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Abstract-The dynamics of the knee joint-freely swinging lower 
leg system of three sitting paraplegic patients was identified 
using a parameterized analytical model. The system was excited 
by a knee torque, generated by randomized interpulse interval 
stimulation of the quadriceps. Surface electrodes were used for 
stimulation. The output of the knee joint-lower leg system 
was the angular position, velocity and acceleration. A measure- 
ment set-up using accelerometers was designed and characterized 
successfully. A model structure was taken from the literature 
and its complexity was subsequently minimized based on the 
experiments and off-line identification. The resulting model struc- 
ture facilitates possible recursive identification. Model parameters 
of the lower leg dynamics were successfully estimated using 
a least-squares algorithm in combination with the Levenburg- 
Marquardt algorithm, minimizing the error in estimated angular 
acceleration. The inter-subject variability in parameter values 
for the knee joint damping and the gravitational component 
appeared to be small when normalized to the inertia of the 
lower leg. A term, representing the nonlinear elastic properties 
in the knee joint, appeared to improve the prediction capability 
of the model significantly. The identified model for the knee 
joint and shank dynamics accurately predicted passive lower leg 
movements. The magnitude of active knee torque due to elicited 
quadriceps contraction could be estimated using the identified 
model. 

I. INTRODUCTION 

ONTROL of Functional Electrical Stimulation (FES) for C restoring functional lower-extremity movements in para- 
plegics is a very difficult problem, due to its nonlinear, time- 
varying, and unstable characteristics. Control performance 
could be enhanced if an adequate model of this muscle- 
limb system would be available [ I ] ,  121. Such a model could 
predict the state of the human muscle-limb system (angular 
position, velocity and acceleration) in FES-induced dynamic 
contractions on-line. It would, thus, enable the use of adaptive 
control principles to compensate for nonlinear and time- 
varying characteristics and to detect disturbances. To gain 
insight in model-based control strategies for the control of 
FES-induced paraplegic gait, knee-joint position control using 
quadriceps stimulation is currently being investigated [ 3 ] .  
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In general, one can gain more insight in the system (to be 
controlled) and save a lot of time by computer modeling and 
simulation. Specifically, the performance of control strategies 
can be studied using computer simulation without involv- 
ing the actual system. This is particularly interesting in the 
rehabilitation engineering, since experiments are sometimes 
burdensome for the participating subjects and are generally 
time-consuming. 

Several authors have reported approaches on model-based 
control of stimulated paralyzed human extremities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11, [3]-[8]. 
One of the problems studied was the control of the knee joint 
by electrical stimulation of hamstrings and quadriceps [ l ] ,  [7], 
[8]. Hausdorff and Durfee [ 11 tested an open-loop feed forward 
scheme to control the movement or the isometric torque of 
this system. They concluded that the control performance 
improved when off-line estimated parameterized nonlinearities 
in the muscles and the knee joint-lower leg system were 
accounted for, but did not report validation of their models 
and parameters. Hatwell et al. [7] developed a model reference 
adaptive controller to control knee joint position. The model 
consisted of a nonlinear part followed by a linear deterministic 
auto regressive moving average model. Controller performance 
improved when the model reference parameters were chosen, 
such that the closed-loop bandwidth was severely limited. 
However, frequent clamping of the control signal impeded val- 
idation of the reported models from the displayed registrations. 
Still, an identified model for the passive knee joint and shank 
dynamics, suitable for state prediction, and an appropriate 
identification methodology have not been reported as yet. 

The dynamics of human joints is defined by relations 
between the angles between the connected limbs to the forces 
acting on it. These forces are caused by passive characteristics 
of the joints and limbs as well as the active contraction of 
associated muscles. The passive characteristics consist of mass 
and inertial properties of the limb, and damping, elasticity and 
stiffness components in the joint [ 2 ] .  The contributions to joint 
torque due to these passive characteristics can be described 
using an inverse dynamic Newton-Euler model formulation, 
which is frequently used in modeling of robots [9]. This model 
can be identified using measurements or estimates of angular 
position, velocity and acceleration during passive movements. 

Kearney and Hunter [2] reviewed several experimental stud- 
ies on the identification of single human joint dynamics in alert 
human beings. Several model types, among which the inverse 
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Fig Schematic drawing of the quadriceps-freely swinging --iwer leg 
system with surface stimulation of the quadriceps muscles. Knee angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is 
defined in this figure, with y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 deg, when the leg was at rest. Knee torque 
Ma has the identical orientation. The knee angle range (dashed) in which 
the model should describe the system's behavior is approximately from -40 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60'. 

dynamic Newton-Euler model formulation as used in the cur- 
rent paper, were used to describe the joint dynamics. Excitation 
inputs were generally applied by external apparatus perturbing 
either the joint position or joint torque. Identification methods 
and results for the passive knee joint and shank dynamics in 
a freely swinging condition, as studied in this paper, were 
not reported. In recent work of Flaherty et al. [lo], [ l l ]  
and Robinson et al. [ 121, instrumentation, measurement and 
identification techniques for the identification of (nonlinear) 
models of the ankle joint during electrical stimulation of the 
soleus were reported. The ankle joint position and velocity 
were perturbed in *steps while measuring the torque at the 
ankle joint. In the approach, reported in the current paper, 
accelerometers were used to estimate joint torque due to 
electrical stimulation. This facilitated measurements during a 
freely swinging movement. 

