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Abstract

Background: One of the challenging tasks in systems biology is parameter estimation in nonlinear dynamic

models. A biological model usually contains a large number of correlated parameters leading to non-identifiability

problems. Although many approaches have been developed to address both structural and practical non-

identifiability problems, very few studies have been made to systematically investigate parameter correlations.

Results: In this study we present an approach that is able to identify both pairwise parameter correlations and

higher order interrelationships among parameters in nonlinear dynamic models. Correlations are interpreted as

surfaces in the subspaces of correlated parameters. Based on the correlation information obtained in this way both

structural and practical non-identifiability can be clarified. Moreover, it can be concluded from the correlation

analysis that a minimum number of data sets with different inputs for experimental design are needed to relieve

the parameter correlations, which corresponds to the maximum number of correlated parameters among the

correlation groups.

Conclusions: The information of pairwise and higher order interrelationships among parameters in biological

models gives a deeper insight into the cause of non-identifiability problems. The result of our correlation analysis

provides a necessary condition for experimental design in order to acquire suitable measurement data for unique

parameter estimation.

Keywords: Parameter estimation, Identifiability, Parameter correlation, Data sets with different inputs, Zero residual

surfaces, Experimental design

Background

Parameter estimation of dynamic biological models de-

scribed by nonlinear ordinary differential equations

(ODEs) poses a critical challenge. A special feature of

biological models is that they usually contain a large

number of parameters among which correlations exist

[1,2]. In general, the quality of estimation results

depends on the quality of data acquisition, the quality of

the fitting method, and the quality of the model. Good

experiment design can lead to highly informative data

which will enhance the accuracy and identifiability of

model parameters. Therefore, the task of parameter

estimation demands an interactive endeavour of experi-

ment and computation [3,4].

To fit parameters to measured data a numerical

method for solving an optimization problem is required.

Available methods for carrying out this task can be

classified into deterministic approaches (e.g., multiple

shooting [5,6], collocation on finite elements [7], global

approaches [8,9]) and stochastic approaches (e.g. simu-

lated annealing [10], genetic algorithms [11], and scatter

search [12]). Using these approaches, model parameters

can be well fitted to measured time courses provided from

either experiment (in vivo) or simulation (in silico), i.e.

high quality fits with minimal residual values can be

obtained by global optimization methods.

However, even such a good fitting cannot guarantee

unique parameter estimation, due to correlations among

the parameters. The correlation phenomenon can be
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explained by the biological background, e.g. genes or

proteins which are expressed in a correlated manner,

correlations of expression levels between cells. As a

consequence, certain regions in the parameter space

correspond to good model predictions. It means that

the residual value (quadratic error) remains low even if

the parameters vary in certain regions. By testing 17

biological models, Gutenkunst et al. [13] concluded that

collective fits to large amounts of ideal time-series data

lead to the fact that some eigenvectors are orders of

magnitudes better constrained than others.

Correlated parameters are non-identifiable. If the

non-identifiability does not change for any data, these

parameters are called structurally non-identifiable. On

the contrary, if the non-identifiability can be remedied by

data improvement, they are practically non-identifiable

[14,15]. Identifiability analysis represents an important

ongoing topic in the literature which can be in general

categorized into two major groups: a priori and a posteriori

methods [1,16]. Without any requirement of measurement

data, global (structural) identifiability can be determined

by a priori methods [17-19]. Since these methods are

normally based on differential algebra, their application to

high dimensional complex models can be limited.

The a posteriori methods reveal practical identifiability

properties based on results from fitting parameters to avail-

able data sets. In most studies, correlations are detected by

analysing the sensitivity matrix and the Fisher information

matrix (FIM) [1,16,20-23], from which local confidence

regions of parameter solutions can be obtained. Sensitivity

analysis is well suitable to linear models but will have limi-

tations for highly nonlinear models [14,24].

Recently, Raue et al. [15] proposed to use profile like-

lihood to detect non-identifiability for partially observ-

able models. The parameter space is explored for each

parameter by repeatedly fitting the model to a given

data set, which then provides a likelihood-based confi-

dence region for each parameter. Results from this

method show that the number of practically non-

identifiable parameters will decrease when more data

sets are used [25].

An aim of identifiability analysis is to determine if the

parameters of a model are identifiable or not, i.e.

whether its parameters can be uniquely estimated. The

profile likelihood approach can also offer information

on the correlated relations among the parameters

[15,25-27]. The information on parameter correlations

(e.g. correlated groups, correlated forms in a group etc.) is

important for experimental design, so that a series of

experimental runs with determined conditions can be

carried out to acquire proper measurement data sets for

improving the quality of parameter estimation.

Very few studies have been made to investigate par-

ameter correlations in biological models. Yao et al. [21]

used the rank of the sensitivity matrix to determine the

number of estimable parameters. However, the subsets

of correlated parameters cannot be identified based on

this result. Chu and Hahn [28] proposed to check the

parallel columns in the sensitivity matrix to determine

parameter subsets in which the parameters are pairwise

correlated. Quaiser and Mönnigmann [29] proposed a

method to rank the parameters from least estimable to

most estimable. These methods, however, cannot identify

parameter groups in which more than two parameters are

correlated together but not in pairwise, i.e. the corre-

sponding columns in the sensitivity matrix are linearly

dependent but not parallel. Such correlations are called

higher order interrelationships among parameters [16].

