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Abstract.

Atrial Fibrillation (AF) is the most common cardiac arrhythmia, with an

estimated prevalence of around 1.6% in the adult population. The analysis of the

Electrocardiogram (ECG) data acquired in the UK Biobank represents an opportunity

to screen for AF in a large sub-population in the UK.

The main objective of this paper is to assess ten machine-learning methods for

automated detection of subjects with AF in the UK Biobank dataset. Six classical

machine-learning methods based on Support Vector Machines are proposed and

compared with state-of-the-art techniques (including a deep-learning algorithm), and

finally a combination of a classical machine-learning and deep learning approaches.

Evaluation is carried out on a subset of the UK Biobank dataset, manually annotated

by human experts.

The combined classical machine-learning and deep learning method achieved an F1

score of 84.8% on the test subset, and a Cohen’s Kappa coefficient of 0.83, which is

similar to the inter-observer agreement of two human experts.

The level of performance indicates that the automated detection of AF in patients

whose data have been stored in a large database, such as the UK Biobank, is possible.

Such automated identification of AF patients would enable further investigations aimed

at identifying the different phenotypes associated with AF.
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1. Introduction

Cardiovascular diseases (CVD) are associated with four millions deaths in Europe

each year, which represents 46% of annual deaths (Nichols et al. 2013). Most deaths

caused by CVD are premature and could be prevented by changes in lifestyle. The

Framingham Heart Study was a precursor in the collection and analysis of prospective

longitudinal data for this endeavour (Kannel & McGee 1979). A very large prospective

study, with over 500,000 participants aged between 40 and 69 years, UK Biobank,

has been collecting extensive phenotype and genotype data for the last 12 years

(Sudlow et al. 2015, Collins 2012, Palmer 2007). A study using this large dataset

has recently demonstrated its value by comparing 5-year mortality predictors (Ganna

& Ingelsson 2015). Among the collected data, the electrocardiogram (ECG) has been

recorded at rest and during exercise on a sub-population of 100,000 participants.

Atrial Fibrillation (AF) is the most common cardiac arrhythmia, with a prevalence

increasing with age. However it remains quite difficult to evaluate the true prevalence

of AF, since arrhythmia can be asymptomatic. Different studies have estimated its

prevalence in the adult population (aged 45+) to be around 2.0% (95% Confidence

Interval 1.6% - 2.4%) (1.6% in women and 2.4% in men) (Davis et al. 2012). The

prevalence of AF increases exponentially with age. For instance, among people aged

65 and over the prevalence of AF in the UK rises to approximately 7% (Jones

et al. 2014, Fuster et al. 2011). A recent study has highlighted the power of home-based

long-term cardiac monitoring for the early detection of AF (Steinhubl et al. 2018).

The detection of AF was higher (6.7% vs 2.6%) with active home-based monitoring

(compared to a control group without home-based monitoring). Earlier detection of AF

was associated with increased anticoagulant treatment, but no statistical difference in

AF-related hospitalisation. AF is a major risk factor for stroke, its presence leading to

a five-fold higher risk (Wolf et al. 1991). The analysis of the ECG data acquired in the

UK Biobank study represents an opportunity to screen for AF in a large middle-aged

sub-population in the UK.

The automated detection of AF has an extensive literature, recently reviewed from

an engineering perspective (Sörnmo 2018). AF is characterised by a highly irregular

ventricular response (or heart rate), but also by ECG morphological changes such as

the presence of small f-waves (small oscillations with a dominant frequency around 5Hz

with amplitudes of few µV ), which replace the P wave. Automated techniques were

first designed based on extracting hand-crafted features reflecting either morphological

(presence of P wave or f waves) or rhythm-based characteristics. The latter techniques

have mainly consisted in the extraction of predictability and regularity features of the

RR intervals for a given window (Lake & Moorman 2011, Sarkar et al. 2008). Machine

learning approaches have recently been proposed to combine multiple features (Colloca

et al. 2013). The PhysioNet/Computing in Cardiology (CinC) challenge 2017 provided

the scientific community with the largest publicly available dataset of annotated (single-

lead, mobile-phone derived) ECG signals yet (≈ 10, 000 subjects). The challenge was
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aimed at the identification of subjects with AF (Clifford et al. 2017). Standard machine

learning approaches not involving deep learning were proposed with innovative hand-

crafted features (including morphological features (such as presence of P or f waves,

