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Identification of Peer-to-Peer VoIP Sessions
Using Entropy and Codec Properties
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Abstract—Voice over Internet Protocol (VoIP) applications based on peer-to-peer (P2P) communications have been experiencing

considerable growth in terms of number of users. To overcome filtering policies or protect the privacy of their users, most of these

applications implement mechanisms such as protocol obfuscation or payload encryption that avoid the inspection of their traffic, making

it difficult to identify its nature. The incapacity to determine the application that is responsible for a certain flow raises challenges for the

effective management of the network. In this article, a new method for the identification of VoIP sessions is presented. The proposed

mechanism classifies the flows, in real-time, based on the speech codec used in the session. In order to make the classification

lightweight, the behavioral signatures for each analyzed codec were created using only the lengths of the packets. Unlike most previous

approaches, the classifier does not use the lengths of the packets individually. Instead, it explores their level of heterogeneity in real-

time, using entropy to emphasize such feature. The results of the performance evaluation show that the proposed method is able to

identify VoIP sessions accurately and simultaneously recognize the used speech codec.

Index Terms—Data communications, distributed applications, network communications, network management, network monitoring,

packet-switching networks.

✦

1 I

T popularity of Voice over Internet Protocol
(VoIP) applications relying on the peer-to-peer (P2P)

paradigm has been growing in the last few years. The
simplicity of these solutions, as well as their economic
benefits over the traditional telephony, make them an
increasingly common choice for long distance calls and
voice conferences. Furthermore, the possibility to in-
tegrate them in mobile devices, like smartphones and
tablets, make them more flexible and easy to use. When
implemented over P2P systems, VoIP applications ben-
efit from the scalable and reliable properties of the
distributed nature of the P2P model, which puts the
intelligence at the network edges.

Over the years, many of these applications have
started to adopt measures to disguise their traffic and
avoid the inspection of their contents. Protocol obfusca-
tion, payload encryption, and the use of random port
numbers are now common features in the majority of
the popular VoIP software clients. Skype is the most
demonstrative example of this trend: it is based on a
closed code and proprietary P2P protocol, its communi-
cations are encrypted, and it has a large number of users.
Nevertheless, there are also other VoIP solutions based
on P2P communications that use different protocols. The
Session Initiation Protocol (SIP), used by several VoIP
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applications, or an extension of the Extensible Messaging
and Presence Protocol (XMPP), used by Google Talk, are
good examples of such VoIP systems.

In most of these applications, the implementation of
techniques to avoid the inspection of traffic has primarily
the intention of protecting the privacy of the data of the
VoIP sessions. However, it also makes it more difficult
to correctly and effectively manage computer networks.
Understanding what kind of data is being transmitted
in each flow is of critical importance to organize the net-
work and its traffic, distribute the available bandwidth
fairly, or guarantee the Quality of Service (QoS) needed
by distinct classes of traffic [1], [2], [3]. Besides the
impact that VoIP applications may have in the network
performance, they also raise a few security concerns.
Several authors [4], [5], [6] and security institutes or
companies [7], [8], [9] have exposed the potential vul-
nerabilities associated with VoIP systems and suggested
a few guidelines to avoid security flaws.

For these reasons, traffic classification based on the
application protocol has been a very active research
field. The identification of VoIP, especially Skype related
traffic, has attracted the attention of many researchers
who have addressed this topic in several articles [1],
[2], [3], [10], [11]. In the majority of the cases, whether
the classification is made by resorting to payload inspec-
tion, flow-level heuristics, statistical analysis, or machine
learning algorithms, the goal is to identify the whole
data generated by the VoIP application. These flows are
generated by a signaling protocol that initiates, controls,
and terminates the session and by a transport protocol
responsible for delivering the data from one peer to the
other. The signaling data, as well as the flows used for
authentication and other operations, have little impact
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on the network performance when compared with the
data from the VoIP session. Hence, a distinct approach
is followed in this work. Instead of aiming for the
identification of the whole traffic from a certain VoIP
application, the intention of this work is to identify the
traffic from the actual VoIP session. The data transported
within each packet of the session flow depends more
on the speech codec used to codify the voice than on
the signaling protocol or client application. In fact, the
data from VoIP sessions, made using distinct applica-
tions and even distinct signaling protocols, has similar
characteristics when the same codec is used. From the
traffic management perspective, it may be more useful
to identify the VoIP traffic with similar characteristics
regardless of the application or protocol that was used
than to base the classification on the specific application
that has generated it, which may include flows with
different properties and purposes. Moreover, the QoS
requirements are different for each speech codec [12].
Hence, instead of prioritizing any VoIP traffic, it may be
interesting in some network scenarios to prioritize the
VoIP sessions where specific speech codecs are used or
even to allow only sessions whose speech codecs require
less available resources.