In this paper, “parameter correlations” means a group

of parameters in the model equations which are math-

ematically related to each other through some implicit

functions, i.e. among the parameters there is a func-

tional relationship [15,26,27]. Correlated parameters

will be structurally non-identifiable, if the functional

relationship does not depend on the control variables

which determine experimental conditions and thus

measured data. On the other hand, they will be practic-

ally non-identifiable, if the functional relationship de-

pends on the control variables.

In this paper, we present an approach which is able to

identify both pairwise and higher order parameter cor-

relations. Our approach is based on analysis of linear

dependences of the first order partial derivative func-

tions of model equations. In a given model there may

be a number of groups with different number of corre-

lated parameters. We propose to identify these groups

by analysing the correlations of the columns of the

state sensitivity matrix which can be derived directly

from the right-hand side of the ODEs. Therefore, the

method proposed in this paper is a priori in nature,

which means that the parameter correlations considered

in this paper are not from the results of data-based estima-

tion. A geometric interpretation of parameter correlations

is also presented. Using this approach, groups of corre-

lated parameters and the types of correlations can be iden-

tified and, hence, the parameter identifiability issue can

be addressed. Moreover, the relationship between par-

ameter correlations and the control inputs can be

derived. As a result, both structural and practical non-

identifiabilities can be identified by the proposed

approach.

In the case of practical non-identifiability, the param-

eter correlations can be relieved by specifying the values

of control inputs for experimental design. Based on the

correlation analysis, the maximum number of parame-

ters among the correlation groups can be determined,

which corresponds to the minimum number of data sets

with different inputs required for uniquely estimating
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the parameters of the model under consideration. Nu-

merical results of parameter estimation of a three-step-

pathway model clearly demonstrate the efficacy of the

proposed approach.

Methods

Identification of parameter correlations

We consider nonlinear model systems described by

_x tð Þ ¼ f x tð Þ;u tð Þ;pð Þ ð1Þ

y tð Þ ¼ h x tð Þ;u tð Þ; qð Þ ð2Þ

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the control

vector, and y(t) ∈ Rr the output vector, respectively. In

this study, two different sets of parameters, i.e. p ∈ RNP

in the state equations and q ∈ RNQ in the output equa-

tions, are considered. In most cases the number of

parameters in the state equations is much larger than

that in the output equations. Since the correlations of

the parameters in the output Equation (2) are easier to

identify, we concentrate on the analysis and identifica-

tion of correlations of the parameters in the state

Equation (1).

The equation of the state sensitivity matrix can be de-

rived by taking the first order partial derivative of Eq. (1)

with respect to parameters p

_S ¼
∂f

∂x

� �

Sþ
∂f

∂p

� �

ð3Þ

where S ¼ ∂x
∂p

is the state sensitivity matrix. By solving

this equation (see Additional file 1 for details) the state

sensitivity matrix can be written as

S ¼

Z

t

t0

V τð Þ
∂f

∂p

� �� �

dτ ð4Þ

where V(τ) is a matrix computed at time τ. It means that

S has a linear integral relation with the matrix ∂f
∂p

� �

from t0 to t. If at any time ∂f
∂p

� �

has the same linearly

dependent columns, the corresponding columns in S

will also be linearly dependent, i.e. the corresponding

parameters are correlated. Therefore, we can identify

parameter correlations by checking the linear dependences

of the column in the matrix ∂f
∂p

� �

which is composed of

the first order partial derivatives of the right-hand side

of the ODEs. Based on Eq. (2), the output sensitivity

matrices are, respectively, given by

∂y

∂p
¼

∂h

∂x

∂x

∂p
¼ −

∂h

∂x

∂f

∂x

� �−1
∂f

∂p
ð5Þ

∂y

∂q
¼

∂h

∂q
ð6Þ

To ensure unique estimation of the parameters (i.e. all

parameters to be identifiable), based on the measured

data of y, it is necessary that the columns in the output

sensitivity matrices ∂y
∂p

;

∂y
∂q

are linearly independent.

From Eq. (6), relations of the columns in ∂y
∂q

can be easily

detected. The difficulty comes from Eq. (5), since the

sensitivity functions in ∂y
∂p

cannot be analytically

expressed. However, from Eq. (5), the output sensitivity

matrix is a linear transformation of ∂f
∂p
. Consequently,

there will be linearly dependent columns in ∂y
∂p
, if there

are linearly dependent columns in ∂f
∂p
. It means the ne-

cessary condition for unique estimation of p is that, at

least, the matrix ∂f
∂p

must have a full rank. Based on

Eq. (1), ∂f
∂p

is expressed as vectors of the first order

partial derivative functions

∂f

∂p
¼

∂f

∂p1
;

∂f

∂p2
;⋯;

∂f

∂pNP

� �

ð7Þ

Now we analyse relations between the partial deriva-

tive functions in Eq. (7). If there is no correlation among

the parameters, the columns in Eq. (7) will be linearly

independent, i.e. if

α1
∂f

∂p1
þ α2

∂f

∂p2
þ⋯þ αNP

∂f

∂pNP
¼ 0 ð8Þ

there must be αi = 0, i = 1,⋯,NP. Otherwise, there will

be some groups of vectors in ∂f
∂p

which lead to the follow-

ing cases of linear dependences due to parameter corre-

lations. Let us consider a subset of the parameters with

k correlated parameters denoted as psub = [ps+1, ps+2,⋯,

ps+k]
T with s + k ≤NP.