QRS width,...), temporal features (regularity of RR intervals,...), or abductive signal

interpretation) (Teijeiro et al. 2017, Datta et al. 2017, Behar et al. 2017), but the

challenge also offered the first glimpse of deep learning techniques applied to this problem

(Andreotti et al. 2017), inspired by recent success in applying deep learning approaches

to rhythm classification (Hannun et al. 2019).

The main objective of this paper was to assess ten machine learning methods for the

automated detection of subjects with AF in a sub-population of 100,000 UK Biobank

participants. Six classical machine learning approaches, with hand-crafted features as

the inputs to a Support-Vector-Machine classifier, were proposed, and compared with

three methods proposed for the 2017 CinC challenge. A strategy combining two methods

was also evaluated.

2. Material and method

2.1. Data

In a sub-study of the UK Biobank study, 97,952 ECGs were obtained in 95,182 subjects

(2,770 subjects had the test twice) using a 4-lead electrocardiograph device (CAMUSB

6.5, Cardiosoft v6.51, with two electrocardiograph electrodes on each upper limb). The

ECG leads were recorded with a 500Hz sampling frequency at 5µV per Least Significant

Bits (LSB) resolution. No manual annotations of the recordings were provided. The

data were stored and exported in xml (Extended Markup Language) files; however this

process unfortunately failed on a number of occasions. Ultimately, the raw ECG signals

could only be retrieved for a subset of this population (78.8%); 77,202 ECG signals were

extracted from 75,778 individual subjects.

ECG acquisition was performed before and during a submaximal exercise test on

a stationary bicycle (eBike Comfort Ergometer, General Electric, firmware version 1.7)

the intensity of which was adapted to the individual (based on age, gender, weight and

medical history). The study protocol consisted of three consecutive phases, including a

15-second period of rest, a 6-minute period of increasing activity (cycling) and finally a

1-minute recovery period. Figure 1 shows the typical evolution of the heart rate during

the ECG exercise test.

Subjects were stratified into different cardiovascular risk categories according to

multiple factors, subjects with higher risk (9,611 subjects) only undergoing a two-minute

resting ECG, as shown by the histogram of the recording length in figure 1. All the

available ECG data were included in this study, meaning that both resting and exercise

ECG were processed and analysed.



Identification of AF patients, Big Data analysis of UK Biobank 4

Figure 1. Heart rate during the exercise protocol (left). Histogram of the length of

the 77,202 ECG recordings available (right).

2.2. Method

The proposed methodology will be described in the following sections, and is illustrated

in figure 2. A subset of the UK Biobank data was first selected for manual annotations

by three experts. Automated AF detection algorithms were then trained on the 2017

PhysioNet/CinC challenge database and then evaluated on the subset of manually

annotated UK Biobank data.

Figure 2. Flowchart of the proposed methodology. The top row illustrates the

expert annotation process including the manual subset selection, while the bottom row

represents the automated identification of AF patients with the evalutation performed

on a subset of the UK Biobank database, and the training of the evaluated techniques

performed on the 2017 PhysioNet/Cinc challenge database.
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2.2.1. Expert annotations Heartbeat detection and rhythm classification can be

validated by comparing the results of automated analysis with manual annotations

generated by experts. The size of this database makes it prohibitively difficult to recruit

multiple expert cardiologists to visually inspect and manually annotate all the available

ECGs. It was therefore decided to select a small subset of the population, whose ECG

were then manually annotated. The selection of these files is an important issue as the

prevalence of AF is relatively low. An entirely random selection of files to annotate

would not necessarily ensure sufficient representation of the AF sub-population.