This article presents a VoIP classifier that is suitable for
real-time analysis and does not rely on the payload data,
being therefore applicable for encrypted traffic. Unlike
most previous works, the goal of the classifier described
herein is to identify the traffic flows that are related
with a VoIP session in which a specific codec was used.
Moreover, it is our intention to minimize the number
of packet-level or flow-level characteristics required to
identify VoIP sessions, so as to make the whole classi-
fication process lightweight. The length of the packets
was the only traffic feature used in the identification of
VoIP flows. Instead of looking at the lengths individually
or calculating their mean, we focused on the relation
between the different lengths and explored their level
of heterogeneity using entropy. The entropy is invariant
to the particular values and can be updated with a
point-by-point algorithm, which favors the robustness
of the classifier without jeopardizing performance. The
characteristics of the packets from VoIP sessions using
different codecs were carefully analyzed. Several distinct
applications and speech codecs were considered in the
study. Based on this analysis, a set of behavioral signa-
tures for each codec is proposed. Each of them is formed
by an interval for the entropy and another one for the
lengths of the packets. Additionally, a sliding window
with a constant size of N packets was implemented to
assess the heterogeneity in real-time and to avoid losing
the sensitivity to the local changes in the values. To the
best of our knowledge, the level of heterogeneity was
used for the purpose of traffic classification only in our
previous works [13], [14], with the exception of a recent
study that has followed a similar approach [15] only for
offline analysis and for complete flows.

The performance of the classification mechanism was

evaluated using datasets containing traffic from VoIP
sessions as well as from multiple P2P and non-P2P ap-
plications or services. The results show that the method
identified the flows from VoIP sessions with very good
accuracy and it was also able to recognize the speech
codec with a good sensitivity rate. Moreover, the analysis
of the computational resource consumption showed that
it grows linearly with the size of the input data.

The remainder of the paper is structured as follows.
Section 2 describes the previously published related
work. The analysis of speech codecs considered in the
scope of this work is included in section 3. Section 4
presents the classifier and the evaluations of its per-
formance is discussed in section 5. The last section
summarizes the most important conclusions.

2 RW

The classification of traffic from VoIP applications has
already been studied by several authors. A few studies
relied on the data carried within the payload to create
signatures to identify Skype packets [16]. In some cases,
the inspection of bytes in the payload is combined with
statistical data, behavioral patterns, or heuristics [11],
[17], [18], [19], [20]. A different approach followed by
a few authors is based on the fact that the payload data
from packets generated by applications that encrypt the
traffic is more random. Bonfiglio et al. [10] explored
the randomness of the payload data by using the Chi
Square test and applied the method to Skype traffic. Ad-
ditionally, they proposed a statistical classifier based on
inter-arrival times and packets lengths. In [21], [22], the
authors resorted to entropy to analyze the randomness of
the bytes within the packet payloads in encrypted traffic.

Methods based on heuristics are proposed in some
articles [1], [23], [24], [25], as well as statistical methods
that analyze flow or packet-level features to identify
VoIP traffic [2], [26]. The use of machine learning algo-
rithms has also been applied to the traffic classification,
and specifically, to the VoIP traffic identification. Jun
et al. [27] proposed a method to identify Skype traffic
based on the Random Forest classifier, while Branch et
al. [28] relied on the C4.5 decision tree algorithm. In [29],
symbiotic bid-based genetic programming was used to
identify Skype encrypted traffic and the performance was
compared with C4.5 and AdaBoost algorithms. Wu et
al. [30] explored characteristics of the human behavior,
as the speech period, and used a Naı̈ve Bayes classifier to
identify VoIP traffic. Zhang et al. [31] proposed a method
based on Support Vector Machines (SVMs), that uses a
set of traffic features to identify Skype communications.

