing amounts of time without increasing the sample

size. These experiments involved shift outliers at a distance

of d = 2 in dimension 20 with 800 points. Increasing the

time does increase the success rate, although there is no
assurance that the limit of the success rate as the time in-
creases is 100%. An important avenue of future research is

to make more effective use of large amounts of time with

a fixed sample. One possible approach is to use multiple
random partitions, with only a fixed amount of time allo-

cated to each one. Thus as available CPU time increases,
the number of partition cells examined will increase, rather

than the intensiveness of t1:.:: search in each cell.
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Figure 2. Mahalanobis Square Distances fc)r the HBK Data Using Three Metrics Plotted Against ~ ,Expected Order Statistics on a Log-Log

Scale. (a) The al/-data metric. The horizontallin9 represents the 99% point of a x~ random variable. The three highest points are 14, 12, and 13, in

that order. (b) The metric derived from the data after excluding points 12, 13, and 14. The horizontal line represents the 99% point of a x~ random

variable. (c) The metric derived from the hybria' algorithm. The horizontal line represents a 99% cutoff as estimated by Phase II of the algorithm.

The 14 points above the cutoff are the points introduced by Hawkins et al. as outliers (1-14).

small to be able to handle large amounts of contamination.

For assured success with high contamination, substantially
larger values of both than the ones that we used may be nec-
essary. Multiple processor machines could also be used to

increase the effectiveness of the algorithm, which is paral-

lelizable in a number of ways (Woodruff and Rocke 1993).

tamination was found that allowed a predicted 90% of the

data sets to be successfully completed. To avoid undue ex-

trapolation, computation times and sample sizes were set to

within the bounds of what were used for problems of that

nature in our study.

The more data (and the more computation time), the

greater the fraction of outliers that can be handled. Within

our self-imposed bounds, we can say that outlier fractions

in the 30-40% range can be reliably solved in dimension

10,25-35% in dimension 20, and 20-25% in dimension 40.

Although these bounds are crude, it does give some feel

for what problems are feasible. It is likely that the sample

sizes and processing times for dimension 40 are actually too

5. EXAMPLES

In this section we examine the performance of the hybrid
algorithm on several examples used in the literature. The
first is the constructed data of Hawkins, Bradu, and Kass
(1984), which consists of 75 points in dimension 3 plus a
response. (We refer to these data as HBK for short.) We ex-
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amine just the three predictor variables. The first 14 points

were designed to be leverage points, but only point 14 and

possibly point 13 show up as such if ordinary Mahalanobis

distances are used (Rousseeuw and Leroy 1987). Figure 2a

shows the Mahalanobis square distances versus X~ order

statistics with a horizontal line at the .99 percentage point

of a X~ variable. Only point 14 appears out 01' line. If this

int is omitted then int 13"~ows-u agcA:,,- ant and:"po , po ~~ p ~~~p ..
if point 13 is also omitted, then point 12 is close to the

cutoff. Now no further points appear discrepant. Figure 2b

shows the distances with points 12, 13, and 14 omitted;

nothing appears out of the ordinary. Figure 2c shows the

distances obtained from the hybrid algorithm. There is a

clear separation of the 14 initial points from the remainder

of the points-they are well above the cutoft' derived by

simulation in Phase II. The hybrid algorithm has identified

the structure as specified by Hawkins et al. (1984). (Note

that Hawkins et al. (1984), Rousseeuw and Leroy (1987),

and others have also identified this structure.)

The second data set is the modified wood gravity data

originally from Draper and Smith (1966), consisting of

20 observations of 5 explanatory variables and a response

(wood specific gravity). We analyze only the explanatory
variables. Rousseeuw.(1984) and Rousseeuw and Leroy

(1987) modified the data by replacing observations 4, 6, 8,

and 19 by outliers. Figure 3 shows the distances from the

hybrid algorithm. The four discrepant points are the ob-

servations that were perturbed by Rousseeuw. Again, these

do not show up using the all-data metric, but the plots have

been omitted because similar ones have appeared elsewhere.