As a first selection step, an automated method was applied in order to

identify potential subjects with AF. This automated pre-selection technique combines

predictability and regularity features of the RR intervals within a given window (Lake

& Moorman 2011, Sarkar et al. 2008), using a machine learning approach (Colloca

et al. 2013). A measure of the predictability of the signal can be derived from its

Sample Entropy as suggested previously (Lake & Moorman 2011). Irregular rhythms

are characterised by (rhythm) specific patterns in the Poincaré plot representation

of the first-order derivative of the RR interval time-series (Sarkar et al. 2008). A

Support Vector Machine (SVM) classifier was trained on the freely available MIT Atrial

Fibrillation database (Goldberger et al. 2000). A grid-search was conducted to find the

optimal parameters (window size, C, γ,... ) for classifying a window as being positive.

The classifier was trained to obtain a 99% sensitivity score on the training set. Applying

this approach on overlapping windows will lead to a large number of false positives (given

the high sensitivity of the approach and the multiple analyses on a single record, the

possibility of false detection on a single record is increased), but will aim to identify

the majority of subjects with AF correctly. This first selection step identified more

than 5,000 ECG records. These were first reviewed by a non-expert ECG specialist,

who divided them as showing potential atrial arrhythmia, ventricular arrhythmia, or

presumed normal rhythm.

450 files were then selected for visual inspection and manual annotations by human

experts to estimate the level of accuracy for the identification of patients with AF

episodes: 150 files with apparent atrial arrhythmia, 150 files with apparent ventricular

arrhythmia, 50 files with apparent normal rhythm, and finally 100 randomly selected

files that had not been pre-reviewed.

The following set of rules was adopted for the classification of arrhythmic episodes

following visual inspection and annotation; an episode was classified as:

• Supraventricular tachycardia, when there were at least three consecutive narrow

QRS complexes (< 120ms) with a Heat Rate (HR) over 100 beats per minute

(bpm).

• Atrial fibrillation or flutter if the characteristic arrhythmia lasted at least three

consecutive heartbeats.

• Ventricular bigeminy if, for at least four consecutive beats, a normal QRS complex

was followed by a premature ventricular complex (PVC).
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• Ventricular trigeminy if, for at least six consecutive beats, two normal QRS

complexes were followed by a PVC.

• Ventricular and atrial ectopic beats were ignored if isolated, but if more than one

ectopic beat was present over a ten-second window, the episode was annotated as

“ventricular ectopics” or “atrial ectopics”.

• In all other cases, the rhythm was classified as normal sinus rhythm, which included

sinus tachycardia (present during exercise).

Two experts visually analysed and manually annotated this subset of 450 ECG

records. Finally, a third expert was invited to adjudicate whenever there was a

discrepancy between the AF annotations of the first two experts.

The inter-observer agreement between the first two experts, who acted

independently, was evaluated with Cohen’s Kappa coefficient, with special emphasis

on the AF annotations.

The 450 subjects were then classified in three groups:

(i) Atrial Fibrillation, when there is at least one AF episode.

(ii) Other rhythm, when there is at least one episode of ventricular or atrial ectopics.

(iii) Normal rhythm in all other cases.

2.2.2. Automated Data Analysis This subsection describes the automated analysis of

the ECG data. The processing starts with the detection of R peaks, which will allow the

extraction of both a Signal Quality Index and the RR interval time-series. The latter

will then be used to extract features that will be used as inputs to the AF classifier. A

flowchart of the processing is given in figure 3.

Figure 3. Flowchart of the data processing.
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R-peak detections Analysis of ECG data usually starts with the estimation of the

R-peak position. This task is normally relatively easy, as the R-peak is the most

distinguishable feature of the ECG signal. The data can however be extremely noisy

during exercise recordings, with large artefacts due to electrode motion and muscle

artefacts superimposed on the ECG signal. The PhysioNet/Computing in Cardiology

challenge in 2014 was dedicated to the problem of R-peak detection in multimodal

data (Silva et al. 2015). Although the UK Biobank fitness dataset only contains ECG

data, the solutions developed during the 2014 competition are also well suited for

multi-lead recordings, and hence we used the Challenge-winning approach (Johnson

et al. 2014, Johnson et al. 2015). R-peaks were estimated on each of the three leads,

using a peak energy detector based on a modified Pan-Tompkins algorithm. A second

QRS detector, freely available on PhysioNet and called “gqrs” was applied to each

lead. This detector consists of a matched filter, with a set of custom-built heuristic

rules (Goldberger et al. 2000). The level of agreement between the two detectors was

used as a proxy for the signal quality index (SQI). This simple SQI assessed every second

on a 10-second sliding window for each lead is robust to pathological rhythm (Behar

et al. 2013). Detection was then performed on the lead having the highest SQI. A further

test was carried out in order to avoid double detections of the same peak.

