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Identification of pathogenic 
missense mutations using protein 
stability predictors
Lukas Gerasimavicius, Xin Liu & Joseph A. Marsh*

Attempts at using protein structures to identify disease-causing mutations have been dominated by 
the idea that most pathogenic mutations are disruptive at a structural level. Therefore, computational 
stability predictors, which assess whether a mutation is likely to be stabilising or destabilising to 
protein structure, have been commonly used when evaluating new candidate disease variants, 
despite not having been developed specifically for this purpose. We therefore tested 13 different 
stability predictors for their ability to discriminate between pathogenic and putatively benign 
missense variants. We find that one method, FoldX, significantly outperforms all other predictors in 
the identification of disease variants. Moreover, we demonstrate that employing predicted absolute 
energy change scores improves performance of nearly all predictors in distinguishing pathogenic 
from benign variants. Importantly, however, we observe that the utility of computational stability 
predictors is highly heterogeneous across different proteins, and that they are all inferior to the 
best performing variant effect predictors for identifying pathogenic mutations. We suggest that 
this is largely due to alternate molecular mechanisms other than protein destabilisation underlying 
many pathogenic mutations. Thus, better ways of incorporating protein structural information and 
molecular mechanisms into computational variant effect predictors will be required for improved 
disease variant prioritisation.

Advances in next generation sequencing technologies have revolutionised research of genetic variation, increas-
ing our ability to explore the basis of human disorders and enabling huge databases covering both pathogenic 
and putatively benign  variants1,2. Novel sequencing methodologies allow the rapid identification of variation 
in the clinic and are helping facilitate a paradigm shift towards precision  medicine3,4. Despite this, however, it 
remains challenging to distinguish the small fraction of variants with medically relevant effects from the huge 
background of mostly benign human genetic variation.

A particularly important research focus is single nucleotide variants that lead to amino acid substitutions 
at the protein level, i.e. missense mutations, which are associated with more than half of all known inherited 
 diseases5,6. A large number of computational methods have been developed for the identification of potentially 
pathogenic missense mutations, i.e. variant effect predictors. Although different approaches vary in their imple-
mentation, a few types of information are most commonly used, including evolutionary conservation, changes in 
physiochemical properties of amino acids, biological function, known disease association and protein  structure7. 
While these predictors are clearly useful for variant prioritisation, and show a statistically significant ability to 
distinguish known pathogenic from benign variants, they still make many incorrect  predictions8–10, and the 
extent to which we can rely on them for aiding diagnosis remains  limited11.

An alternative approach to understanding the effects of missense mutations is with computational stability 
predictors. These are programs that have been developed to assess folding or protein interaction energy changes 
upon mutation (change in Gibbs free energy – ΔΔG in short). This can be achieved by approximating struc-
tural energy through linear physics-based pairwise energy scoring functions, their empirical and knowledge-
based derivatives, or a mixture of such energy terms. Statistical and machine learning methods are employed 
to parametrise the scoring models. These predictors have largely been evaluated against their ability to predict 
experimentally determined ΔΔG values. Great effort has been previously made to assess stability predictor per-
formance in producing accurate or well-correlated energy change estimates upon mutation, as well as assessing 
their shortfalls, such as biases arising from destabilising variant overrepresentation in training sets and lack of 
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self-consistency predicting forward–backward  substitutions12–18. Several predictors have since been shown to 
alleviate such issues through their specific design or have been improved in this  regard14,19,20. Moreover, the 
practical utility of stability predictors has been demonstrated through their extensive usage in the fields of protein 
engineering and  design21–23.