The objective of the current paper is the identification of 
passive knee joint and shank dynamics in paraplegics. Mea- 
surements for the identification were performed during freely 
moving conditions of the lower leg, induced by stimulation 
of the quadriceps muscles. A model structure was taken from 
literature. The complexity of this model was minimized and 
its parameters were estimated based on off-line identification. 
The resulting model showed good data fitting and accurately 
predicted passive lower leg movements. Furthermore, the 
magnitude of active knee torque due to quadriceps contraction 
could be estimated using the identified model. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

11. THEORY 

A )  Model Structure 

The considered quadriceps-lower leg system is schemati- 
cally depicted in Fig. 1. The knee angle was taken 0 deg 
when the leg was at rest. The knee angle operating range, 
in which the identified model of the knee joint-lower leg 
dynamics, should accurately describe the system behavior was 
approximately between -40 and 60 deg. This angle range was 
chosen in conformity with a previous study on the control of 
the considered system [31. 

The model to be identified represents the passive properties 
of the knee joint and lower leg. The excitation input is 

TABLE I 

SUBJECTS, ALLCOMPLETE T5-T6 LEVEL SPINAL CORD INJURED PATIENTS, HAD BEEN 

CENTER FOR THE RESTORATION OF LOCOMOTOR FUNCTIONS FOR A MINIMUM OF 6 
MONTHS (SEE ALSO [ 181). OT EXHIBITED SIGNIFICANT ACTIVE SPASM IN HIS RIGHT 

SPECIFIC DATA ABOUT THE THREE PARTICIPATING PARAPLEGIC SUBJECTS. THE 

ENROLLED IN THE FES TRAINING PROGRAM OF THE ROESSINGH REHABILIZATION 

LEG, WHICH WAS THEREFORE NOT INCLUDED IN THE IDENTIFICATION EXPERIMENT 

subject sex 
year of 
birth 

year of 
iniurv FES training 

TN male 1974 1989 15 months 

JM female 1961 1981 

OT male 1950 1991 6 months 

4 years and 2 
months 

active knee torque Mu, generated by quadriceps stimulation. 
A parameterized differential equation for a single joint-limb 
system often reported in literature [ 2 ] ,  [13-161 is 

Its parameters follow from the underlying biomechanics: in- 
ertia (I), a gravity component (G), damping ( D )  and passive 
elasticity ( K  and parameters lcl..k4 of the exponential terms). 
Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMu is the active torque at the joint. The exponential 
terms for the elasticity represent limiting nonlinearities in 
passive torque near the end stops. The parameters of (1) were 
assumed independent of Ma. 

Kearney and Hunter [2] reported that models without an 
explicit nonlinear term for elasticity generally provide ex- 
cellent description of human joint dynamics. Therefore, we 
examined whether the exponential terms in (2) really improved 
the prediction capability of the model. 

111. METHODS 

A. Subjects 

Knee joint-lower leg dynamics was identified in three T5- 
T6 level spinal cord injured patients (see Table I). All subjects 
participate in a joint research program of the Roessingh 
Rehabilitation Center and the University of Twente (Enschede, 
The Netherlands) aiming at the restoration and enhancement of 
paraplegic locomotion. They had normal excitable quadriceps 
muscle. OT's right leg quadriceps exhibited significant active 
spasms and was therefore not included in the experiments. The 
other subjects did not exhibit spasm. 

B Experimental Set-up 

Two experimental set-ups were used in this study. Im- 
posed lower leg movements without quadriceps stimulation, 
necessary for the estimation of the inertia of the lower leg, 
were monitored using a dynamometer set-up. Freely swinging 
lower leg movements, initiated by the knee torque due to 
electrical stimulation of the quadriceps, were measured using 
a free-swing set-up. 
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Fig 3 Bode diagram (magnitude plot) of the force sensor on the dynamome- 
ter qet-up resulted from Founer analysis of a senes of load step responses 
The 'la a 
step The 
by a "Or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe the -3 
dB point) was approximately 30 Hz 

Fig 2 Schematic of free-swing setup The quadnceps were stimulated with 
pseudo-rdndom interpulse interval sequence9 The knee angle was measured 
with an externally mounted goniometer Two accelerometers at radii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT I  and 
T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 medsured tangential accelerations (respectively a ~ l  and ( I T > )  

was initially loaded with 7s and decremented to 2s 
exhibits an approximate response to l5 Hz3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

peak at 2s HZ The half power bandwidth 

Dynamometer set-up: A computer-controlled dynamome- 
ter was used for isometric recruitment curve registration and 
measurements to estimate the inertia of the lower leg. The 
subjects were seated on a KINCOM 125ES (Kinetic Com- 
municator Exercise System) dynamometer bench (Chattecx 
Cooperation, Chattanooga Group, Chattanooga, TN, USA). 
The hip angle was fixed at approximately 100 degrees using 
straps. The lower leg examined was securely attached to the 
rotating level arm at the tibia just above the ankle. The pivot of 
the knee joint was aligned with the axis of the electrical motor. 
The knee torque was measured using a force sensor, consisting 
of a bridge of strain gauges on the lever arm and a built-in 
bridge amplifier. The knee angle and angular velocity were 
measured at the motor axis. The knee angular acceleration 
was estimated using accelerometers attached to the examined 
lower leg. 