Rhythm classification, Atrial Fibrillation The proposed technique takes inspiration

from Colloca’s technique (Colloca et al. 2013). A rhythm-based approach was adopted

as analysis of the ECG morphology is not possible during exercise due to the presence

for instance of muscle artefacts, and accurate extraction of f-waves is impossible. It was

decided to restrict the analysis to only five features: the first consists in a coefficient

derived from the sample entropy of the RR-interval time series, denoted COSEn and

proposed in (Lake & Moorman 2011). The four other features are presented in (Sarkar

et al. 2008), and are derived from the Poincaré representation of the RR-interval time

series (See figure 4). This Poincaré representation space is then divided in several bins

following a Union-Jack pattern, and the number of heartbeats in each bin is counted. We

included the evidence of AF (AFE), which is a combined coefficient of three subfeatures

and was proposed by the authors for the classification of AF (Sarkar et al. 2008). We

also included the following three subfeaures: (i) the numbers of beats in the Origin bin

(OrC), representing the number of normal heartbeats; (ii) Irregularity Evidence (IrE),

which counts the number of irregular heartbeats; and (iii) Premature Atrial Contraction

Evidence (PACE), which counts the number of heartbeats which seem indicative of atrial

arrhythmia. The features based on the heart rate were excluded given the inherent

presence of tachycardia during exercise. A SVM with a radial basis function (RBF)

kernel was used as the classifier, which was trained on the 2017 PhysioNet/Computing

in Cardiology challenge training dataset (Clifford et al. 2017). The classifiers were

trained using cross-validation. Random search was performed to determine the SVM

hyperparameters: soft margin constant C and RBF kernel hyperparameter γ.

The AF detector was applied to 60-s sliding windows with a 30s overlap. The use
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Figure 4. Poincaré representation of the first derivative of the RR intervals. The

origin bin is number 0. Irregularity evidence is derived by counting the number of

heartbeats in bins numbered 1 to 12. PACE is derived by comparing the number of

heartbeats in bins 5, 6, 7, 8, 10 and 12 with the number of heartbeats in bins 1, 2, 3

and 4.

of sliding windows should provide increased sensitivity, but will also be accompanied

with an increased false positive rate. The length of the window was set to 60s to be

comparable to the 65 beat window proposed by (Colloca et al. 2013) and which was

shown to give good classification performance.

Six different versions of the proposed approach were implemented. All of these

versions are based on the same SVM classifer but contain extra post-processing stages

built to reduce the false positive rate:

(i) Applying the SVM classifier without any post-processing step, later denoted as

“proposed (raw)”.

(ii) The impact of noise on RR-based AF detection was recently demonstrated in (Oster

& Clifford 2015), the level of performance decreasing with increasing level of noise.

The authors suggested the use of an SQI to exclude noisy segments and ensure a

certain level of performance. The analysis of noisy windows was therefore excluded;

the 10th percentile of the SQI over the window was compared with a threshold of 0.9

as suggested by (Oster & Clifford 2015). This version will be denoted as “proposed

(sqi)”

(iii) The use of a sliding window could introduce an increase in the false positive rate.

The SVM classifier was trained to allow for the detection of short episodes of AF

(or occult paroxysmal atrial fibrillation). Nevertheless, the shorter the AF episodes

targeted, the more likely the classifier is to detect noisy episodes as well as other

types of arrhythmia (Petrėnas et al. 2015). In order to ensure longer segments

are detected, or that occasional false detections are suppressed, AF episodes were

only considered if at least two consecutive windows were classified as AF by the
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above version of the algorithm (proposed (sqi)). This iteration will be denoted as

“proposed (persistence)”. It has to be noted that the minimum duration of an AF

episode for automated detection is not known. The specification of a minimum

duration criterion could be investigated by using synthetic data generated by a

realistic model for example.