Although computational stability predictors have not been specifically designed to identify pathogenic 
mutations, they are very commonly used when assessing candidate disease mutations. For example, publi-
cations reporting novel variants will often include the output of stability predictors as evidence in support 
of  pathogenicity24–27. This relies essentially upon the assumption that the molecular mechanism underlying 
many or most pathogenic mutations is directly related to the structural destabilisation of protein folding or 
 interactions28–31. However, despite their widespread application to human variants, there has been little to no sys-
tematic assessment of computational stability predictors for their ability to predict disease mutations. A number 
of studies have assessed the real-world utility for individual protein targets and families using certain stability 
 predictors32–36. However, numerous computational stability predictors have now been developed and, overall, 
we still do not have a good idea of which methods perform best for the identification of disease mutations, and 
how they compare relative to other computational variant effect predictors.

In this work, we explore the applicability and performance of 13 methodologically diverse structure-based 
protein stability predictors for distinguishing between pathogenic and putatively benign missense mutations. 
We find that FoldX significantly outperforms all other stability predictors for the identification of disease muta-
tions, and also demonstrate the practical value of using predicted absolute ΔΔG values to account for poten-
tially overstabilising mutations. However, this work also highlights the limitations of stability predictors for 
predicting disease, as they still miss many pathogenic mutations and perform worse than many variant effect 
predictors, thus emphasising the importance of considering alternate molecular disease mechanisms beyond 
protein destabilisation.

Results
We tested 13 different computational stability predictors on the basis of accessibility, automation or batching 
potential, computation speed, as well as recognition—and included  FoldX37,  INPS3D38,  Rosetta37,  PoPMusic39, 
I-Mutant40,  SDM41,  SDM242,  mCSM43,  DUET44,  CUPSAT45,  MAESTRO46,  ENCoM47 and  DynaMut48 (Table 1). 
We ran each predictor against 13,508 missense mutations from 96 different high-resolution (< 2 Å) crystal struc-
tures of disease-associated monomeric proteins. Our disease mutation dataset was comprised of 3,338 missense 
variants from  ClinVar2 annotated as pathogenic or likely pathogenic, and we only included proteins with at least 
10 known pathogenic missense mutations occurring at residues present in the structure. We compared these to 
10,170 missense variants observed in the human population, taken from gnomAD v2.11, which we refer to as 
“putatively benign”. We acknowledge that it is likely that some of these gnomAD variants could be pathogenic 
under certain circumstances (e.g. if observed in a homozygous state, if they cause late-onset disease, or there 
is incomplete penetrance), or they may be damaging but lead to a subclinical phenotype. However, the large 
majority of gnomAD variants will be non-pathogenic, and we believe that our approach of represents a good 
test of the practical utilisation of variant effect predictors, where the main challenge is in distinguishing severe 
pathogenic mutations from others observed in the human population. While filtering by allele frequency would 
give us variants that are more likely to be truly benign, it would also dramatically reduce the size of the dataset 
(e.g. only ~ 1% of missense variants in gnomAD have an allele frequency > 0.1%). Thus, we have not filtered the 
gnomAD variants (other than to exclude known pathogenic variants present in the ClinVar set).

To investigate the utility of the computational stability predictors for the identification of pathogenic mis-
sense mutations, we used receiver operating characteristic (ROC) plots to assess the ability of ΔΔG values to 
distinguish between pathogenic and putatively benign mutations (Fig. 1A). This was quantifed by the area 
under the curve (AUC), which is equal to the probability of a randomly chosen disease mutation being assigned 
a higher-ranking score than a random benign one. Of the 13 tested structure-based ΔΔG predictors, FoldX 
performs the best as a predictor of human missense mutation pathogenicity, with an AUC value of 0.661. This 
is followed by INPS3D at 0.640, Rosetta at 0.617 and PoPMusic at 0.614. Evaluating the performance through 
bootstrapping, we found that the difference between FoldX and other predictors is significant, with a p value of 
2 × 10–4 compared to INSP3D, 1 × 10–7 for Rosetta and 8 × 10–9 for PoPMusiC. The remaining predictors show a 
wide range of lower performance values.