Case 1:

α1
∂f

∂psþ1

¼ α2
∂f

∂psþ2

¼ ⋯ ¼ αk
∂f

∂psþk

ð9Þ

where αi ≠ 0, i = 1,⋯, k. Notice that the coefficient αi
may be a function of the parameters (i.e. αi(p)) and/or of
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control inputs (i.e. αi(u(t), p)). It should be also noted

that the control inputs u(t) are considered as constants

in these coefficients, since they will be specified in ex-

perimental design. The linear dependences described by

Eq. (9) lead to pairwise correlations among the k param-

eters, i.e. any pair of the parameters in psub are corre-

lated. Moreover, the correlations mean a functional

relationship between the parameters, i.e. the relationship

between the parameters can be expressed by an algebraic

equation

ϕsub γ psþ1; psþ2;⋯; psþk

� 	� 	

¼ 0 ð10Þ

where γ(ps+1, ps+2,⋯, ps+k) denotes a function of the

parameters with one set of pairwise correlated parame-

ters. The parameters in this function are compensated

each other in an algebraic relationship, e.g. γ(ps+1 +

ps+2 +⋯ + ps+k) or γ(ps+1ps+2⋯ps+k). Eq. (10) describes

the functional relationship between the parameters, e.g.

ϕsub(γ( ⋅ )) = 1 + γ( ⋅ ) − (γ( ⋅ ))2 = 0. Due to the complexity

of biological models, an explicit expression of this equa-

tion is not available in most cases.

If the coefficients in Eq. (9) are functions of only the

parameters, i.e. αi(p), the parameters are structurally

non-identifiable. In this case, the correlation relations in

Eq. (9) will remain unchanged by specifying any values

of control inputs. It means that the non-identifiability

cannot be remedied through experimental design.

If the coefficients in Eq. (9) are functions of both the

parameters and control inputs, i.e. αi(u, p), the parame-

ters are practically non-identifiable. Different values for

u can be specified which lead to different αi(u, p), such

that Eq. (9) will not hold and therefore the parameter

correlations will be relieved. Since k parameters are cor-

related, k different values of the control inputs u(j), (j = 1,

⋯, k) are required, such that the matrix

∂f

∂psub

¼

∂f 1ð Þ

∂psþ1

∂f 1ð Þ

∂psþ2

⋯
∂f 1ð Þ

∂psþk

∂f 2ð Þ

∂psþ1

∂f 2ð Þ

∂psþ2

⋯
∂f 2ð Þ

∂psþk

⋮ ⋮ ⋯ ⋮

∂f kð Þ

∂psþ1

∂f kð Þ

∂psþ2

⋯
∂f kð Þ

∂psþk

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð11Þ

has a full rank. Notice that the columns in Eq. (11) are

only linearly dependent for the same input, but the col-

umns of the whole matrix are linearly independent. In this

way, the non-identifiability is remedied. Moreover, a sug-

gestion for experimental design is provided for the

specification of u(j), (j = 1,⋯, k) to obtain k distinct data

sets which will be used for parameter estimation.

If all state variables are measurable, according to Eq.

(4), this subset of parameters can be uniquely estimated

based on the k data sets. If the outputs y are measured

and used for the parameter estimation, it can be con-

cluded from Eq. (5) that at least k data sets are required

for unique parameter estimation.

Case 2:

α1
∂f

∂psþ1

¼ ⋯ ¼ αsþl1

∂f

∂psþl1

; ⋯; αsþld−1þ1
∂f

∂psþld−1þ1

¼ ⋯ ¼ αsþk
∂f

∂psþk

ð12Þ

and

αsþkþ1
∂f

∂psþ1

þ αsþkþ2
∂f

∂psþl1þ1

þ⋯þ αsþkþd
∂f

∂psþld−1þ1

¼ 0

ð13Þ

where αi ≠ 0, i = 1,⋯, s + k + d. Similarly, the coefficients

may be functions of the parameters and/or of the con-

trol inputs. In this case, there are d sets of pairwise

correlated parameters (Eq. (12)). A set is not correlated

with another set, but all sets are correlated together

(Eq. (13)). The functional relationship in this case can

be expressed by

ϕsub γ1 psþ1;⋯; psþl1

� 	

;⋯; γd psþld−1þ1;⋯; psþk

� 	� 	

¼ 0

ð14Þ

Based on Eq. (12), the group with the maximum num-

ber of parameters max (l1, l2,⋯, ld) is of importance for

data acquisition. From Eq. (13), in the case of practical

non-identifiability, data for at least d different inputs is

required. The combination of Eqs. (12) and (13) leads to

the conclusion that we need a number of max (l1, l2,⋯,

ld, d) data sets with different inputs to eliminate param-

eter correlations in this case.