The approach followed in this article resorts to the
characteristics of the lengths of the packets. Several pre-
vious works have already used the lengths of the packets
as one of the features employed in the traffic classifica-
tion. Nonetheless, they analyzed them mostly through
statistics that use the actual value of the packet lengths,
such as the mean [20] or the standard deviation [21],
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or through the use of intervals [32] or probabilistic
models [10]. On the contrary, instead of focusing on the
lengths of the packets per se, the method described herein
explores the relation between the different lengths by
analyzing how heterogeneous these values are. Many of
the previous works that explore flow level properties,
through statistical measures [25] or machine learning
algorithms [31], separate the traffic into flows offline
and then apply the classification approach, making these
methods difficult to adapt (or even unsuitable) for the
real-time analysis of the traffic. The approach followed
herein implements a sliding window with size of N
packets that produces information about the traffic char-
acteristics in every iteration, during all the duration of
the flow since its beginning.

Furthermore, besides identifying the VoIP related data,
the proposed classifier also tries to give a strong predic-
tion on the speech codec used in a VoIP session, instead
of identifying the VoIP application, which is the goal
of most studies. In fact, although packet or flow prop-
erties, like the length of the packet or the inter-arrival
time, differ when distinct codecs are used, most studies
seem to use them without considering the speech codec.
Besides that, some of the properties identified as being
specific for a certain VoIP application may also apply
to other applications that use similar codecs. Nonethe-
less, a few authors have considered the influence of
distinct codecs when proposing a classification method.
Branch et al. [28] analyzed the traffic from the Sinusoidal
Voice Over Packet Coder (SVOPC) codec, while Molnár
and Perényi [25] focused on the Internet Speech Audio
Codec (iSAC). Chen et al. [26] considered iSAC and
the Internet Low Bit Rate Codec (iLBC) and Yildirim et
al. [32] analyzed three Constant Bit Rate (CBR) codecs,
G.711, G.723, and G.729. Xu et al. [33] proposed a traffic
classification method based on a finite state machine
and applied it to identification of Skype traffic generated
using SVOPC, Adaptive Multi-Rate Wideband (AMR-
WB), G.729, and Pulse-Code Modulation (PCM). In the
statistical analysis of Skype VoIP flows described in [34],
the authors considered iSAC. A more comprehensive set
of codecs, which includes iSAC, iLBC, G.729, Internet
Pulse Code Modulation wideband (iPCMwb), Enhanced
G.711 (EG711) A/U, PCM A/U, and SVOPC, was ana-
lyzed by Bonfiglio et al. in a study of Skype traffic [3]
and used in the classifier described in [10]. Nevertheless,
none of these works presented a method to identify the
codec used in a VoIP session, nor proposed signatures
for each codec. Moreover, the analyzed codecs are mostly
codecs used by older versions of the Skype software.

We proposed the analysis of the level of heterogeneity
of the lengths of the packets from P2P applications and
its quantification through entropy for the first time on a
previous article [13]. The work described herein elabo-
rates on that method, and evolves to the identification
of VoIP traffic from different speech codecs. The most
comparable work was published recently by Li et al. [15]
who used a similar approach, in conjunction with an

TABLE 1

Applications and codecs considered in the study.