Two predictors, ENCoM and DynaMut, stand out for their unusual pattern in the ROC plots, with a rotated 
sigmoidal shape where the false positive rate becomes greater than the true positive rate at higher levels. Close 
inspection of the underlying data shows that this is indicative of the predicted energy change distribution tails 
for the disease-associated class extending both directions away from the putatively benign missense mutation 
score density. This suggests that a considerable portion of pathogenic missense mutations are predicted by these 
methods to excessively stabilise the protein.

While the analysis (Fig. 1A) assumes that protein destabilisation should be indicative of mutation pathogenic-
ity, it also possible for mutations that increase protein stability to cause  disease49,50. Recent research has shown 
that absolute ΔΔG values, which treat stabilisation and destabilisation equivalently, may be better indicators of 
disease  association51,52. Therefore, we repeated the analysis using absolute ΔΔG values (Fig. 1B). This improved 
the performance of most predictors, while not reducing the performance of any. The most drastic change was 
observed for ENCoM, which improved from worst to fifth best predictor, with an increase in AUC from 0.495 
to 0.619. However, the top four predictors, FoldX, INPS3D, Rosetta and PoPMuSiC, improve only slightly and 
do not change in ranking.

Using the ROC point distance to the top-left  corner53, we establish the best disease classification ΔΔG value 
for each predictor when assessing general perturbation (Table 2). It is interesting to note that FoldX demonstrates 
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the best classification performance when utilising 1.58 kcal/mol as the stability change threshold, which is 
remarkably close to the value of 1.5 kcal/mol previously suggested and used in a number of other works when 
assessing missense mutation impact on  stability13,35,54. Of course, these threshold values should be considered 
far from absolute rules, and there are many pathogenic and benign mutations above and below the thresholds 
for all predictors. For example, nearly 40% of pathogenic missense mutations have FoldX values lower than the 
threshold, whereas approximately 35% of putatively benign variants are above the threshold.

To account for the class imbalance between putatively benign and pathogenic variants (roughly 3-to-1) in 
our dataset, we also performed precision-recall curve analysis. While the AUC of PR curves, unlike ROC, does 
not have a straightforward statistical interpretation, we again based the predictor performance according to this 
metric. From Fig. S1, it is apparent that the top four best predictors, according to both raw and absolute ΔΔG 
values, remain the same as in the ROC analysis—FoldX, INPS3D, Rosetta and PoPMuSiC, respectively.

We also calculated ROC AUC values for each protein separately and compared the distributions across predic-
tors (Fig. 2). FoldX again performs much better than other stability predictors for the identification of pathogenic 
mutations, with a mean ROC of 0.681, compared to INPS3D at 0.655, Rosetta at 0.627, PoPMuSiC at 0.621, and 
ENCoM at 0.630. Notably, the protein-specific performance was observed to be extremely heterogeneous across 
all predictors. While some predictors performed extremely well (AUC > 0.9) for certain proteins, each predictor 
has a considerable number of proteins for which they perform worse than random classification (AUC < 0.5).

Using the raw and absolute ΔΔG scores, we explored the similarities between different predictors by calculat-
ing Spearman correlations for all mutations between all pairs of predictors (Fig. S2). It is apparent that, outside of 
improved method versions and their predecessors, as well as consensus predictors and their input components, 
independent methods do not show correlations above 0.65. Furthermore, correlations on the absolute scale 
appear to slightly decrease in the majority of cases, with exceptions like ENCoM becoming more correlated with 
FoldX and INPS3D, while at the same time decoupling from DynaMut—a consensus predictor which uses it as 
input. Interestingly, FoldX and INSP3D, the best two methods, only correlate at 0.50 and 0.48 for raw and absolute 
ΔΔG values, respectively, which could indicate potential for deriving a more effective consensus methodology.

Table 1.  Protein stability predictors used in this study.