Case 3:

α1
∂f

∂psþ1

þ α2
∂f

∂psþ2

þ α3
∂f

∂psþ3

þ⋯þ αk
∂f

∂psþk

¼ 0 ð15Þ

where αi ≠ 0, i = 1,⋯, k. In this case, all k parameters are

not pairwise correlated but they are correlated together

in one group. The correlation equation in this case is

expressed by

ϕs psþ1; psþ1;⋯; psþk

� 	

¼ 0 ð16Þ
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which means there is no set of correlated parameters in

this case. The approach described above is able to iden-

tify pairwise and higher order parameter correlations in

the state equations (Eq. (1)). In the same way, correla-

tions among parameters in q in the output equations

(Eq. (2)) can also be detected based on the first order

partial derivative functions in Eq. (6).

From the results of this correlation analysis, the max-

imum number of correlated parameters of the correl-

ation groups can be detected. This corresponds to the

minimum number of data sets required for unique

estimation of all parameters in the model. Furthermore,

it is noted that the initial state of the model has no

impact on the parameter correlations, which means that

any initial state can be used for the experimental runs

for the data acquisition.

For complex models, the correlation equations (Eqs. (10),

(14), (16)) cannot be analytically expressed. A numerical

method has to be used to illustrate the relationships

of correlated parameters of a given model, which is

discussed in the next section.

Interpretation of parameter correlations

Here we give an interpretation of parameter correla-

tions in a biological model. Geometrically, for NP pa-

rameters, i.e. p = [p1, p2,⋯, pNP]
T, the estimation task

can be considered as searching for true parameter

values p* in the NP-dimensional parameter space. To

do this, we need NP linearly independent surfaces in

the parameter space which should pass through p*.

Mathematically, such surfaces are described by linearly

independent equations with the unknown parameters.

We define such equations based on the results of fitting

model Equations (1) to a data set (j) by minimizing the

following cost function

min
p

F jð Þ pð Þ ¼
X

M

l¼1

X

n

i¼1

wi;l x
jð Þ
i;l pð Þ−x̂

jð Þ
i;l

� �2

ð17Þ

where M is the number of sampling points, n is the num-

ber of state variables and x̂ denotes the measured data

while x(p) the state variables predicted by the model. wi,l

are weighting factors. The fitting results will depend on

the data set resulted from the control inputs u(j), the

values of wi,l, and the noise level of the measured data. For

a geometric interpretation of parameter correlations, we

assume to use idealized measurement data, i.e. data with-

out any noises. Based on this assumption, the residual

function (17) should be zero, when the true parameter set

p* is applied, i.e.

x
jð Þ
i;l p�ð Þ−x̂

jð Þ
i;l ¼ 0; i ¼ 1;⋯; n; l ¼ 1;⋯;M ð18Þ

It is noted that Eq. (18) is true for any noise-free data

set employed for the fitting and independent of wi,q,.

Now we define a zero residual equation (ZRE) as

φ
jð Þ
i;l pð Þ ¼ x

jð Þ
i;l pð Þ−x̂

jð Þ
i;l ¼ 0 ð19Þ

This equation contains the parameters as unknowns and

corresponds to a zero residual surface passing through the

true parameter point p*. It means that a zero residual sur-

face is built by parameter values which lead to a zero re-

sidual value. This suggests that we can find p* by solving

NP linearly independent ZREs. From the first order Taylor

expansion of Eq. (19), the linear dependences of ZREs can

be detected by the columns in the following matrix

∂x jð Þ

∂p
¼

∂x jð Þ

∂p1
;

∂x jð Þ

∂p2
;⋯;

∂x jð Þ

∂pNP

� �

ð20Þ

where x(j)= [x1,1
(j), x1,2

(j),⋯, x1,M
(j),⋯, xn,1

(j), xn,2
(j),⋯, xn,M

(j)]T.

Eq. (20) is exactly the state sensitivity matrix calculated by

fitting to the given data set (j). This means, under the ide-

alized data assumption, a zero residual value delivered

after the fitting is associated to surfaces passing through

the true parameter point. When there are no parameter

correlations, the number of linearly independent ZREs will

be greater than NP and thus the true parameter point can

be found by fitting the current data set.

If there are parameter correlations, the fitting will lead

to zero residual surfaces in the subspace of the corre-

lated parameters. For instance, for a group of k corre-

lated parameters, the zero residual surfaces (Eq. (19))

will be reduced to a single ZRE represented by Eq. (10),

Eq. (14), or Eq. (16). Therefore, in the case of practical

non-identifiability, k data sets are needed to generate k

linearly independent ZREs so that the k parameters can

be uniquely estimated. In the case of structural non-

identifiability, the correlated relations are independent of

data sets. It means fitting different data sets will lead to

the same ZRE and thus the same surfaces in the param-

eter subspace.

If the measured data are with noises, the fitting results

will lead to a nonzero residual value and nonzero re-

sidual surfaces, i.e.

φ
jð Þ
i;l pð Þ ¼ x

jð Þ
i;l pð Þ−x̂

jð Þ
i;l ¼ εi;l ð21Þ

where εi,l ≠ 0. Thus the nonzero residual surfaces will

not pass through the true parameter point. However,

based on Eq. (20) and Eq. (21) the first order partial de-

rivatives remain unchanged. It means that parameter

correlations do not depend on the quality of the mea-

sured data. Moreover, it can be seen from Eq. (19) and

Eq. (21) that the zero residual surfaces and the nonzero

residual surfaces will be parallel in the subspace of the

correlated parameters.
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Results and discussion
We consider a three-step pathway modelled by 8 nonlinear

ordinary differential equations (ODEs) containing 8 meta-

bolic concentrations (state variables) and 36 parameters

[30-32], as given in Eqs. (22-29). The P and S values in the

ODEs are considered as two control inputs specified by

experimental design. No output equations were considered

for this model in the previous studies.