Free-Swing Set-up: The subjects were seated on a chair, 
which allowed the lower leg to swing freely (Fig. 2). The 
position of the subjects was identical as on the dynamometer 
set-up. The knee angle was measured with an externally 
mounted electrogoniometer. The knee angular velocity was 
derived off-line from the gonio signal without phase shift using 
digital filtering. The knee angular acceleration was estimated 
using accelerometers. 

Angular Acceleration: Two uniaxial accelerometers (Ky- 
owa AS-59A), fixed with soft straps on the examined lower 
leg in the central bone axis at two different radii (rlandrz) 
from the knee joint, measured tangential acceleration 
( a ~ 1  and ar2). This is depicted schematically for the free- 
swing set-up in Fig. 2. Knee joint acceleration (@) was derived 
from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(UT I  and  UT^) using the following formulas (see also 
~ 7 1 )  

aT1 = g . sin (cp) + (p . r1 ( 3 )  

in which cp is the knee angle and g is the gravitational 
acceleration. 

Stimulation and data collection: The quadriceps was stim- 
ulated using an adhesive surface cathode and anode placed 
over the motor point of rectus femoris and medially near the 

patella respectively. An IBM-AT compatible computer with 
AD facilities (Analog Devices, RTI-8 15, 12-bit) controlled a 
current stimulator, generating mono phasic rectangular pulses 
eliciting single muscle twitches. Pulse width (PW) remained 
constant at 300 p s  throughout the experiment. The interpulse 
interval (IPI) was quantized in units of 10 ms corresponding to 
the sampling period. Recruitment was modulated by varying 
the pulse amplitude (PA) between 0 and 100 mA [18]. The 
acceleration signals ( a ~ ~  and  UT^) were low-passed filtered 
with a fourth-order Butterworth anti-aliasing filter with a cut- 
off frequency of 35 Hz, prior to sampling. Phase shift was 
compensated for off-line. The measured signals were sampled 
at 100 Hz. Thus, the sampling period T, equaled 10 ms. These 
samples and the stimulus data were stored on disk for off-line 
identification. 

C. Characterization of experimental set-up 

The bandwidth of the force sensor of the dynamometer set- 
up was identified on the basis of a series of load step responses. 
The Fourier transform of the average of these responses was 
divided by the Fourier transform of a step [19]. The sensor 
was initially loaded with 75 N. This load was decremented 
to 25 N via a step. The Bode diagram of the force sensor is 
shown in Fig. 3. The force sensor exhibited a flat response up 
to 15 Hz, followed by a resonance peak at 25 Hz. The half 
power bandwidth, i.e. the -3  dB point, was 30 Hz. 

The accuracy and linearity of the angle and velocity sensors 
on the KINCOM dynamometer have been reported to be 
reliable [20], [21]. The external goniometer had a nonlinearity 
of I percent. 

The accelerometers were examined using the dynamometer 
set-up. The accelerometers were rigidly attached to the lever zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
arm at two different radii from the turning axis. Angular 
acceleration was derived using (3-5). Various known weights, 
attached to the force sensor, were moved cyclically at various 
speeds from -90 to +90 deg, in counterclockwise direction 
according to the definition given in Fig. 1. Equation (6) 
describes the relation between measured signals 
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Fig. 4. (a) Measured velocity (dashed) and torque [MI (solid) during a 
dynamometer lever arm movement of 180 deg with an attached load (m=5 
kg). The lever arm was moved from -30 to +30 deg, in counterclockwise 
direction, according to the definition given in Fig. 1. The computed torque 
due to gravity [Gload . sin ( U ) ]  (dash-dot) is also shown. The main deviation 
of the measured torque from the computed gravitational torque occurred 
at the turning point in the movement. At these points the electrical motor 
accelerated and decelerated the lever zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm; (b) measured velocity (dashed), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[nif - Gload . sin(p)] (solid) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ I  . $1 (dash-dot), during a lever arm 
movement as in Fig. 8(a). The relation between the measured signals is given 
in (6); (c) correlation of [ M  - GIoac] . sin (p)] (y-axis) with [ I  . $1 is high 
(7  = 0.37). The slope equals to 1.09. 

with measured motor torque ( M ) ,  level angle (cp) and acceler- 
ation (@), known gravity component (Gload) and inertia of the 
load (]load). Fig. 4(a) depicts a typical registration of measured 
torque ( M )  and velocity, during a cyclical dynamometer 
lever-arm movement with an attached mass of 5 kg. The 
computed (static) torque due to the gravity [Gload . sin(cp)] 
is also displayed. M deviates from [Gload . sin (p)] at the 
turning points in the movement, at which the electrical motor 
accelerated and decelerated the lever arm. Small oscillations 
of the lever arm caused slight deviations during the isokinetic 
parts of the movement. Fig. 4(b) displays the signals [M - 
Gload . sin (cp)] and [Iload . @] (6). The dynamic response of 
the accelerometers is identical to the dynamic response of the 
force sensor. Thus, the accelerometer set-up appeared adequate 
for the estimation of joint acceleration and joint torque. 