Predictor Link Description

DynaMut48 https ://biosi g.unime lb.edu.au/dynam ut/

Consensus predictor which uses outputs from Bio3D, ENCoM and DUET 
to assess the impact of mutations on protein stability. Due to its nature, the 
predictor leverages multiple methodologies, such as normal mode analysis 
and statistical potentials

ENCoM47 No longer available as a stand-alone server, but available from DynaMut
A prediction method based on normal mode analysis that relates changes 
in vibrational entropy upon mutation to changes in protein stability. Uses 
coarse-grained protein representations that accounts for residue properties

DUET44 https ://biosi g.unime lb.edu.au/duet/stabi lity A machine-learnt consensus predictor that leverages output from SDM 
and mCSM, integrated using support vector machines

SDM41 No longer available as a stand-alone server (succeeded by the SDM2 
webserver), but available from DynaMut

A knowledge-based energy potential, derived using evolutionary environ-
ment-specific residue substitution propensities

FoldX76 https ://foldx suite .crg.eu/
A full-atom force field consisting of physics-based interaction and entropic 
terms, parametrised on empirical training data. Allows to easily run 
predictions on multi-chain assemblies

Rosetta37 https ://www.roset tacom mons.org/home

Rosetta macromolecular modelling software suite, which includes algo-
rithms for stability impact prediction. Driven by a scoring function that 
is a linear combination of statistical and empirical energy terms. Highly 
modular and customisable

INPS3D38 https ://inpsm d.bioco mp.unibo .it/inpsS uite/defau lt/index 3D

INPS3D builds upon its sequence and physicochemical conservation-
based predecessor INPS, and employs structure-derived features such as 
solvent accessibility and local energy differences. The predictor is trained 
by employing support vector regression

mCSM43 https ://biosi g.unime lb.edu.au/mcsm/stabi lity
A machine-learned approach that evaluates structural signature changes 
imparted by mutations. Derives graph representation of physicochemical 
and geometric residue environment features

SDM242 https ://marid .bioc.cam.ac.uk/sdm2/predi ction 

Updated version of SDM, a knowledge-based potential, which uses 
environment-specific residue substitution tables, information on residue 
conformation and interactions, as well as packing density and residue 
depth, to assess protein stability changes

CUPSAT45 https ://cupsa t.tu-bs.de/
Prediction method that uses a residue torsion angle potential and an 
environment-specific atom pair potential (an improvement upon amino 
acid potentials) to assess stability changes

PoPMuSiC39 https ://soft.dezym e.com/query /creat e/pop
A potential consisting of 13 statistical terms, volume difference between 
the wild-type and mutant residues, as well as the solvent accessibility of the 
original residue to differentiate core and surface substitutions

MAESTRO46 https ://pbwww .che.sbg.ac.at/maest ro/web
Combines 3 statistical scoring functions of solvent exposure and residue 
pair distances, as well as 6 protein properties, in a machine-learning 
framework to derive a consensus stability impact prediction

I-Mutant 3.040 https ://gpcr2 .bioco mp.unibo .it/cgi/predi ctors /I-Mutan t3.0/I-Mutan 
t3.0.cgi

A machine-learning derived method that takes into account mutated 
residue spatial environment in terms of surrounding residue types and 
surface accessibility