_x1 ¼
p1

1þ P
p2

� �p3
þ p4

S

� 	p5
−p6x1 ð22Þ

_x2 ¼
p7

1þ P
p8

� �p9
þ p10

x7

� �p11
−p12x2 ð23Þ

_x3 ¼
p13

1þ P
p14

� �p15
þ p16

x8

� �p17
−p18x3 ð24Þ

_x4 ¼
p19x1

p20 þ x1
−p21x4 ð25Þ

_x5 ¼
p22x2

p23 þ x2
−p24x5 ð26Þ

_x6 ¼
p25x3

p26 þ x3
−p27x6 ð27Þ

_x7 ¼
p28x4 S−x7ð Þ

p29 1þ S
p29

þ x7
p30

� �−
p31x5 x7−x8ð Þ

p32 1þ x7
p32

þ x8
p33

� � ð28Þ

_x8 ¼
p31x5 x7−x8ð Þ

p32 1þ x7
p32

þ x8
p33

� �−
p34x6 x8−Pð Þ

p35 1þ x8
p35

þ P
p36

� � ð29Þ

This pathway model was studied by Moles et al. [31]

using 16 noise-free data sets and Rodriguez-Fernandez

et al. [32] using 16 both noise-free and noisy data sets,

respectively. They showed some strong parameter corre-

lations in several groups. Accurate parameter values

were identified in [32]. However, a clear correlation ana-

lysis of the parameters and the relationship between the

parameter correlations and the numbers of data sets

with different inputs required for the parameter estima-

tion were not given in the previous studies.

Identification of correlations

Now we identify parameter correlations in this model

using our approach. Given the model represented by

Eqs. (22-29), the first order partial derivative functions

can be readily derived leading to the following linear de-

pendences (see Additional file 1 for detailed derivation).

From Eq. (22),

α1
∂f 1
∂p1

¼ α2
∂f 1
∂p2

¼ ⋯ ¼ α5
∂f 1
∂p5

ð30Þ

From Eq. (23),

α6
∂f 2
∂p8

¼
∂f 2
∂p9

and α7
∂f 2
∂p7

þ α8
∂f 2
∂p10

¼
∂f 2
∂p8

ð31Þ

From Eq. (24),

α9
∂f 3
∂p14

¼
∂f 3
∂p15

and α10
∂f 3
∂p13

þ α11
∂f 3
∂p16

¼
∂f 3
∂p14

ð32Þ

From Eq. (28),

α12
∂f 7
∂p28

þ α13
∂f 7
∂p29

¼
∂f 7
∂p30

ð33Þ

From Eq. (29),

α14
∂f 8
∂p35

¼
∂f 8
∂p36

ð34Þ

The coefficients in Eqs. (30) – (34), αi, (i = 1,⋯, 14),

are functions of the corresponding parameters and con-

trols in the individual state equations (see Additional

file 1). Based on these results, correlated parameters in

this model can be described in 5 groups:

Group 1: G1(p1, p2, p3, p4, p5), among which any pair of

parameters are pairwise correlated;

Group 2: G2(p7, p8, p9, p10), among which p8, p9 are

pairwise correlated and p7, p8, p10 as well as p7, p9, p10
are correlated, respectively.

Group 3: G3(p13, p14, p15, p16), among which p14, p15
are pairwise correlated and p13, p14, p16 as well as p13,

p15, p16 are correlated, respectively.

Group 4: G4(p28, p29, p30), the parameters are corre-

lated together but not pairwise;

Group 5: G5(p35, p36), they are pairwise correlated.

Since the coefficients are functions of both of the

parameters and the control inputs, these correlated

parameters are practically non-identifiable for a single

set of data. It is noted that, in G2 and G3, the maximum

number of correlated parameters is three. Among the 5

correlated parameter groups the maximum number of

correlated parameters is 5 (from G1). It means at least 5
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data sets with different control values are required to

uniquely estimate the 36 parameters of this model.

Verification of the correlations by fitting the model

To verify the proposed approach and check the cor-

relations in this model, we carried out numerical

experiments by fitting the parameters to a certain number

of simulated data sets with different inputs. The fitting

method used is a modified sequential approach suitable

for handling multiple data sets [33,34].