Inertia: The correlation of [M-Gl,,d . Sin (cp)] and [Iload . 
$1 were computed to investigate whether Iload could be 
estimated from (6) using linear regression (Fig. 4(c)). The 
correlation factor (T = 0.97) and the linear slope (equal to 
1.09), indicate that the inertia of a load can be estimated 
using combined torque and acceleration measurements and 
an identified parameterized relation between the measured 
signals. 

D. Experimental Protocol 

Successively, the following experiments were performed. 
The measurement systems were calibrated at the beginning 
of the measurement. The quadriceps muscles were warmed 
up by low level stimulation prior to the experiments. Two 
measurements were performed using the dynamometer set-up: 

1. An isometric recruitment curve (knee angle of 50 deg) 
was monitored to establish the relation between PA and 
generated active knee torque. The IPI was 40 ms. PA 
was ramped up and down from 0 to 100 mA and back 
in 20 sec [18]. Saturation of active knee torque was 
obtained. PA for maximal and half recruitment (at 50% 
of maximum torque) were observed. 

2. For the estimation of the inertia (I), various velocity 
steps were imposed on the knee joint-lower leg system 
by the electrical motor at a knee angle of 0 deg. 
During this measurement no stimulation was applied. 
Knee angular position, velocity and acceleration were 
recorded. Also knee torque Ma, applied externally by 
the electrical motor, was recorded. 

Pseudo-random stimulation trials were performed on the 
free-swing set-up. The quadriceps of the examined leg was 
stimulated with three different pseudo-random IPI sequences 
of 5 min each. There was a rest period of 15 min in between 
trials. In the first two trials, PA was chosen 100 mA, resulting 
in maximal recruitment. In the third trial PA was chosen to 
obtain half recruitment, based on the isometric recruitment 
curve. Additionally, several passive lower-leg swings were 
recorded at the end of each pseudo-random stimulation trials. 
Such passive swings resulted from raising the lower leg to a 
knee angle of approximately 50 deg and releasing it. 

E. Identijkation Methodology and Model 
Prediction Evaluation 

Identification of a separate gravity component and linear 
stiffness (2) is very difficult because sin (cp) is approximately 
linear in the considered operating range. Also K has been 
reported to be approximately zero in this range [ 141. Therefore, 
K was neglected. Also, in pilot sessions of the identification 
it was observed that the contribution of exponential term for 
elasticity for knee extension (cp 2 30 deg) was approximately 
zero in the chosen operating space, by inspecting the prediction 
error in this region. Thus, the term with parameters k3 and 
k4 was neglected as well. Furthermore, for identification 
purposes, the resulting equation was divided by the inertia I ,  
which was identified separately on the dynamometer set-up. 
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Fig. 5. Two-part uniform probability density function of the interpulse 
interval sequence. PI and P2 are the probabilities of the two parts: 

They were chosen such that the generated torque persistently excited the 
lower zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAleg in the desired operating space. 

(P(10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 IPI 5 100) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P1, P(100 5 IPI 5 2000) = P2, P1 + P2 = 11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-4001 . ” ” ’  
- 6 0 4 - 2 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 20 4060 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 

Angle Ides1 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.  Lower leg pendulum states (pairs of knee angle and angular ve- 
locity) in which the quadriceps muscle was stimulated (dots), due to the 
pseudo-random interpulse interval stimulation sequence. A passive swing of 
the lower leg is also shown (solid line) to illustrate that the lower leg system 
was excited in the desired knee angle range. 

Thus M a / I  was equal to zero. The resulting equation to be 
identified then becomes 

The identification consisted of two steps repeated in an iter- 
ation loop: 

Step 1 .  The model parameters D’: G’ and k l ’  of (9) 
were identified using a least-squares algorithm 
[19], minimizing the error in estimated angular 
acceleration. The measured output signals of the 
excited lower leg system were applied as input 
to the identification algorithm (Fig. 7). A static 
nonlinearity transformed the knee angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp into 
sin ( c p )  and (exp (-IC2 . cp )  - 1). The dynamic 
system in this cascade (9) was now linear in its 
inputs and has an output the estimated angular 
acceleration, +,,del. The total system with static 
nonlinearity at the input and a linear cascade 
dynamic system is generally referred to as a 
Hammerstein model [19], [23], [24] (Fig. 7). 
The constunt parameter k 2  was initialized to 
5.7 [rad-’] based on a priori data from pilot 
identification sessions. In subsequent loops, k2 
was obtained from step 2. 
The parameter k2 was reestimated using the Step 2 .  
Levenburg-Marquardt algorithm [ 191. This iter- 
ation algorithm fitted the parameters k2, GI, and 
k l ’  of the nonlinear relation between + and cp (9) 
also by minimizing the error in estimated angular 
acceleration. The velocity component D’ . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACp was 
assumed to be known from step 1. Parameters 
G’ and kl’ needed to be estimated in this step as 
well to assure convergence in the estimation of 
k2.  