Application Codecs

Blink PCM A/U, G.722, iLBC, GSM, Speex

Ekiga PCM A/U, G.722, iLBC, GSM, Speex

Linphone PCM A/U, GSM, Speex

QuteCom PCM A/U, G.722, GSM, Speex

SIP Communicator PCM A/U, G.722, GSM, Speex

Skype iPCMwb, iSAC, EG711 A/U, PCM A/U,

iLBC, G.729, AMR-WB, SVOPC, NWC, SILK

X-Lite PCM A/U, iLBC, GSM, Speex

analysis of the inter-arrival times, to identify CBR and
Variable Bit Rate (VBR) codecs. Their method is based on
the idea that CBR codecs produce packets with constant
lengths and VBR codecs produces packets with different
lengths. They did not analyze the behavior of different
codecs, nor try to identify the specific codec used in a
session. Moreover, even the different VBR codecs may
produce packets whose lengths can be more or less
heterogeneous depending on the specific codec. The al-
gorithm proposed by Li et al. is also based on the offline
analysis of the traffic. The heterogeneity of the traffic
is analyzed for complete flows. Besides preventing the
method from being applied to real-time monitoring, their
approach also raises a few problems. If the characteristics
of the traffic change or occasional occurrences of different
lengths appear in the middle of the flow, the results of
the analysis for the whole flow may be compromised.
The work from Li et al. appears to be based on [35]. Liu
et al. [36] explored the ratio between small packets and
large packets and used that value, together with a few
heuristics, to identify P2P traffic offline. Wright et al. [37]
used the packet lengths for a different purpose. Instead
of identifying the application or codec that generated the
data, they analyzed the lengths of the packets generated
by VBR codecs to try to recognize spoken phrases in
encrypted VoIP sessions.

3 A  S C

The proposed method is based on the properties of the
lengths of the packets for different codecs, regardless
of the VoIP application. To understand and study the
behavior of the traffic from each codec, it was necessary
to collect traffic from VoIP sessions using different speech
codecs. A set of applications was used to perform the
calls so as to consider any possible influence of the
application in the characteristics of the traffic. With the
exception of Skype, the used applications resort to SIP for
signaling. Table 1 presents a summary of the applications
and codecs considered in this article. The details about
the speech codecs considered in this article are described
in appendix A of the supplemental material.

To allow the capturing of experimental data from
specific codecs, we included only VoIP applications that
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offer the possibility of choosing the codec in a pref-
erences menu. Moreover, since it was our intention to
use Microsoft Windows and Linux platforms in the ex-
periences, only applications that have versions for both
operating systems were selected. The datasets used in
the traffic analysis, which are not the same used in the
performance evaluation, are described in subsection C.1
of the supplemental material.

3.1 Properties of the Codecs

The goal of this work is to identify the traffic from
VoIP sessions and, as such, it is reasonable to focus the
observation on the packets of each flow separately. The
concept of flow used herein coincides with the Trans-
mission Control Protocol (TCP) notion of connection. In
the case of User Datagram Protocol (UDP) traffic, a flow
includes all the packets traveling between two (host, port)
pairs, in both directions, with inter-arrival times inferior
to 64 seconds, as suggested in [38].

Nonetheless, since the properties of the traffic in each
VoIP session are similar in both directions, the classifier
described in section 4 analyzes each unidirectional flow
separately so as to distinguish the cases where the traffic
properties may match VoIP traffic characteristics in only
one direction. Furthermore, in some situations, Skype
uses hosts, called relay nodes, that act as middle nodes
mainly to overcome connection problems from users that
are behind Network Address Translation (NAT) systems.
We observed that, in some of these cases, it is possible
to have a host receiving the incoming VoIP data from a
relay node, and sending the outgoing data to a different
node. The only common properties in this situation
are the Internet Protocol (IP) address of the monitored
host and the port used for the Skype session. Hence, in
order to identify these VoIP connections, besides the flow
perspective, the traffic was also analyzed from the point
of view of the (host, port) pair. This approach enables
an observation level that includes all the traffic sent and
received by the application process responsible for the
VoIP session, even if relay nodes are used. Likewise, the
analysis examples presented in this subsection concern
all the traffic generated by a VoIP session, whether relay
nodes are used or not.

In order to identify properties of the packet lengths
from each codec, we analyzed the traffic of the VoIP
sessions included in the data described in subsection C.1
of the supplemental material. We observed that distinct
codecs produce packets whose lengths present different
levels of heterogeneity, which we measured by resorting
to the entropy. As explained before, the experimental
data contained sessions generated with different VoIP
applications, transport protocols, and operating systems.
Nevertheless, the obtained results were similar for each
codec, regardless of those factors. Hence, the entropy
values calculated for the different codecs were used to
identify patterns. In appendix B of the supplemental
material, we described, with detail, the process used

to assess the entropy and the implementation of the
entropy computation in real-time by resorting to sliding
windows. The value of the entropy depends also on the
considered window size, increasing moderately when
the size of the window increases. Nevertheless, the most
noticeable consequence of increasing the size the win-
dow is the stabilization of the entropy values throughout
the iterations of the window, which creates a smoothing
effect (resulting from the Law of Large Numbers). The
analysis of the packet lengths included in this article
considers only the length of the data carried within
the transport payload and excludes the small packets
whose payload has length less or equal to 5 bytes. More
details regarding the effect of the sliding window size
and about the packet lengths are provided, respectively,
in subsections C.2 and C.3 of the supplemental material.