(iv) It was shown that AF detection approaches based on RR-based features such as

the COSEn or the Poincaré plot are over-sensitive to normal rhythms with frequent

ectopy, either atrial or ventricular (Colloca et al. 2013, Petrėnas et al. 2015).

There is therefore a need to develop an intermediate method to reject individuals

identified as having AF, but whose arrhythmia alarms are triggered by the

presence of premature ventricular contractions. Although RR-based approaches

have been suggested to discriminate between AF and ectopics (Carrara et al.

2015), a morphological analysis was performed to detect ventricular heartbeats.

This analysis was based on the two novel methods presented by (Oster &

Tarassenko 2016). The first one is based on state-of-the-art features (including RR-

based temporal features, morphological features such as QRS width or maximal

vector of the QRS loop and its angle) (Llamedo & Mart́ınez 2011, Llamedo &

Mart́ınez 2012, Llamedo 2015) and a SVM classifier; while the second one applied

Bayesian filtering (or Switching Kalman Filter -SKF-) to classify the heartbeats

according to their morphology, with automated annotation of a small number of

clusters (Oster & Tarassenko 2016).

If at least 10 ventricular beats were detected within a given AF window (as detected

by the version “proposed (sqi)), the window was rejected. This led to two versions

of the proposed method denoted “proposed (morphology SVM)” or “proposed

(morphology SKF)” according to the ventricular heartbeat detection algorithm

being used.

(v) Finally, the proposed method was also applied to the whole ECG recording instead

of being applied to sliding windows. This will be denoted as “proposed (whole

signal)”. This approach will enable the assessment of how the application to short

time windows allows for increased sensitivity but also an increased number of false

positives.

State-of-the-art algorithms - Cinc 2017 The proposed processing process was

then compared with state-of-the-art approaches, and especially some of the 2017

PhysioNet/Cinc challenge entries:

(i) one of the top entries with a challenge score (average of three F1 scores) of 0.83

(Datta et al. 2017) used hand-crafted features with a boosting algorithm. This

technique consisted in a two-stage classifier, the first one for separating Noisy and

AF from Normal and Other rhythms ECG signals. The second stage consisted of

two classifiers trained to identify the cardiac rhythm. The processing starts with

the automated identification and suppression of noisy segments from ECG signals,
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based on spectrogram analysis. The authors then extract more than 150 features

from the ECG signal: morphological features, AF features (including CosEn (Lake

& Moorman 2011) and AFE (Sarkar et al. 2008)), heart rate variability (HRV)

features, spectral features and statistical features. These features are then selected

using minimum redudancy maximum relevance, and finally the classifier is trained

using the adaBoost technique.

(ii) another entry used hand-crafted features as inputs to a cascaded SVM (with RBF

kernel) classifier approach (score 0.80) (Behar et al. 2017). This technique consisted

in the extraction of almost 50 features for (i) signal quality (ii) ECG morphology

(iii) predictability of the RR intervals and (iv) HRV. A cascaded approach was then

taken, by training three consecutive SVM classifiers, the first identifying normal

rhythm, the second AF rhythms, and the last distinguishing noisy signals from

other rhythms. Each SVM used a radial basis function kernel, and was trained

using repeated cross-validation, and random search for the hyperparameters (C

and γ).

(iii) a deep-learning approach, combining convolutional and recurrent networks, was

trained on the 2017 PhysioNet/Cinc challenge dataset and obtained a score of 0.85

during cross-fold validation using the same training set (Vogt 2018). The network

architecture consisted in a convolutional neural network (CNN), with 15 layers of a

block with Batch Normalisation, a convolution layer, a ReLu activation layer and

average pooling. The CNN was followed by a Long Short-Term Memory (LSTM)

network with 64 hidden units. This network contained about 3.7 million parameters

to be optimised. A two-stage procedure was used for training the overall network.

First the CNN was trained by replacing the LSTM with Global Max Pooling. This

enabled the CNN to learn a good representation of the ECG signal. A second

training phase consisted in training the LSTM layer, while also fine tuning the

CNN (by adjusting the learning rate).