The third example data set is the bushfire data used by

Maronna and Yohai (1995) as an example. This consists
of 38 observations (pixels) of satellite measurements on 5

frequency bands used to locate bushfire scars (Campbell

,
C\J

'"

0.5 1.0 1.5 2.0 2.5 3.0

Log Expected Square Distance

Figure 3. Mahalanobis Square Distances for the .Modified Wood

Gravity Data Using the Metric Derived From the Hybrid Algorithm. The

horizontal line represents a 99% cutoff as estimated by Phase II of the

algorithm. The four points above the cutoff are the points introduced by

Rousseeuwas outliers; from largest to smallest, these are 19,8, 6, and

4.)

1989). Maronna and Yohai concluded that there were out-

liers in two groups: points 7-11, which are relatively easy to

detect by various robust methods, and points 32-38, which

are masked by the first group to estimators other than the

Stahel-Donoho (SD) projection estimator as implemented

by Maronna and Yohai. Figure 4 shows the distances by

the hybrid algorithm. The most extreme"8!~~.p- of points is
," ,...c" " ""Cc-c.=="~=~" "~-- 'c" ;"'~~"~&;"'9,"and 

32o.;.c38,wher~thenexfmostextteme group of..

four is 7, 1O, 11, and 31. These are almost the same points

~

Figure 5, Mahalanobis Square Distances for the Milk Data Using the

Metric Derived From the Hybrid Algorithm. The horizontal line represents

a 99% cutoff as estimated by Phase II of the algorithm. The 15 points

above the cutoff are the points identified by Atkinson as outliers using

the Forward algorithm; from largest to smallest, these are 70, 2, 41, 1,

44,74, 12, 13, 14,3,15,47,75,17, and 16.
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Table 9. Specifications of Exam~l/e Data Sets
- in dimension 20, and 20-25% in dimension 40. The abil-

ity of this algorithm to accurately characterize the outliers
in a multivariate distribution was also shown, using several

examples from the literature.
Note: Programs in the C language to implement

the hybrid algorithm and to produce the test data are

available from the authors and from STATLIB. Please
send requests bye-mail to drnrocke@ucdavis.edu or
dl woodruff@ucdavis.edu.NOTE The HBK data are from Hawkins et al. (1984). the modified wood gravity data are from

Rousseeuwand Leroy (1987). the bushfire data are from Maronna and Yohai (1995). and the

milk data are from Daudin et al. (1988).

APPENDIX: PROOFS OF THEOREMS

Proof of Theorem 1

Because all of the statements are affine equivariant, we may

without loss of generality take JLo = 0 and ~o = I. Then, with-

out loss of generality, we may rotate the coordinate until 51 is a

diagonal matrix with diagonal elements (U)l, U)2, ...,U)p). The con-

straint that the size (determinant) of 51 is fixed can be expressed as
nf=lU)i = D. Now d~o(x,O) = 2:::f=lX~, whose expectation is

111.12 + 2:::f=l U)i. Thus the theorem asserts that the minimum value

of 2:::f=l U)i subject to nf=l U)i = D is attained at U)i = D1/p for

alII::; i ::; p. This can be shown by a straightforward application

of the method of Lagrange multipliers.

identified by the SD estimator (point 31 has been added)
but sorted into slightly different groups. Further clarifica-

tion of the clustering issue awaits development of methods

for identifying clusters that may comprise less than half of

the data.

The final data set consists of 8 measurements on 86 sam-
ples of milk (Daudin, Duby, and Trecourt 1988) analyzed

by Atkinson (1994). Two of the points (63 and 64) are exact

duplicates (which may explain the discrepancy between the
86 observations in Daudin et al.'s table 1 and the 85 obser-

vations said to be contained in it). We omitted the duplicate

point but preserved the original numbering of the 86 points

to facilitate comparison with Atkinson's results. Figure 5

shows the distances for this data set using the hybrid algo-

rithm. The outlying points occur in three groups: point 70,
points 1,2, and 41; and the remainder. The small group of

four lying just below the cutoff consists of points 11,20,27,
and 77. The points lying above the cutoff coincide with the

points identified as outliers or possible outliers by Atkinson.

The appearance of clustering is even stronger here than in
---

the bushftre~suggesting~ffiat a m(]lreci>mPlei~ySis

might eventually be called for.

Table 9 summarizes the examples presented in this sec-

tion. Two further features of the analysis of these data with

the hybrid algorithm are worthy of note. First, each anal-

ysis was successfully accomplished with only a minimal

amount of search time. Even though the fraction of contam-

ination ranged up to 34%, in dimensions as low as 5-8, this
does not fall within the problematic range of the method.
Second, although there is a stochastic aspect to the MCD
search, multiple tries on the same data set always yielded

the same answer to many significant digits. The instability
of some other methods does not seem to apply to the hybrid

algorithm.