The following subsections describe the properties
identified for CBR and VBR codecs. AMR-WB is a multi-
rate codec, formed by nine source codecs with distinct
constant bit rates. The bit rate it uses may change every
20 milliseconds. Therefore, in spite of being a CBR codec,
AMR-WB will be analyzed along with the VBR codecs.
Speex supports CBR and VBR and, thus, examples of
VoIP sessions using both modes will be analyzed with
the remaining CBR and VBR codecs. The presented
examples refer to analyses of the lengths of the transport-
level payload, filtering out the packets whose payload is
less or equal to 5 bytes and using sliding windows with
size of 500 packets.

3.2 Constant Bit Rate Codecs

The traffic from VoIP sessions that use CBR codecs is
constituted mostly by packets with the same length and,
as such, the entropy level is extremely low. For the
applications that use SIP, the entropy is almost always
equal to 0 as the payloads of most packets have the same
length. Although the traffic is also very homogeneous
when using Skype, there are a few occurrences with
different lengths. Because Skype uses its own proprietary
protocol, it is difficult to understand why this happens.

In Fig. 1, one can observe a comparison between the
first three minutes of VoIP sessions that used PCMA,
PCMU, and iLBC, made using Skype and SIP clients.
Although in both sessions the payloads have the same
length, in the case of Skype there are also a few packets
whose payloads have a different length. This behavior
was observed in all of the analyzed VoIP sessions in
which CBR codecs were used.

Due to the limitations of space in the main article and
to the large number of charts that would be needed to
represent every session example, we included Table 1
in the supplemental material to give a general view
of the values obtained for the datasets described in
subsection C.1 of the supplemental material. The table
contains the mean of the entropy for all the VoIP ses-
sions that used each CBR codec, as well as the most
frequent lengths of the transport-level payload that were
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Fig. 1. Comparison of the lengths of the payloads and of

the entropy between VoIP sessions using Skype and SIP

applications with CBR codecs.

observed. For each VoIP session, the mean of the entropy
in all the iterations of the window was calculated, which
results in one entropy value for session. The mean of the
values obtained for all the sessions in which the same
codec was used was computed and included in the table.

Entropy was analyzed separately for the incoming
and the outgoing data. VoIP flows usually have similar
properties in both directions, which is also an important
feature to distinguish VoIP flows from traffic of other
applications. Table 1 of the supplemental material shows
this similarity between the traffic in both directions.

The G.722 codec uses the baseline of PCM and, there-
fore, the behavior of the traffic from both codecs is
similar. During the traffic analysis, we observed that the
packet payloads from sessions where G.722 and PCM
were used have similar lengths. Although it was not
possible to find any details regarding NWC (because
Skype does not provide that information), the packets
from VoIP sessions based on NWC also have lengths
similar to the ones based on PCM. Hence, NWC seems
to also be using the PCM baseline.

3.3 Variable Bit Rate Codecs

Unlike the CBR codecs, the traffic from each VoIP session
in which a VBR codec is used is formed by packets
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Fig. 2. Representation of the lengths of the payloads and

of the entropy of the first three minutes of VoIP sessions

using different VBR codecs.

whose payloads have very heterogeneous lengths. Fig. 2
depicts the lengths of the transport-level payloads and
the corresponding entropy of the first three minutes of
several VoIP sessions, each of them using a different VBR
codec. In all the cases, the variety of distinct lengths form
a strip of values. The different levels of heterogeneity of
the payload lengths are put in evidence by the distinct
levels of entropy depicted in the charts. In a few cases,
however, different codecs presented a similar level of
entropy, e.g., the Global IP Solutions (GIPS) VBR codecs
(EG711 A/U, iSAC, and iPCMwb). Nevertheless, in those
cases, the payload lengths are included in different
ranges of lengths.