https://biosig.unimelb.edu.au/dynamut/
https://biosig.unimelb.edu.au/duet/stability
https://foldxsuite.crg.eu/
https://www.rosettacommons.org/home
https://inpsmd.biocomp.unibo.it/inpsSuite/default/index3D
https://biosig.unimelb.edu.au/mcsm/stability
https://marid.bioc.cam.ac.uk/sdm2/prediction
https://cupsat.tu-bs.de/
https://soft.dezyme.com/query/create/pop
https://pbwww.che.sbg.ac.at/maestro/web
https://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
https://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
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Finally, we compared the performance of protein stability predictors to a variety of different computational 
variant effect predictors (Fig. 3). Importantly, we excluded any predictors trained using supervised learning 
techniques, as well as meta-predictors that utilise the outputs of other predictors, thus including only predictors 
we labelled as unsupervised and empirical in our recent  study10. This is due to the fact that predictors based 
upon supervised learning are likely to have been directly trained on some of the same mutations used in our 
evaluation dataset, making a fair comparison  impossible10,55. A few predictors perform substantially better than 
FoldX, with the best performance seen for  SIFT4G56, a modified version of the SIFT  algorithm57. Interestingly, 
FoldX and INPS3D are the only stability predictors to outperform the BLOSUM62 substitution  matrix58. On the 
other hand, all stability predictors performed better than a number of simple evolutionary constraint metrics.
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Figure 1.  Using ΔΔG values from protein stability predictors to discriminate between pathogenic and 
putatively benign missense variants. Receiver operating characteristic (ROC) curves are plotted for each 
predictor, with the classification performance being presented next to its name in the form of area under the 
curve (AUC). (A) ROC curves for classification performance using native ΔΔG value scale for each predictor. 
(B) ROC curves for predictor classification performance when using absolute ΔΔG values. The figure was 
generated in R v3.6.3 (https ://www.r-proje ct.org) using ggplot2 v3.3.0 (https ://ggplo t2.tidyv erse.org/), both 
freely available.

Table 2.  Best stability predictor classification thresholds according to ‘distance-to-corner’ metric. The 
performance metrics and their 95% confidence intervals were derived from 2000 bootstraps of the data.

Predictor Absolute ΔΔG threshold False positive rate (95% confidence interval) True positive rate (95% confidence interval)

FoldX 1.578 0.339–0.357 0.591–0.624

INPS3D 0.674 0.389–0.409 0.595–0.628

Rosetta 1.886 0.390–0.409 0.572–0.605

PoPMuSiC 0.795 0.417–0.437 0.584–0.618

CUPSAT 1.455 0.415–0.434 0.549–0.583

MAESTRO 0.321 0.418–0.437 0.544–0.578

SDM 1.025 0.350–0.370 0.477–0.511

SDM2 0.875 0.365–0.385 0.510–0.544

mCSM 0.889 0.433–0.453 0.542–0.575

DUET 0.803 0.400–0.421 0.548–0.582

I-Mutant 3.0 0.915 0.405–0.424 0.545–0.578

ENCoM 0.221 0.415–0.436 0.598–0.632

DynaMut 0.476 0.446–0.467 0.570–0.605

https://www.r-project.org
https://ggplot2.tidyverse.org/
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Discussion
The first purpose of this study was to compare the abilities of different computational stability to distinguish 
between known pathogenic missense mutations and other putatively benign variants observed in the human 
population. In this regard, FoldX is the winner, clearly outperforming the other ΔΔG prediction tools. It also 
has the advantage of being computationally undemanding, fairly easy to run, and flexible in its utilisation. 
Compared to other methods that employ physics-based terms, FoldX introduces a few unique energy terms 
into its potential, notably the theoretically derived entropy costs for fixing backbone and side chain  positions59. 
However, the main reason behind its success is likely the parametrisation of the scoring function, resulting from 
the well optimised design of the training and validation mutant sets, which aimed to cover all possible residue 
structural  environments60. Interestingly, while the form of the FoldX function, consisting of mostly physics-
based energy terms, has not seen much change over the years, newer knowledge-based methods, which leverage 

Figure 2.  The heterogeneity of protein-specific missense variant classification performance. All the stability 
predictors exhibit very high degrees of heterogeneity in their protein-specific performance, as measured by the 
ROC AUC on a per-protein basis. Absolute ΔΔG values were used during protein-specific tool assessment. The 
mean performance of each predictor is indicated by a red dot and numerically showcased below the plot. Boxes 
inside the violins illustrate the interquartile range (IQR) of the protein-specific performance points, with the 
whiskers measuring 1.5 IQR. Boxplot outliers are designated by black dots. The figure was generated in R v3.6.3 
(https ://www.r-proje ct.org) using ggplot2 v3.3.0 (https ://ggplo t2.tidyv erse.org), both freely available.