All three methods were applied to 60s-windows with an overlap of 30s using only the

first lead.

Finally the aggregation of multiple entries was shown to be able to increase

the classification performance for the 2017 PhysioNet/Computing in Cardiology

challenge (Clifford et al. 2017). We decided to combine the best performing state-of-the-

art technique (Vogt 2018) with the best performing proposed technique (proposed (whole

signal)) to assess the potential of such a voting approach. Unanimous voting is needed

to identify a subject with AF, and the method will later be denoted as “combined”.

This approach is equivalent to the combination of a high sensitivity screening tool with

a second technique with a high Positive Predictive Value (PPV) for discarding most of

the false detections.

The different methods for AF classification were then compared using the

sensitivity, the positive predictive value, and the F1 score, which is the harmonic mean

of Se and PPV. Maximising F1 leads to a good compromise between Se and PPV.
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3. Results

3.1. Manual annotations

Table 1 summarises the manually-annotated classes for the subset of 450 subjects of the

UK Biobank population.

Class Normal rhythm Atrial Fibrillation Other Rhythm Total

Number of subjects 173 52 225 450

Table 1. Manually annotated labels for the subset of 450 subjects from the UK

Biobank

Table 2 highlights the inter observer agreement for different rhythms. Cohen’s

kappa coefficient for inter-observer agreement on AF was 0.78. On this small subset,

experts disagreed for 23 subjects with suspected AF episodes (out of 450). Further

analysis showed that the disagreement came from potential AF episodes in short and

noisy segments. One expert tended to annotate these short suspected AF episodes

with a low level of confidence (as self-rated), whereas the second tended to discard

these episodes as noise. The adjudication process identified 3 additional subjects with

suspected AF.

The final expert annotations in this study classified 52 subjects with AF out of 450

subjects. The 12% prevalence of AF in this small dataset is clearly an over-estimate,

but is due to non-random selection of files in the subset.

AF Ventricular ectopics Atrial ectopics

Pobs2 Nobs2 Pobs2 Nobs2 Pobs2 Nobs2

Pobs1 49 8 181 6 76 27

Nobs1 15 378 38 225 54 293

Table 2. Inter-observer agreement on different rhythm annotations, where Pobsi (resp.

Nobsi) stands for positive (resp. negative) subjects as identified by the i
th expert

An example of a file for which the experts disagreed is depicted on figure 5. In the

zoomed-in example, a short episode of supraventricular arrhythmia is visible, for which

the presence or not of a P wave is difficult to determine.

3.2. Automated Identification of AF patients

The AF detection statistics on this sub-population are given in table 3. It can be seen

that all techniques have a relatively high sensitivity, but that comes at the cost of a

relatively poor positive predictive value. The proposed SVM (raw) technique offers the

best sensitivity; however as shown by the addition of a check on the signal quality this

is counterbalanced by a large number of false positives generated by noise. Adding

morphological hand-crafted features to discard ventricular ectopics (SVM (iv) a and b),
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Figure 5. Example of signals with disagreement between the two expert annotators.

(From top to bottom: ECG leads 1 to 3, instantaneous Heart Rate and signal quality

index.)

Cinc 2017 (i) (Behar et al. 2017) and CinC 2017 (ii) (Datta et al. 2017) increases the

PPV and the F1 score reaches values near 60%. The SVM-based and CinC 2017 (i) and

(ii) methods have comparable performance.

The deep-learning technique (Cinc 2017 (iii)) outperforms the classical SVM

method with hand-crafted features, obtaining a PPV of 60%, and an F1 score of 74%.

Applying the SVM-based classifier on the whole record (SVM (v)) does significantly

decrease the number of false positives, with a PPV of 83.3%, and leads to an increased

F1 score (80%) despite a reduction in the sensitivity (77%). As shown by (Clifford

et al. 2017), combining several techniques increases the overall performance, with a

combined method (SVM (v) combined with Cinc 2017 (iii)) reaching an F1 score of

85%.