There also other details that are visible in the charts.
In the beginning of the VoIP sessions in which the GIPS
VBR codec were used, the lengths of the payloads appear
on a strip of higher values. Before the 30 seconds mark,
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they stabilize on lower values. This behavior was also
observed in other VoIP sessions in which Skype was used,
even with CBR codecs as shown in Fig. 1. In the case of
Speex, the lengths vary within a small range of values,
resulting in a lower level of entropy. This is even more
evident in the case of AMR-WB, in which the entropy is
even lower and less stable.

A summary of the results obtained for all the VoIP ses-
sions from the datasets described in subsection C.1 of the
supplemental material in which VBR codecs were used
is presented in Table 2 of the supplemental material. The
values were obtained in the same way as it was done for
the CBR codecs. In the case of the VBR codecs, the table
includes ranges of frequent length instead of individual
values as the lengths are heterogeneous. The GIPS VBR
codecs generate lengths with higher entropy. SILK and
SILK wideband (WB) seem to have similar properties, as
well as SILK mediumband (MB) and SILK narrowband
(NB), and Speex 32 kHz and 16 kHz. AMR-WB presents a
very low entropy when compared with the VBR codecs,
which was expectable since it is not a truly VBR codec.

4 T VIP C

The classifier proposed herein is based on the properties
described in the previous section. The following sub-
sections provide a list of the proposed signatures and
describe the classification mechanism and its operation.

4.1 Behavioral Signatures for the Codecs

A set of behavioral signatures was defined to model the
properties described in section 3.1, which result from the
observation of the datasets described in subsection C.1 of
the supplemental material. The signatures are formed by
the codec description, an interval in which the entropy
should be contained, an interval in which the payload
length should be contained, and a minimum number of
occurrences matching these conditions so that a tuple can
be classified as a VoIP session. In addition to preventing
occasional matches from resulting in immediate classifi-
cations, the minimum number of matches also reduces
the possibility of having dual classifications due to the
overlap of parts of the intervals in distinct signatures.

Table 2 lists the signatures proposed in this work
and used by the classifier to identify VoIP sessions. The
values defined for the intervals and for the minimum
matches were optimized for sliding windows with size
of 500 packets and result from the analysis of the ex-
perimental datasets and from testing the classifier with
those traffic samples. The number of minimum matches
is different for each codec as it depends on the exis-
tence of other codecs with similar properties or with
overlapping intervals in the signatures. Similarly to the
other signature components, the number of minimum
matches is defined based on the study of traffic samples
generated using each of the codecs. Three different levels
of signatures were defined. Most of them are signatures
created to identify specific speech codecs. Nevertheless,

TABLE 2

List of the behavioral signatures, formed by intervals of

packet lengths and of entropy, and by a minimum number

of matches, for sliding windows with size of 500 packets,

used to identify the VoIP sessions.