Figure 3.  Performance comparison of protein stability and variant effect predictors for identifying pathogenic 
variants. Error bars indicate the 95% confidence interval of the ROC AUC as derived through bootstrapping. 
Stability predictors are shown in red, while other variant effect prediction methods are shown in green. Absolute 
ΔΔG values were used for stability-based methods. The figure was generated in R v3.6.3 (https ://www.r-proje 
ct.org) using ggplot2 v3.3.0 (https ://ggplo t2.tidyv erse.org), both freely available.

https://www.r-project.org
https://ggplot2.tidyverse.org
https://www.r-project.org
https://www.r-project.org
https://ggplot2.tidyverse.org
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statistics derived from the abundant sequence and structure information, demonstrate poorer and highly varied 
performance. However, it is important to emphasise that the performance of FoldX does not necessarily mean 
that it is the best predictor of experimental ΔΔG values or true (de)stabilisation, as that is not what we are test-
ing here. We also note the strong performance of INPS3D, which ranked a clear second in all tests. It has the 
advantage of being available as a webserver, thus making it simple for users to test small numbers of mutations 
without installing any software.

There are two factors likely to be contributing to the improvement in the identification of pathogenic muta-
tions using absolute ΔΔG values. First, while most focus in the past has been on destabilising mutations, some 
pathogenic missense mutations are known to stabilise protein structure. As an example, the H101Q variant of 
chloride intracellular channel 2 (CLIC2) protein, which is thought to play a role in calcium ion signalling, leads 
to developmental disabilities, increased risk to epilepsy and heart  failure61. The CLIC2 protein is soluble, but 
requires insertion into the membrane for its function, with a flexible loop connecting its domains being func-
tionally implicated in a necessary conformational rearrangement. The histidine to glutamine substitution, which 
occurs in the flexible loop, was predicted to have an overall stabilising energetic effect due to conservation of 
weak hydrogen bonding, but also the removal of charge that the protonated histidine exerted on the  structure61. 
The ΔΔG predictions were followed up by molecular dynamics simulations, which supported the previous con-
clusions by showing reduced flexibility and movement of the N-terminus, with functional assays also revealing 
reduced membrane integration of the CLIC2 protein in line with the rigidification  hypothesis62. However, other 
interesting examples of negative effects of over-stabilisation exist in enzymes and protein complexes, manifest-
ing through the activity-stability trade-off, rigidification of co-operative subunit movements, dysregulation of 
protein–protein interactions, and  turnover49,50,63.

In addition, it may be that some predictors are not as good at predicting the direction of the change in stability 
upon mutation. That is, they can predict structural perturbations that will be reflected in the magnitude of the 
ΔΔG value, but are less accurate in their prediction of whether this will be stabilising or destabilisng. For example, 
ENCoM and DynaMut predict nearly half of pathogenic missense mutations to be stabilising (41% and 44%, 
respectively), whereas FoldX predicts only 13%. While FoldX, Rosetta and PoPMuSiC are all driven by scoring 
functions consisting of a linear combination of physics- and statistics-based energy terms, ENCoM is based on 
normal mode analysis, and relates the assessed entropy changes around equilibrium upon mutation to the state 
of free energy. DynaMut, a consensus method, integrates the output from ENCoM and several other predictors 
(Table 1) into its  score48. The creators of ENCoM found that their method is less biased at predicting stabilising 
 mutations64. From our analysis, we are unable to confidently say anything about what proportion of pathogenic 
mutations are stabilising versus destabilising, or about which methods are better at predicting the direction of 
stability change, but this is clearly an issue that needs more attention in the future.

The second purpose of our study was to try to understand how useful protein stability predictors are for the 
identification of pathogenic missense mutations. Here, the answer is less clear. While all methods show some 
ability to discriminate between pathogenic and putatively benign variants, it is notable and perhaps surprising 
that all methods except FoldX and INPS3D performed worse than the simple BLOSUM62 substitution matrix, 
which suggests that these methods may be relatively limited utility for variant prioritisation. Even FoldX was 
unequivocally inferior to multiple variant effect predictors, suggesting that it should not be relied upon by itself 
for the identification of disease mutations.