Method Se % PPV % F1 %

SVM (i) proposed (raw) 100 28.6 44.4

SVM (ii) proposed (sqi) 90.4 38.5 54.0

SVM (iii) proposed (persistence) 88.5 50.0 63.9

SVM (iv) a proposed (morphology SKF) 86.5 47.4 61.2

SVM (iv) b proposed (morphology SVM) 78.9 51.3 62.1

SVM (v) proposed (whole record) 76.9 83.3 80.0

CinC 2017 (i) (Behar et al. 2017) 94.2 35.8 51.9

CinC 2017 (ii) (Datta et al. 2017) 92.3 43.2 58.9

CinC 2017 (iii) (Vogt 2018) 96.2 60.2 74.1

SVM (v) + CinC 2017 (iii) combined 75.0 97.5 84.8

Table 3. AF detection performance on the manually annotated sub-population of 450

subjects.

Cohen’s Kappa coefficient for the combined method is 0.83, which is similar to

(even slightly higher than) the inter-observer agreement reached by two experts. The

confusion matrix for the combined method is given in table 4.
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SVM (v) CinC 2017 (iii) SVM (v) + CinC 2017 (iii)

proposed (whole record) (Vogt 2018) combined

Ppred Npred Ppred Npred Ppred Npred

Ptrue 40 12 50 2 39 13

Ntrue 8 390 33 365 1 397

Table 4. Confusion tables for three different approaches, where Ptrue (resp. Ntrue)

stands for positive (respectively negative) AF subjects as observed by human experts

and Ppred (respectively Npred) are positive (respectively negative) AF subjects as

predicted by automated techniques.

Examples of files where the different methods disagreed are shown in figures 6 to 8.

Some methods, including the deep-learning method (CinC 2017 (iii)) are able to

recognise ventricular ectopics in the first example (figure 6). In figure 7 supraventricular

arrhythmia associated with a high level of noise makes it hard to decide whether

P waves are present or not, but the deep-learning method (CinC 2017 (iii)) again

correctly identifies the record as an example of non-AF. Similarly, in figure 8, the only

method that correctly identifies the record as an example of non-AF is the deep-learning

method (Cinc 2017 (iii))

Figure 6. Example of signals with disagreement between the different methods. (From

top to bottom: ECG leads 1 to 3, instantaneous Heart Rate and signal quality index.

Left-hand side is the depiction of the whole signal, while the righ-hand side is a zoomed-

in section of the signal.) CinC 2017 (i) (Behar et al. 2017) and CinC 2017 (iii) (Vogt

2018) correctly identify this record as non-AF.

4. Discussion

All the methods investigated in this paper (classical SVM-based approaches and the

state-of-the-art methods at the 2017 Computing in Cardiology conference, including a

deep-learning method) were trained on the 2017 PhysioNet/Computing in Cardiology

challenge. The UK Biobank data, which we used as evaluation or test data, was recorded

during a stress-test exercise, which has two main implications, (i) the presence of high-

level noise makes the use of morphological features quite difficult as f waves can hardly
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Figure 7. Example of signals with disagreement between the different methods. (From

top to bottom: ECG leads 1 to 3, instantaneous Heart Rate and signal quality index.

Left-hand side is the depiction of the whole signal, while the righ-hand side is a zoomed-

in section of the signal.) CinC 2017 (ii) (Datta et al. 2017) and CinC 2017 (iii) (Vogt

2018) only correctly identify this record as non-AF.

Figure 8. Example of signals with disagreement between the different methods. (From

top to bottom: ECG leads 1 to 3, instantaneous Heart Rate and signal quality index.

Left-hand side is the depiction of the whole signal, while the righ-hand side is a zoomed-

in section of the signal.) CinC 2017 (iii) (Vogt 2018) correctly identifies this record as

non-AF.

be distinguished from muscle artefacts; (ii) as most subjects were resting, exercising

and recovering during the ECG recording, the signal is non-stationary. The latter will

have an impact on features measuring the regularity of the interval (Liu et al. 2018).

Ideally, the machine-learning algorithms should have been trained on a subset of the

UK Biobank dataset or at least some kind of transfer learning (Pan et al. 2010) ought

to be used when training takes place on a dataset with a signal-to-noise ratio known to

be different to that of the test set.