Thus 

M a / I  = + + [D .  (c. + G . sin ( c p )  - k l  . (epk2 ’?  - l)]/I 

(7) 
= + + D’ . Cp + G’ . sin (p) - kl’ . ( e - k z ’ p  - 1) (8) 

M,/I will be denoted as equivalent acceleration due to 
quadriceps stimulation in the rest of this paper. The magnitude 
of M a / I  can be estimated using (8) when the parameters 
D‘, G’ and k l ’  and k 2  have been identified. 

Persistently Exciting Signal: A pseudo-random uncorre- 
lated IPI stimulation signal with a two-part uniform probability 
density function 1221 with [P(10 5 IPI 5 100) = P1, 
P(100 5 IPI 5 2000) = P2, P1 + P2 = 11 was used to 
generate knee torque in the free-swing set-up (see Fig. 5). 
P1 ensured sufficient excitation of the system in the desired 
knee angle operating range. Likewise, P2 made certain that 
passive lower leg movements were also monitored. P1 and 
P2 were chosen on the basis of short stimulation sessions 
prior to an identification trial. The system was excited by 
the stimulation pulses in the entire operating range (Fig. 6). 
Sufficient excitation is necessary to obtain a small standard 
deviation in the estimated parameters [ 191. 

Identification: Passive knee joint and shank dynamics were 
identified using passive parts of the measured data sequence of 
the first pseudo-random stimulation trial on the free-swing set- 
up. Epochs were extracted when no stimulation was applied 
and the muscle was completely deactivated from the previous 
stimulation pulse, assuming a deactivation period of 250 ms. 

Thus, step 1 gave G’:D’, and kl’ and step 2 gave k2.  
Standard deviations in the parameters followed directly from 
the statistical properties of the least-square estimate [ 191. The 
loop was performed at least once. The iteration loop was 
stopped when convergence in the estimated parameters from 
step 1 was obtained. We verified the convergence of the 
iteration loop using computer simulation of (9) with known 
parameters. 

The inertia of the system was estimated on the basis of the 
velocity step measurements on the dynamometer set-up. The 
measured knee angular state (cp ,  Cp, +) and torque Ma were 
substituted in the identified (8). The inertia 1 was estimated 
with a linear least-squares fit. 

Prediction Capability: Identification of model parameters 
was based on the first pseudo-random stimulation trial. The 
evaluation of prediction capabilities of the model were per- 
formed using the first and the two remaining pseudo-random 
trials. The evaluation consisted of inspecting the RMS error in 
the predicted angular acceleration during passive parts of the 
registration. Measured knee angular position cp and velocity 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Model parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG’ and k1’ were estimated using a Hammer- 
stein model. The static nonlinearity at the input transformed the measured 
knee angle p (into sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9) and (exp( -k2 .  y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1) such that the dynamic 
system in this cascade to be identified became linear in its inputs with output 
estimated joint acceleration &,o~jel .  The model parameters were estimated 
using a least-squares algorithm [ 191, minimizing the error in estimated angular 
acceleration. Parameter k2 was estimated using the Levenburg-Marquardt 
iteration algorithm 1191. 

TABLE I1 
MODEL PARAMETERS OF THE KNEE JOINT-LOWER LEG SYSTEM OF THE 

PARTICIPATING SUBJECTS. LEFT OR RIGHT LEG IS INDICATED. THE ASTERISKS 

INDICATE THAT THE MEASUREMENT TO IDENTIFY THE INERTIA WAS NOT PERFORMED 

ON m - R I G H T .  THE SHOWN VALUES FOR THE DAMPING D‘, GRAVITY COMPONENT 

G’, AND ELASTICITY PARAMETERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk; AND k2 REFER DIRECTLY TO EQUATIONS (8) 
AND (9). THE APOSTROPHE INDICATES DIVISION BY THE INERTIA I. THE AVERAGE 

VALUES OF THE PARAMETERS WITH STANDARD DEVIATIONS (STD) ARE ALSO GIVEN. 

THE INERTIA WAS IDENTIFIED SEPARATELY USING THE DYNAMOMETER SET-UP. 

D‘ G‘ k l ‘  k2 I 
subj [s-’1 [rads’] [rads2] [rad-’] [kgm21 

TN-left 0.487 30.8 0.367 6.02 0.485 

** TN-right 0.455 35.5 0.468 5.73 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
BO I I JM-left 0.405 34.9 0.500 5.73 0.274 

JM-right 0.476 36.3 0.529 5.10 0.342 

OT-left 0.376 31.1 0.390 5.73 0.555 

............................................. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 5 

average 0.440 33.7 0.451 5.66 0.414 

T i m e  (SI std 0.047 2.6 0.070 0.34 0.129 
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Fig. 8. Measured and estimated signals of the freely swinging lower leg 
system. The quadriceps were stimulated with a pseudo-random IPI stimulation 
sequence at maximal recruitment: (a) measured knee angle; (b) knee angular 
velocity estimated from the angle signal; (c) measured angular acceleration 
and applied stimulation pulses. 