We used the nominal parameter values given in [31], initial

state values as well as P and S values (see Additional file 1)

Table 1 Fitted parameter values based on different data sets

No. P* P(1) P(1)+(2) P(1)+(2)+(3) P(1)+…+(4) P(1)+…+(5) P(1)+…+(5)(w)

1(G1) 1.0 1.06763 1.07763 1.60486 1.73180 1.00000 0.97145

2(G1) 1.0 1.40146 0.91495 0.82116 0.75989 0.99998 1.05917

3(G1) 2.0 1.47116 1.16323 2.39189 2.00001 2.00006 1.86755

4(G1) 1.0 1.55173 1.01042 2.30123 3.19504 1.00000 0.98664

5(G1) 2.0 1.40069 1.24912 0.32136 0.25317 2.00000 2.01339

6 1.0 1.00000 1.00002 1.00000 1.00000 1.00000 0.98154

7(G2) 1.0 1.00927 1.02815 1.00000 1.00000 1.00000 0.99124

8(G2) 1.0 1.32173 0.95504 1.00000 1.00000 1.00000 0.99919

9(G2) 2.0 1.34185 1.18286 2.00000 2.00000 2.00000 1.93527

10(G2) 1.0 1.00477 1.01393 1.00000 1.00000 1.00000 0.98693

11 2.0 1.99973 2.00007 2.00000 2.00000 2.00000 2.03582

12 1.0 0.99944 1.00019 1.00000 1.00000 1.00000 1.00435

13(G3) 1.0 1.00572 1.05126 1.00001 1.00001 1.00001 1.03448

14(G3) 1.0 1.39147 0.90768 1.00000 1.00000 1.00000 0.99558

15(G3) 2.0 1.45117 1.00760 2.00003 2.00002 2.00001 1.98699

16(G3) 1.0 1.00280 1.02531 1.00001 1.00000 1.00001 0.99786

17 2.0 1.99987 1.99999 1.99999 1.99999 1.99999 1.99586

18 1.0 1.00016 1.00000 1.00000 1.00000 1.00000 1.03924

19 0.1 0.10016 0.10000 0.10000 0.10000 0.10000 0.10000

20 1.0 1.00263 1.00000 1.00000 1.00000 1.00001 0.99469

21 0.1 0.10003 0.10000 0.10000 0.10000 0.10000 0.10007

22 0.1 0.10010 0.10000 0.10000 0.10000 0.10000 0.10000

23 1.0 1.00127 1.00000 1.00000 1.00000 1.00000 0.99581

24 0.1 0.10003 0.10000 0.10000 0.10000 0.10000 0.10025

25 0.1 0.10003 0.10000 0.10000 0.10000 0.10000 0.10492

26 1.0 1.00023 1.00002 1.00001 1.00000 1.00001 1.05077

27 0.1 0.10001 0.10000 0.10000 0.10000 0.10000 0.10120

28(G4) 1.0 0.96519 0.99594 1.00000 1.00000 1.00000 1.01865

29(G4) 1.0 1.62390 1.04672 1.00000 1.00000 1.00001 0.90507

30(G4) 1.0 1.56817 1.04245 1.00000 0.99999 1.00000 0.85521

31 1.0 0.99997 1.00000 1.00000 1.00000 1.00000 1.11984

32 1.0 1.00110 1.00000 1.00000 1.00000 1.00000 0.97161

33 1.0 1.00207 0.99998 1.00000 0.99998 0.99998 1.33808

34 1.0 0.99956 1.00000 1.00000 1.00000 1.00000 1.01811

35(G5) 1.0 1.05000 1.00001 1.00000 1.00000 1.00000 1.05077

36(G5) 1.0 2.03075 0.99999 1.00000 1.00000 1.00000 1.20947

Residual value 3.62E-9 4.26E-9 5.31E-9 6.49E-9 5.35E-9 1.12E-0

P* are the nominal (true) values, P(1) the values based on the 1st data set, P(1)+(2) based on the 1st, 2nd data sets together, P(1)+(2)+(3) based on the 1st, 2nd, and 3rd

data sets, P(1)+…+(4) based on the 1st to 4th data sets, and P(1)+…+(5) based on the 5 data sets, respectively. (w) means results from 10% noises on the data.

Correlated parameter groups are highlighted separately.
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given in [32] to generate 5 noise-free data sets with dif-

ferent inputs containing the time courses of the 8 state

variables. For each data set 120 data points were taken

with 1 minute as sampling time.

For fitting the parameters we used random values for all

36 parameters to initialize the computation and all weights

in Eqn. (17) were set to 1.0. The results were taken by a

threshold of the total residual value in the order of 10-9

when using noise-free data sets (see Table 1).

Figure 1A (upper panel) shows the angles between

the columns of the state sensitivity matrix by fitting

to the 1st data set. The zero angles (red lines) mean

that the corresponding columns are pairwise parallel.

According to Figure 1A, 4 pairwise correlated parameter

groups (i.e. (p1, p2, p3, p4, p5), (p8, p9), (p14, p15), (p35, p36))

can be detected. However, these are not the same results

as identified by the analysis of the model equations. This

is because a dendrogram only shows pairwise correlations;

it cannot detect higher order interrelationships among

the parameters.

To illustrate the geometric interpretation, we first take

the group of G5(p35, p36) as an example to construct

ZREs, i.e. to plot the correlated relations between p35
and p36. This was done by repeatedly fitting the model

to the 5 individual data sets with different inputs,

respectively, with fixed values of p35. The resulting 5

zero residual surfaces (lines) in the subspace of p35 and

p36 are shown in Figure 2A. As expected, the zero

residual surfaces resulted from different data sets cross

indeed at the true parameter point in the parameter

subspace. Figure 2B shows the relations between p35 and

p36 by fitting the parameters separately to the same 5

data sets on which a Gaussian distributed error of 10%

was added. It can be seen that, due to the measurement

noises, the crossing points of the nonzero residual

surfaces are at different positions but near the true par-

ameter point. Moreover, by comparing the lines in

Figure 2A with Figure 2B, it can be seen that the corre-

sponding zero residual surfaces and nonzero residual

surfaces are indeed parallel, when fitting the same data

set without noises or with noises, respectively.