Signature Interval of Interval of Minimum

Description Lengths (Byte) Entropy Matches

Bit rate level

CBR 15 400 0.00 1.00 400

VBR (low variation) 10 400 1.25 3.25 450

VBR 15 800 2.80 6.00 450

Group level

GIPS VBR 75 700 3.50 5.50 400

PCM based 160 190 0.00 1.00 400

Skype CBR 25 190 0.10 1.00 400

Skype proprietary VBR 20 120 1.50 4.50 400

Codec level

G.729 25 30 0.10 0.95 400

GSM 44 45 0.00 0.10 450

iLBC 49 51 0.00 0.10 450

iLBC 87 90 0.00 0.10 450

iLBC Skype 46 50 0.05 1.00 400

iLBC Skype 86 90 0.05 1.00 400

PCM 165 185 0.00 0.10 450

PCMA Skype 160 171 0.10 1.00 450

PCMU Skype 170 185 0.10 1.00 450

G.722 171 175 0.00 0.10 450

NWC 160 171 0.10 1.00 450

Speex 32 kHz 85 87 0.00 0.10 450

Speex 32 kHz 45 50 0.00 0.10 450

Speex 16 kHz 80 85 0.00 0.10 450

Speex 16 kHz 40 45 0.00 0.10 450

Speex 8 kHz 50 52 0.00 0.10 450

Speex 8 kHz 30 35 0.00 0.10 450

AMR-WB 45 80 0.15 1.75 250

EG711 200 550 3.00 5.50 400

EG711 75 250 3.50 5.50 400

iPCMwb 250 700 3.00 5.50 400

iPCMwb 150 300 3.50 5.50 400

iSAC 100 300 3.00 5.50 400

iSAC 60 200 3.50 5.50 400

SILK 40 120 2.75 4.50 250

SILK MB/NB 20 60 2.00 3.50 400

SVOPC 80 120 1.50 3.00 400

Speex 20 100 2.00 2.50 400

Speex 20 100 1.50 2.00 400

signatures to simply identify VoIP sessions based on
CBR, VBR codecs, and VBR codecs with low variation,
or other groups of codecs, were also created. Separating
the classification into a smaller number of categories
improves its accuracy and makes the process faster.

4.2 Architecture of the Classifier

The implementation of the classifier includes two alter-
native levels of observation, as explained in section 3.1:
per flow or per (host, port). In order to individually
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identify each flow or (host, port) pair, the classifier uses an
identification tuple. When the flow perspective is used,
the tuple is formed by the source IP address and port
number, by the destination IP address and port number,
and by the transport protocol (UDP or TCP). For the
(host, port) pair perspective, the tuple is formed by the
host IP address and the port number. In this section,
we will use the term tuple to designate a generic flow or
(host, port) pair, depending on which perspective is used.

The network point where the classifier should be
deployed depends on factors like the classification pur-
poses, the amount of data that the complete system is
able to process, or the typical traffic classes in the net-
work. In most cases, it would be advantageous to place
the classifier in the distribution layer of the network so
that the results of the classification could be used in the
traffic routing and segregation.

During the analysis described in section 3, we ob-
served that the heterogeneity of the packet lengths is
similar in both directions for VoIP. On the other hand, for
other types of application that may use speech codecs,
like audio streaming, the packet lengths may present the
heterogeneity associated with a speech codec only in one
direction, while the traffic in the opposite direction is
mainly formed by acknowledgement messages. Hence,
to avoid these cases, the classifier separately analyzes
the VoIP session traffic in each direction and only if the
packet lengths in both directions have similar properties,
the session is classified.

Furthermore, as described in section 3.1, the traffic
analysis showed more than one frequent length for
some codecs, which results in more than one signature
for the same codec in Table 2 (e.g., iLBC codec). We
observed that the traffic from some VoIP sessions that
use one of those codecs has distinct packet lengths in
both directions. For example, in some sessions using
the iLBC codec, the packets in one direction had 46
bytes, while in the opposite direction, the packets had 86
bytes. Hence, one of the two iLBC signatures included
in Table 2 matches one direction of the VoIP session
traffic, while the other signature matches the traffic in the
opposite direction. Therefore, when separately analyzing
the traffic in each direction, the classifier tries to classify
the traffic in both directions with signatures for the same
codec, even if the signatures are distinct signatures for
the same codec.

The proposed classifier is formed by three modules:
one responsible for processing the packets, other for cal-
culating the entropy level, and a third one for identifying
the VoIP data. The modular operation of the classifier,
illustrated by Fig. 3, is described in appendix D of the
supplemental material. In the following subsection, we
explain the process of identification of a VoIP session.
which is made in the classification decision module.

4.3 The Classification Decision Module

The classification decision module receives, from the packet
processor, the payload length and the entropy value

Statistical Analysis

entropy value

tuple ID
payload length

Packet
Processor

packet source

identified
VoIP tuples

Behavioral
Signatures

signature

tuple ID
payload length
entropy value

Classification
Decision

Fig. 3. Architecture of the proposed classifier formed by

three modules.

along with the identification of the corresponding tuple
and produces a classification result. The classification
process is formed by two main procedures, the signature
matching and the classification based on the matched
signatures, and is repeated for every processed packet.