(L? were substituted in the identz$ed (9), which resulted in the 
predicted angular acceleration. The prediction capabilities of 
the model were also evaluated on the basis of passive swings 
of the lower leg. The identified model (9) was integrated 
forward in time for 10 s by steps of the sampling period, 
using a fourth order Runge-Kutta integration routine. The 
initial conditions were estimated from the first sample of the 
measured swing. The measured and predicted knee angle were 
compared quantitatively. 

IV. RESULTS 

A. Identification of the Lower Leg Dynamics 

A typical registration of measured and estimated signals of 
the freely swinging lower leg system is displayed in Fig. 8. 
The lower leg resonated with a frequency of approximately 
1 Hz. Veltink also showed that the natural frequency of the 
considered system is approximately 1 Hz [3]. The measured 
angular acceleration [Fig. 8(c)] shows additional activity when 
stimulation pulses were applied. 

Model Parameters: The model parameter values of the 
knee joint and shank dynamics according to (8 or 9) of 
all the subjects, are given in Table 11. The parameters were 
estimated with small standard deviations (5 2% of estimated 
value), indicating that the model structure components are 
strongly present in the observed data, its parameters are not 
time-dependent and are independent of each other. There 
is substantial intersubject variability in I .  This intersubject 
variability is much less in D’, G’, k l ’  and k2 (Table 11). 

To test the model’s sensitivity to the nonlinear joint elas- 
ticity, the left knee joint-lower leg of subject TN was also 
identified without the exponential term. Then G’ was estimated 
as 36.0 [rads2] and D’ as 0.99 [s-l]. Thus, damping and the 
gravity component were estimated higher than in the model 
with nonlinear elasticity (compare with Table 11). The standard 
deviations in the estimate also increased significantly. 

RMS Error: The performance of the identified model (9) 
was quantitatively estimated by inspecting the RMS error, cal- 
culated between predicted and measured angular acceleration 
during measurements on the free-swing set-up (Table 111). The 
RMS error was normalized to the RMS value of the measured 
acceleration. The passive parts of the first trial were used for 
the identification. The comparable RMS error for all trials 
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TABLE 111 

QUANTITAVE RESULTS OF THE PREDICTION PERFORMANCE OF THE MODEL FOR THE 

KNEE JOINT-LOWER LEG DYNAMICS. THE RMS ERROR BETWEEPI' THE 

KNEE ANGULAR ACCELERATION, AS MEASURED BY THE ACCELEROMETERS 

AND PREDICTED BY THE IDEhTlFtED MODEL, WERE NORMALIZED TO THE 

RMS VALUE OF THE MEASURED ACCELERATIOK. THE RMS ERROR WAS 

CALCULATED USING PASSIVE PARTS OF THE REGISTRATION OF MEASURED 

OUTPUT SIGNALS DURING THE THREE PSEUDO-RANDOM STIMULATION 

TRIALS ON THE FREE-SWING SET-UP. IN THESE PARTS, NO STIMULATION WAS 

APPLIED AND THE MUSCLE WAS COMPLETELY DEACTIVATED FROM PREVIOUS 

STIMULATION PULSES. TRIAL ONE WAS USED FOR THE IDENTLFICATION. 

Normalized RMS error 

(trial three) (trial one) (trial two) 
subject maximal maximal half 

recruitment recruitment recruitment 

TN-left 0.17 0.16 0.20 

TN-right 0.17 0.20 0.30 

JM-left 0.17 0.19 0. I4 

JM-right 0.24 0.25 0.25 

OT-left 0.22 0.20 0.17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 9. Estimated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAequivalenr acceleration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!\fa / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI due to elicited quadriceps 
contraction was obtained by subtracting the contributions of the passive system 
from the measured angular acceleration (Fig. 8(c)). Each sample for ' V ia / I  
resulted from instantaneous substitution of measured knee angle (Fig. 8(a)), 
angular velocity (Fig. 8(b)) and acceleration (Fig. 8(c)) in the identified model 
(8). The stimulation pulses are also shown. The displayed sequence was cut 
out of the second pseudo-random trial on subject TN and was not used for 
the model identification. In the ideal case, Ma / I should be zero between the 
stimulation pulses. 

indicates that the identification procedure is consistent [ 191, 
[25]. The normalized RMS errors become substantially smaller 
(< 0.1) when the error signal and measured acceleration are 
digitally low pass filtered at 10 Hz. This indicates that the 
measured acceleration could not be modeled adequately above 
10 Hz with the proposed model structure (9). The frequency 
components of the knee angle and knee angular velocity above 
10 Hz were also found to be negligible, indicating that the 
higher frequency components of the error were likely caused 
by measurement errors due to the non-rigid attachment of the 
accelerometers to the lower leg. 

The model for TN's left lower leg dynamics, in which the 
nonlinear elasticity was neglected, resulted in a significantly 
higher normalized RMS error for the identical trials (trial one: 
0.31; trial two: 0.30; trial three: 0.29). This indicates that the 
exponential term for elasticity is an essential model structure 
component in the considered operating space [25], and that D' 
and G' were wrongly estimated higher when discarding this 
nonlinear component. 