One of the main issues for the analysis of the UK Biobank data lies in the size

of the dataset. Expert label annotations or interpretation of such data is very difficult

to obtain as these tasks are time-consuming. Furthermore, regardless of the skill level,

there will always be disagreements between experts, especially when the data in question

is noisy (due to exercise-induced noise) or incomplete (missing leads or no knowledge of

the patient history).

The results show that window-based hand-crafted rhythm-based features as the
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inputs to a classical machine learning algorithm (SVM) provide limited performance

with a maximum F1 value of 64%. The addition of morphological analysis to hand-

crafted morphological features did not lead to improvements in F1 score, 62% (SVM

(iv) b ) or 58.9% (CinC 2017 (ii) (Datta et al. 2017)).

Analysis of the whole record with hand-crafted rhythm-based features as the inputs

to the SVM classifier was shown to lead to an acceptable F1 score of around 80%. The

use of overlapping windows leads to a higher sensitivity but at the cost of higher numbers

of false positives. Analysing the whole record can however be problematic in cases when

an AF episode is present in a very noisy record, for which very few RR intervals can be

estimated. An alternative approach would consist in excluding noisy segments from the

analysis, and only performing a single classification per record.

A deep-learning approach (Vogt 2018), trained on almost 10,000 subjects from the

CinC 2017 Challenge, automatically extracts features, representing both morphological

and rhythm-based information. This approach yields a PPV of more than 60% while

only missing 2 AF subjects in the validation subset. Applying this approach on the

whole dataset would yield too many false positives, but the deep-learning algorithm can

be combined with a classical machine-learning approach to increase performance.

Classical machine-learning techniques rely on the development of carefully hand-

crafted features. This crafting of features depends on the expertise of the data scientists,

used to incorporate prior knowledge of the pathology; in the case of AF the chaotic

heart rhythm associated with the pathology. The use of hand-crafted features offers the

advantage of an easier interpretability of decisions, as individual feature values can give

clinicians clues to the decision process.

Deep-learning algorithms are purely data-driven solutions, meaning that almost

no prior knowledge is required to develop a working solution (apart from the network

architecture). They require a large amount of data to be trained effectively, however,

when they are (as can be seen when trained with the large dataset of the 2017 CinC

challenge) they can achieve excellent performance. The drawback of these techniques lies

in the fact that no insights on the decision process can be easily extracted, although there

has been recent progress in the interpretability of deep-learning networks (Vogt 2018).

The combined method (SVM (v) + CinC 2017 (iii)) yields a good level of

performance, with sensitivity, PPV and F1 score at around 85%. Cohen’s Kappa

coefficient relating the prediction from the combined method to the expert labels

reaches almost 83%, which is slightly higher than the inter-observer agreement between

two human experts. The PPV value for the combined method is also high, showing

that patients who have been identified as having AF do indeed have the arrhythmia.

Further analysis of the automatically identified AF patients will help to identify different

phenotypes in order to refine the risk factors for AF.

In a further test, the approach which combines the SVM-based method applied to

the entire record with the deep-learning method was applied to the whole UK-Biobank

dataset, and 629 recordings were identified as containing AF episodes, which represents

a prevalence of 0.8%. One explanation for this low prevalence comes from the fact that
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the recordings are relatively short, and that paroxysmal AF can easily be missed in such

short recordings. A recent study on home-based monitoring for AF detection has shown

that many AF episodes can only be detected after more than one week of monitoring

(Steinhubl et al. 2018), making the case for long-term home cardiac monitoring.
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Teijeiro, T., Garćıa, C. A., Castro, D. & Félix, P. (2017). Arrhythmia classification from the abductive

interpretation of short single-lead ECG records, Comput. Cardiol 44: 1–4.

Vogt, N. (2018). CNNs, LSTMs, and Attention Networks for Pathology Detection in Medical Data,

arXiv preprint arXiv:1912.00852 .

Wolf, P. A., Abbott, R. D. & Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor

for stroke: the Framingham Study., Stroke 22(8): 983–988.


	Introduction
	Material and method
	Data
	Method
	Expert annotations
	Automated Data Analysis


	Results
	Manual annotations
	Automated Identification of AF patients

	Discussion