Proof of Theorem 2

As before, because all operations are affine equivariant, we may
set ILo = 0 and Eo = I without loss of generality. Also, without

loss of generality, by affine equivariance, we may take IL to be a

vector in which the first coordinate is 1/ and the other coordinates

are zero.

By Lemma 1, in the indicated coordinate system, n-l, is a

diagonal matrix with elements ((1 -c + Ac + c(l- c)1/2)-1, (1-

~*~):,~; ':;{Tf~+~.)-l.)...If the c~~~t~Qf ag~nt
are (Xl,X2,... ,Xp), then ~-

d~(x,cl') = (Xl -c17)2(1- c + Ac + c(l- c)172)-1

"
+}:=x~(1- E: + .AE:)-1. (A.I)

;=2

Because the covariance matrix is I, the expectation of this quantity

is (1 + E:21]2)(1- E: +).E; + E:(1- E:)1]Z»)-l + (p -1)(1- E: + .AE:)-1,

which for large 1] is E:(1- E:)-l + (P-1)(1- E:+ >.E:)-l. Similarly,

for a bad point,

E(d~(x,E:JJ.)

= (.).2 + (1 -o:f1)2)(1 -0: + >.0: + 0:(1 -0:)1)2)'-

+ A(P -1)(1 -0: + Ao:)-1, (A.2)

which for large 1/ is (1 -0:)0:-1 + A(p -1)(1 -0: + Ao:)-1.
For large 1], the difference in E(di:(x,o:J1.») between good and

bad points is

1 -c c (A -1)(p -1) 1 -2c (A -1)(p -1)
---+=+

c 1-c 1-c+Ac c(1-c) 1-c+Ac'

where a positive value indicates that the bad points have a larger

expected Mahalanobis distance. With regard to varying A, this is,
up to a constant, (p -1)Aj(1 -c + Ac). This has derivative with

respect to A,

[(p -1)(1 -~ + A~) -(p -1»..£]/(1- ~ + A~)2

6. CONCLUSIONS

In this article we have investigated the nature of multi-
variate outliers and methods for their detection. We have

shown that shift outliers provide a reasonable test bed for
multivariate outlier detection, being difficult but not impos-

sible to detect.

Using this test bed, we have shown a new hybrid algo-
rithm to be superior to existing methods for this problem.

Given sufficient data and processing time, this algorithm
can deal with even heavily contaminated data in high di-
mensions. Roughly speaking, outlier fractions in the 30-

40% range can be reliably solved in dimension 10, 25-35% o.= (p -l){l c)/(l -c + ,\c);
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The most difficult case is when this difference in distances is al-

gebraically least, which is when>. = O.
When>. = 0 (point mass contamination). the difference in the

expected Mahalanobis distances is

1 -26 (p -1)

~--

Donoho, D. L. (1982), "Breakdown Properties of Multivariate Location

Estimators," Ph.D. qualifying paper, Harvard University, Dept. of Statis-
tics.

Draper, N. R., and Smith, H. (1%6), Applied Regression Analysis, New

York: John Wiley.

Glover, F. (1989), "Tabu Search-Part I," ORSA Journal on Computing, I,

190-206.

-(1990), "Tabu Search-Part n," ORSA Journal on Computing, 2,
which reaches zero when e: = l/(p + 1). (Note that this is the

breakdown point of many multivariate estimators.)
When>.. = 1, the difference in the expected Mahalanobis dis-

tances is
1- 2e:

~'
which is always positive but is a small fraction of the mean dis-

tance of either type of point for high dimension. Specifically, un-

der normality, the variance of the Mahalanobis distance of a good

point for large 1/ is 2(p -1), so the difference between the ex-

pected Mahalanobis distances in units of the standard deviation of
the Mahalanobis distance of a good point is

1- 2~
e (1 -e )J2 -c:p-=1) ,

which goes to zero as the dimension rises (for fixed e). Because

both aire asymptotically (in p) normal, the distributions converge.
, The condition for the good and bad expected distances to be

equal is (for large 7/)

=0,

so
.).0 = .(!-- c)(cp -(12ll

-c((1-c)p-c)

[Received August..1993. Revised December 1995.J
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