Equivalent Acceleration: M,/I due to quadriceps contrac- 
tion (Fig. 9) was obtained using the identified model. Each 
sample for M,/I resulted from instantaneous substitution of 
measured knee angle, angular velocity, and acceleration (of 
Fig. 8) in (8). As can be seen, activity was only detected when 
a stimulation pulse was applied. As discussed, the ripple on 
the active response (Fig. 9) was most likely caused by the 
non-rigid attachment of the accelerometers to the lower leg. 
This resulted in an overshoot in the accelerometer signals. 
The maximum value of M a / I ,  due to a single muscle twitch, 
differed for the stimulation pulses (Fig. 9). This is the result of 
nonlinear muscle dynamics, such as torque-angle and torque- 
angular velocity dependencies. A typical registration of trial 
three, in which PA was chosen to obtain 50% recruitment, is 
shown in Fig. 10. The effect of recruitment on the excitation 
of the system is evident when comparing Figs. 9 and lO(d). 
M a / I  (Fig. 10(d)) could still be estimated by subtracting the 
passive contributions, identified on the basis of trial one. M a / I  
was significantly smaller, due to a stimulation pulse at 50%) 

recruitment than at maximal recruitment (compare Figs. 9 and 
10(d)). 

Passive Swing: A typical example of the prediction of 
a passive swing is given in Fig. 1 l(a). The predicted and 
measured knee angle signals show high correlation. The pas- 
sive swing, predicted by the model in which the nonlinear 
term for elasticity was neglected, is also shown. Clearly, 
this response extinguished more rapidly, once more indicating 
that the damping was estimated too high. Furthermore, it 
appeared that the exponential term for elasticity also affected 
the natural frequency of the response. The error between 
measured and estimated knee angle for the two models [Fig. 
1 I (b)] emphasizes the above. Thus, including the exponential 
term for elasticity in the model structure, it appeared to 
improve the prediction in the chosen operating space. 

Passive swings could be predicted accurately in all subjects 
using the identified model structure of (9). Typically, the 
important characteristics of a passive swing, such as the natural 
frequency and the damping 131, were estimated correctly. It 
was found that RMS prediction errors in the knee angle, 
such as depicted in Fig. 1 l(b) were influenced significantly 
by the estimated initial condition. A small error in this es- 
timation causes a continuous phase difference between the 
measured and predicted passive swing, resulting in a relatively 
large RMS error, even though the swing characteristics were 
predicted accurately. 

v. DISCUSSION AND CONCLUSIONS 

The human knee joint has been modeled extensively (e.g., 
[26]-[31]). Most of the reported models have limited predic- 
tion capabilities, since they describe the knee joint under very 
restricted conditions and contain too many parameters, making 
them unidentifiable when only the state variables (knee angular 
position, velocity, and acceleration) are known. In fact, most 
of these models have 6 degrees of freedom while the model 
structure reported in the current paper is a simple 1 degree-of- 
freedom pin joint. Thus, the reported models are not applicable 
for model-based joint control, In contrast, the parameterized 
model, as presented in this paper, is applicable for this purpose. 
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Fig. 10. Measured and estimated signals of the freely swinging lower 
leg system. The quadriceps were stimulated with a pseudo-random P I  
stimulation sequence at 50%# recruitment. The displayed sequence was cut 
out of the third pseudo-random trial on subject TN and was not used for 
the model identification: (a) Measured knee angle; (bj knee angular velocity 
estimated from the angle signal; (c) measured angular acceleration and 
applied stimulation pusles; (d) estimated equivalent acceleration Ma / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .  The 
methodology to obtain M a / I  is identical as described in Fig. 9. The applied 
stimulation pulses are also shown. 

It facilitates prediction of the total joint state. Separate joint 
torque contributions, due to quadriceps stimulation and knee 
joint-lower leg dynamics, can be accurately discriminated 
using the same model. Additionally, the structure contains 
relatively few parameters and facilitates recursive identifica- 
tion. The identified model simulated the knee joint acceleration 
with a small RMS error (normalized to the RMS value of the 
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Fig. 11. (a) Example of a measured knee angle (solid) during a passive 
lower leg swing in patient TN-left. The predicted knee angle according to the 
identified passive model (9) is also displayed (dash-dot). The passive system 
was integrated forward in time for I O  s by steps of the sampling period 
(T,=lO ms) using a fourth order Runge-Kutta integration routine. The initial 
conditions were taken from the first sample of the measured swing. The two 
signals show high correlation. The predicted knee angle, according to the 
model in which nonlinear elasticity was neglected, is also shown (dashed). 
The response evidently extinguished more rapidly than the measured response. 
Furthermore, the phase of the response deviated from the measured response; 
(bj error between measured and estimated knee angle for the model according 
to (9) (solid) and the model in which nonlinear elasticity was neglected 
(dashed) in patient TN. 

measured acceleration). This RMS error became significantly 
smaller when low passed filtered at 10 Hz. The accuracy in this 
low frequency range was confirmed by the accurate prediction 
of several passive swing cycles of the lower leg. 