One reason for the limited success of stability predictors in the identification of disease mutations is that 
predictions of ΔΔG values are still far from perfect. For example, a number of studies have compared ΔΔG 
predictors, showing heterogeneous correlations with experimental values on the order of R = 0.5 for many 
 predictors12,13,65. However, a recent work has also revealed problems with the noise in experimental stability 
data used to benchmark the prediction methods, generally assessed through correlation  values66. Taking noise 
and data distribution limitations into account, it is estimated that with currently available experimental data 
the best ΔΔG predictor output correlations should be in the range 0.7–0.8, while higher values would suggest 
 overfitting66. As such, even assuming that ‘true’ ΔΔG values were perfectly correlated with mutation pathogenic-
ity, we would still expect these computational predictors to misclassify many variants.

The existence of alternate molecular mechanisms underlying pathogenic missense mutations is also likely to 
be a major contributor to the underperformance of stability predictors compared to other variant effect predic-
tors. At the simplest level, our analysis does not consider intermolecular interactions. Thus, given that pathogenic 
mutations are known to often occur at protein interfaces and disrupt  interactions67,68, the stability predictors 
would not be likely to identify these mutations in this study. We tried to minimise the effects of this by only 
considering crystal structures of monomeric proteins, but the existence of a monomeric crystal structure does 
not mean that a protein does not participate in interactions. Fortunately, FoldX can be easily applied to protein 
complex structures, so the effects of mutations on complex stability can be assessed.

Pathogenic mutations that act via other mechanisms may also be missed by stability predictors. For example, 
we have previously shown that dominant-negative mutations in  ITPR169 and gain-of-function mutations in 
 PAX670 tend to be mild at a protein structural level. This is consistent with the simple fact that highly destabilis-
ing mutations would not be compatible with dominant-negative or gain-of-function mechanisms. Similarly, 
hypomorphic mutations that cause only a partial loss of function are also likely to be less disruptive to protein 
structure than complete loss-of-function missense  mutations71.

These varying molecular mechanisms are all likely to be related to the large heterogeneity in predictions we 
observe for different proteins in Fig. 2. Similarly, the specific molecular and cellular contexts of different proteins 
could also limit the utility of ΔΔG values for predicting disease mutation. For example, even weak perturbations 
in haploinsufficient proteins could lead to a deleterious phenotype. At the same time, intrinsically stable proteins, 
proteins that are overabundant or functionally redundant could tolerate perturbing variants without such high 
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ΔΔG variants being associated with disease. Finally, in some cases, mildly destabilising mutations can unfold 
local regions, leading to proteasome mediated degradation of the whole  protein34,36,72.

There could be considerable room for improvement in ΔΔG predictors and their applicability to disease 
mutation identification. Recently emerged hybrid methods, such as  VIPUR73 and  SNPMuSiC74, show promise 
of moving in the right direction, as they assess protein stability changes upon mutation while attempting to 
increase the interpretability and accuracy by taking the molecular and cellular contexts into account. However, 
none of the mentioned hybrid methods employ FoldX, which, given our findings here, may be a good strategy. 
Rosetta is also promising due to its tremendous benefit demonstrated in protein design. It should be noted that 
the protocol used for Rosetta in our work utilised rigid backbone parameters, due to the computation costs 
and time constraints involved in allowing backbone flexibility. An accuracy-oriented Rosetta protocol, or the 
“cartesian_ddg” application in the Rosetta suite, which allows structure energy minimisation in Cartesian space, 
may lead to better  performance37,75.