Figure 3 shows the residual surfaces based on fitting to

2 individual noise-free data sets (Figure 3A) and to the

same 2 data sets together (Figure 3B). It is shown from

Figure 3A that, due to the correlation, two hyperbolic

cylinders are built by separately fitting to individual data

sets. The bottom minimum lines of the two cylinders cor-

responding to the zero residual value cross at the true

parameter point. Fitting to the two data sets together leads

to an elliptic paraboloid (Figure 3B) which has only one

minimum point with the zero residual value. This point is

the true parameter point, which means the remedy of the

correlation between p35 and p36.

Since the maximum number of parameters among the

correlation groups is 5, according to our approach, at

least 5 data sets with different inputs are needed to

uniquely determine the parameter set. The last column

in Table 1 (P(1)+…+(5)) shows the parameter values from

fitting the model to the 5 data sets together. It can be

seen that all of the 36 parameter values fitted are almost

at their true values. According our geometric inter-

pretation, this means that the 5 zero residual surfaces

expanded by together fitting to the 5 data sets cross at

the true parameter point in the parameter subspace.

Figure 1 Dendrogram. (A) Results from fitting to the 1st data set, where pairwise correlations in different groups exist (red lines). (B) Results

from fitting to the 5 data sets together, where the pairwise correlations disappear.
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Figure 1B (lower panel) shows these correlated relations

indeed disappear based on the results of fitting to the

5 data sets together.

Moreover, it is shown in Table 1 (P(1)+(2)) that the cor-

relation between p35 and p36 can be remedied by fitting

two data sets together. As expected, it can be seen that

in P(1)+(2) the parameters in G1 are not well fitted (i.e. 5

correlated parameters cannot be uniquely determined by

two data sets). It is also interesting to see in P(1)+(2) the

parameter values in G2, G3 and G4 are also not well esti-

mated. This is because the degree of freedom of G2(p7,

p8, p9, p10), G3(p13, p14, p15, p16), and G4(p28, p29, p30) is

3. Indeed, as shown in Table 1 (P(1)+(2)+(3)), these param-

eters are exactly determined based on fitting the model

to 3 data sets together. However, it is shown in Table 1

from the parameter values of P(1)+(2)+(3) and P(1)+…+(4)

that a number of data sets less than 5 is not enough to

remedy the correlations of the parameters in G1.

To test the sensitivity of the parameter results to

measurement errors, we also fitted the model to the

same 5 data sets with different inputs and with 10%

noise level together. As shown in the last column in

Table 1 (P(1)+…+(5)(w)), to some extent, the parameter

values identified are deviated from the true values due to

an increased residual value. But the overall parameter

quality is quite good. It means the crossing points of the

5 nonzero residual surfaces expanded by the 5 noisy data

sets are quite close to the true parameter point.

Figure 4 shows profiles of all parameters as a function

of p35, based on different number of data sets used for

fitting. It is seen from Figure 4A that only p36 is corre-

lated with p35 (red line). Moreover, it can be seen that,

by fitting to one data set, the other parameters which

have higher order interrelationships in other groups can-

not be well determined. As shown in Figure 4B, the cor-

relation between p35 and p36 is remedied by fitting to

Figure 2 Correlated relations between p35 and p36 based on fitting the model to 5 individual data sets with different inputs. (A) Fitting

to noise-free data sets. The 5 individual zero residual surfaces cross exactly at the true parameter point. It demonstrates that a zero residual

surface from any data set will pass through the true parameter point and two data sets will be enough to determine p35 and p36. (B) Fitting to

the data sets with 10% noise. The 5 individual nonzero residual surfaces cross near the true parameter point.

Figure 3 Residual surfaces of residual values as functions of p35 and p36. (A) Fitting to 2 individual noise-free data sets. (B) Fitting to the

same 2 data sets together. The true parameter point corresponds to the crossing point in (A) and the minimum point in (B).
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two data sets together and, moreover, the parameters

tend to approach their true values (i.e. 0.1, 1.0 and 2.0,

see Table 1). Finally, all parameters are uniquely deter-

mined (i.e. clearly at the three true values), when 5 data

sets were used together for fitting the model, as shown

in Figure 4C.

These results clearly demonstrate the scope of our ap-

proach to identifying parameter correlations. Moreover,

it is clearly seen that adding more data sets with differ-

ent inputs can remedy the parameter non-identifiability

problem in some complex models, but a necessary num-

ber of data sets with different inputs (5 for this example)

is enough.

To illustrate a higher order interrelationship among

parameters, estimations were made by separately

fitting the model to 3 individual data sets to plot the

relations of the parameters in G4(p28, p29, p30), as shown

in Figure 5. It can be seen that the three zero residual

surfaces (planes) resulted from the three individual data

sets cross exactly at the true parameter point in the

subspace of the 3 parameters. This demonstrates our

geometric interpretation of parameter correlations, i.e.

to estimate a group of three correlated parameters at

least three distinct data sets with different inputs are

needed.