For the analysis of the movement patterns of the (paralyzed) 
human lower extremities several parameter values have been 
used for inertia, damping, gravity, stiffness and nonlinear 
elasticity for the passive knee joint and shank [2 ] ,  [13], 
[15], [16]. These parameter values show large variance (e.g. 
[13]: D=3.17 "shad; [15]: D=0.5 "shad) and were taken 
from references, which did not contain experimentally veri- 
fied parameter values. Additionally, a component representing 
the gravitational torque is not mentioned in their dynamic 
equation [13], [ 151, which complicates the interpretation of 
remaining parameters. Published experimental data originated 
from measurements within a restricted operating range fo- 
cused on one specific feature [14], [32]. Mansour and Audu 
[14] reported that the linear stiffness was very small in the 
operating range used in the current study. For that reason, 
the linear stiffness was neglected in this study. Noteworthy, 
paraplegic subjects with contractures might have high linear 
stiffness. They also pointed out that the nonlinear elasticity 
component near knee extension must be accounted for in 
the analysis of human gait. In the current study we found 
that the intersubject variability in D', G',kl', and k2 was 
small (see Table 11). Additionally, it was found that the 
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nonlinear term for elasticity for knee flexion contributed 
significantly to the lower leg dynamics in the considered 
operating range. If this nonlinear behavior was neglected, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD’ 
and G’ were unjustly estimated significantly larger since the 
RMS error in predicted knee angular acceleration increased 
significantly. Important characteristics of a passive swing, 
such as the natural frequency and the damping [3], were 
wrongly estimated when the exponential term for elasticity 
was neglected. Thus, inaccurate modeling of elasticity will 
bias the analysis of different types of muscle models attached 
to the joint. 

Special knee testing devices, such as reported by Robinson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
et al. [12] and others [2], [14], [20], [21], [32] can also be 
used to identify the passive knee joint and shank dynamics. 
These devices typically consist of a motor which drives the 
considered limb. Different sensor sets can be used to measure 
the joint angular state and joint torque. The special merit 
of these devices is that they allow measurements within a 
restricted operating range focused on one specific feature. 
For example, the knee joint velocity can be kept constant 
during cyclic movements [21]. Also, when using the device in 
the horizontal plane, the nonlinear gravity component can be 
taken out zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 121, [ 141. Using these devices in FES applications, 
however, would mean more additional equipment. Driving the 
limb with FES-induced contraction of associated muscles and 
using joint angular state measurements of passive epochs to 
identify the passive system appeared a reasonable substitute 
for a special testing device. Furthermore, movements under a 
freely swinging condition, as investigated in this paper, cannot 
be studied using the reported devices. 

Measurement errors contributed to the RMS error in the 
prediction of knee joint acceleration. The assumption that 
the knee joint was a perfect one-axial hinge and that the 
accelerometer were placed exactly in the central bone axis 
introduced measurement errors in knee joint acceleration (see 
[33] for a detailed sensitivity analysis), Additionally, in order 
to prevent substantial signal loss, each accelerometer was 
mounted on a print with a preamplifier. The weight of this 
combined sensor-preamplifier, had an overshoot effect on the 
measured acceleration due to its nonrigid attachment to the 
lower leg. This caused a substantial contribution to the FWS 
error in a frequency range above 10 Hz. 

A model for the total muscle-limb system, (i.e. the passive 
system consisting of passive joint and limb properties and 
the active system containing the muscle dynamics), could 
be used to predict the response of the system due to the 
stimulation schemes [ l l ,  131, 161, [7], [lo], [34], [35]. This is 
of interest for controllers trying to track the limb movement. 
Small disturbances can be rejected, using on-line model- 
based stimulation parameter adaption. Model parameters can 
be identified recursively to compensate for the influence of 
fatigue. The identification of multiple muscle-limb systems, 
such as the lower extremities is, however, more complex 
because of additional inertial, Coriolis, and centripetal forces, 
arising from the dynamic interaction among the segments. It 
is also not sure whether the system is sufficiently excited 
for recursive identification during normal operation (i.e., FES- 
induced paraplegic gait). This limits the number of parameters 

which can be identified on-line. Still, the technique used in 
the current paper, (i.e. stimulate muscle (groups) to kinemat- 
ically excite the passive system and select those parts of the 
measurements where no stimulation pulses were applied to 
identify the passive system), may also be applicable during 
FES-induced paraplegic gait. 
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APPENDIX 
SYMBOL TABLE 

U T , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( L T ~  Tangential acceleration obtained from accelerometer 1 and 2 
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respectively. 

Knee joint angle. 

Knee joint angular velocity. 

Knee joint angular acceleration. 

Knee joint angular acceleration estimated by the identified 
model. 

Gravitational acceleration. 

Parameters of the exponential function for joint elasticity. 

Parameter k1 divided by the inertia of the lower leg system 

Radial distance from respectively accelerometer 1 and 2 to 
the knee joint. 

Inertia of the lower leg system. 

Interpulse interval, i.e. the time between the onset of 
subsequent pulses. 

Damping in the knee joint. 

Damping divided by the inertia. 

Gravity component of the lower leg system. 

Gravity component divided by the inertia. 

Linear stiffness component of the system. 

Active knee joint torque. 

Equivalent knee angular acceleration. 

Amplitude of the stimulation pulses. 

Pulse width, i.e. the duration of one stimulation pulse. 

Sampling period. 
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