The ambiguity of the relationship between protein stability and function is exacerbated by the biases of the 
various stability prediction methods, which arise in their training, like overrepresentation of destabilising vari-
ants, dependence on crystal resolution and residue replacement asymmetry. Having observed protein-specific 
performance heterogeneity, we suggest that in the future focus could be shifted to identifying functional and 
structural properties of proteins, which could be most amenable to structure and stability-based prediction of 
mutation effects. Additionally, a recent work has showcased the use of homology models in structural analysis 
of missense mutation effects associated with disease, demonstrating utility that rivals experimentally derived 
structures, and thus expanding the possible resource pool that could be taken advantage of for structure-based 
disease prediction  methods30. Further, our disease-associated mutations set likely contains variants causing 
disease through other mechanisms, that do not manifest through strong perturbation of the structure, making 
accurate evaluation impossible. To allow better stability-based predictors, it is important to have robust annota-
tion of putative variant mechanisms, which is currently lacking due to non-existent experimental characterisa-
tion. We hope our results encourage new hybrid approaches, which make full use of the best available tools and 
resources to increase our ability to accurately prioritise putative disease mutations for further study, and elucidate 
the relationship between disease and stability changes.

Methods
Pathogenic and likely pathogenic missense mutations were downloaded from the  ClinVar2 database on 2019-
04-17, while putatively benign variants were taken from gnomAD v2.11. Any ClinVar mutations were excluded 
from the gnomAD set. We searched for human protein-coding genes with at least 10 ClinVar mutations occur-
ring at residues present in a single high-resolution (< 2 Å) crystal structure of a protein that is monomeric in its 
first biological assembly in the Protein Data Bank. We excluded non-monomeric structures due to the fact that 
several of the computational predictors can only take a single polypeptide chain into consideration.

FoldX 5.076 was run locally using default settings. Importantly, the ‘RepairPDB’ option was first used to repair 
all structures. Ten replicates were performed for each mutation to calculate the mean.

The Rosetta suite (2019.14.60699 release build) was tested on structures first pre-minimised using the mini-
mize_with_cst application and the following flags: -in:file:fullatom; -ignore_unrecognized_res -fa_max_dis 
9.0; -ddg::harmonic_ca_tether 0.5; -ddg::constraint_weight 1.0; -ddg::sc_min_only false. The ddg_monomer 
application was run according to a rigid backbone protocol with the following argument flags: -in:file:fullatom; 
-ddg:weight_file ref2015_soft; -ddg::iterations 50; -ddg::local_opt_only false; -ddg::min_cst false; -ddg::min true; 
-ddg::ramp_repulsive true ;-ignore_unrecognized_res.

Predictions by ENCoM, DUET and SDM were extracted from the DynaMut results page, as it runs them 
as parts of its own scoring protocol. mCSM values from DynaMut coincided perfectly with values from the 
separate mCSM web server, and thus the server values were used, as DynaMut calculations yielded less results 
due to failing on more proteins.

All other stability predictors were accessed through their online webservers with default settings by employing 
the Python RoboBrowser web scrapping library. Variant effect predictors were run in the same way as described 
in our recent benchmarking  study10.

Method performance was analysed in R using the  PRROC77 and  pROC78 packages, and AUC curve differ-
ences were statistically assessed through 10,000 bootstraps using the roc.test function of pROC. For DynaMut, 
I-Mutant 3.0, mCSM, SDM, SDM2 and DUET, the sign of the predicted stability score was inverted to match the 
convention of increased stability being denoted by a negative change in energy. For the precision-recall analysis, 
we used a subset of the mutation dataset, containing 9,498 ClinVar and gnomAD variants, which had no missing 
prediction values for any of the stability-based methods. This is because a few of the predictors were unable to 
give predictions for all mutations (e.g. they crashed on certain structures), and for the precision-recall analysis, 
it is crucial that all predictors are tested on exactly the same dataset. We also show that the relative performance 
of the top predictors remains the same in the ROC analysis using this smaller dataset (Table S1).

All mutations and corresponding structures and predictions are provided in Table S2.
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