Since parameter correlations determined from the pro-

posed approach are based on the structure of the state

equations, our result provides a minimum number of

different data sets with different inputs necessary for

unique parameter estimation (5 in this example). This is

definitely true, if all state variables (8 in this example)

are measurable and included in the 5 data sets.

Figure 4 Relationships of p35 with other parameters by fitting to different numbers of noise-free data sets with different inputs.

(A) Relations between p35 and other parameters based on fitting to the 1st data set. (B) Relations between p35 and other parameters based on

fitting to 1st and 2nd data sets together. (C) Relations between p35 and other parameters based on fitting to 5 data sets together.

Figure 5 Relations between p28, p29 and p30 based on fitting the model to 3 individual noise-free data sets with different inputs.

The fittings for p30 to each data set were made by fixed p28 and p29 with different values. Three zero residual surfaces are shown: the green plane

is based on 1st data set, the red plane 2nd data set, and the blue plane 3rd data set. The three planes cross exactly at the true parameter point.
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The results shown above are from the solutions of the

parameter estimation problem based on the data sets

composed of all 8 state variables. It is demonstrated that

at least 5 data sets with different inputs will be needed

to uniquely estimate the 36 parameters. However, our

method does not give information on how many state

variables which may be fewer than 8 but sufficient to

identify the 36 parameters. To achieve this information,

we tried to estimate the parameters based on the

generated 5 data sets which include fewer measured

state variables (as output variables). We checked the

identifiability when the 5 data sets consist of data

profiles of only a part of the state variables. Computa-

tional tests were carried out based on different combina-

tions of the state variables included in the data sets.

Table 2 shows the minimum sets of state variables which

should be included in the data sets so as to achieve a

successful fitting. It can be seen, for instance, the 36 pa-

rameters can be uniquely estimated in the case that only

the first three state variables (i.e. x1, x2, x3) are included

in the 5 data sets. Moreover, the generated data profiles

of x7 and x8 are also enough for identifying the 36

parameters. Due to insufficient data, estimation runs

with fewer numbers of the state variables than listed in

Table 2 could not converge, i.e. the parameters will be

non-identifiable.

Conclusions

It is well recognized that parameters in many biological

models are correlated. Finding the true parameter point

remains as a challenge since it is hidden in these corre-

lated relations. In many cases, a direct analysis of param-

eter correlations based on the output sensitivity matrix

depends on experimental design, and the analytical rela-

tionship cannot be seen. Instead, we presented a method

to analyse parameter correlations based on the matrix of

the first order partial derivative functions of state equa-

tions which can be analytically derived. In this way,

pairwise correlations and higher order interrelationships

among the parameters can be detected. The result gives

the information about parameter correlations and thus

about the identifiability of parameters when all state

variables are measurable for fitting the parameters. Since

the output sensitivity matrix is a linear transformation of

the matrix of first order partial derivative functions, our

correlation analysis approach provides a necessary (but

not sufficient) condition of parameter identifiability.

That is, if there exist parameter correlations, the corre-

sponding parameters are non-identifiable.

In addition, we introduced residual surfaces in the

parameter subspace to interpret parameter correlations.

Any point on a zero residual surface will result in a zero

residual value. The crossing point of multiple zero residual

surfaces leads to the true parameter point. Zero residual

surfaces correspond to ZREs resulted from noise-free

data sets used for fitting the parameters. If the ZREs are

linearly independent (i.e. there are no correlations), the

model parameters are identifiable, and otherwise they

are non-identifiable. If more linearly independent ZREs

can be constructed by adding new data sets with different

inputs, the parameters are practically non-identifiable,

otherwise they are structurally non-identifiable. In the

case of practical non-identifiability the true parameter

values can be found by together fitting the model to a

necessary number of data sets which is the maximum

number of parameters among the correlation groups. If

the available measured data are from output variables,

this should be regarded as the minimum number of data

sets with different inputs required for unique parameter

estimation. The results of the case study demonstrate

the feasibility of our approach.

Moreover, an interesting result of our approach is that

parameter correlations are not affected by the initial

state. This means that, experimental runs can be con-

ducted with any initial state to obtain the required data

sets with different inputs. More interestingly, according

to this result, different data sets with different inputs

can be gained in one experimental run by changing the

values of the control inputs. It is noted that the pro-

posed approach does not address the identifiability issue

of the initial states which would be a future research

aspect.

The result of identifiable parameters determined by

the proposed approach is theoretical. This means that

the quality of the available data (the noise level, the

length of sampling time, etc.) has an important impact

on the identifiability issue. Parameters which are theor-

etically identifiable may not be identifiable by an estima-

tor due to low quality of the data. Non-identifiability

issues caused by relative data are not considered in this

paper. In addition, the identification of parameter corre-

lations based on the output equations is not considered

in this paper.

Table 2 Measurable variable sets for a successful fitting

No. Measured variables

y1 (x1, x2, x3)

y2 (x1, x2, x6)

y3 (x1, x3, x5)

y4 (x1, x5, x6)

y5 (x2, x4, x6)

y6 (x4, x5, x6)

y7 (x7, x8)

Different sets of state variables were used as measurable output variables

included in the 5 data sets, respectively. This table shows the groups of a

minimum number of state variables used as outputs for the parameter

estimation which leads to the convergence to the true parameter point.
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