During the signature matching process, the module
tries to match all the behavioral signatures in the repos-
itory. As explained in section 4.1, each signature S,
associated with a codec Cod, is formed by two intervals E
and L to which the entropy and the packet length should
belong, respectively, and by the required minimum num-
ber of matches minM in the latest W (size of the sliding
window) packets so that the tuple can be classified as
traffic generated by Cod. For each pair formed by S and
the analyzed tuple T, there is an individual counter C
of the number of matches in the last W, whose value is
always between 0 and W. The classifier tries to match
each signature S in the repository, as depicted in Fig. 6
of the supplemental material. Depending on the result of
the signature matching, the C counter associated with S
and T is decremented or incremented, unless it is already
0 or W, respectively.

After all the signatures are checked, each counter C
associated with each signature S contains the number of
matches of S for tuple T, allowing the classifier to make
a decision using the method represented in Fig. 7 of the
supplemental material. The classifier goes through the
signatures repository and checks if, for each codec Cod,
there is a signature S1 with required minimum number
of matches minM1 so that the corresponding counter C1
is greater than minM1. If it does, the classifier has to
check if the signature for the same codec also matches
the traffic in the opposite direction, identified by the
inverse tuple invT. Since there are different signatures for
the same codec, as explained in the beginning of section
4.2, the classifier has to check if there is a signature
S2 (which can be the same as S1) for the same codec
Cod with a minimum number of matches minM2 so that
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the corresponding counter C2 for invT is greater than
minM2. In case both conditions are true, T and invT are
classified as traffic from codec Cod, if they have not been
before. Otherwise, T and invT are unclassified as traffic
from Cod if they have been classified before, meaning
that they do not present characteristics of Cod anymore,
because the VoIP session may have finished. Although
it was not common during the traffic analysis and the
classifier evaluation, if two signatures match the flow, the
first to reach the required number of matches determines
the classification until the corresponding counter drops
below the minimum number of matches. If they reach
the minimum required matches in the same iteration of
the sliding window, their order in the list of signatures
will determine the classification, with the preference
decreasing from the first signature to the last one.

5 P E

The evaluation of the classifier was made by resorting
to offline data so that the procedure could be repeated
and compared against other classifiers. The details about
the datasets and the testbed are described in subsec-
tion E.1 of the supplemental material. The used metrics
are sensitivity and specificity, which are explained in
subsection E.2 of the supplemental material.

The accuracy of the classifier was evaluated separately
for the behavioral signatures of the bit rate, group, and
codec levels, and the results are listed in Table 3. The pro-
posed method continually analyzes every packet since
the beginning of the flow and it makes a classification as
soon as the properties of the packet lengths are matched
by one of the signatures. Nevertheless, especially in the
case of Skype traffic, those properties are sometimes dis-
tinct at the beginning of the connection. Hence, although
the traffic is initially matched by a signature, returning
a first classification, seconds later the properties of the
packet lengths are more stable and slightly different and
are thus matched by a different signature. Since the clas-
sifier continues to analyze every packet, it modifies the
classification when the traffic is matched by a different
signature, resulting in a second classification. This usu-
ally happens for similar signatures, such as the ones for
SILK and SILK MB/NB or VBR and VBR (low variation),
and it is observable, e.g., in dataset 2. For this reason, the
evaluation of the sensitivity for the second classification
was also included in Table 3. Nonetheless, if for a certain
VoIP flow, the classifier changes the classification several
times during the life time of the flow without being able
to maintain a stable classification, we considered it as a
false negative case, even if one of the classifications was
correct. The average time since the beginning of the flow
until the classifier reaches the first classification, and in
some cases the second, is presented in Table 6 of the
supplemental material. This includes the time that the
classifier takes to fill the sliding window and the time it
takes to reach the minimum number of matches.

Generally, the sensitivity decreases from the bit rate
level to the codec level as the signatures are less broad on

the latter. For the same reasons, the specificity decreases
in the opposite direction. Nevertheless, there are a few
exceptions. In the case of the bit rate level signatures,
the traffic from low variation VBR codecs was, for a
few sessions, classified initially as VBR and only a few
seconds later as VBR (low variation). Also, the traffic
from VBR Speex, which is not covered by any group level
signature, was sometimes classified by the signature for
Skype proprietary VBR, especially in dataset 3, which
pulled down the sensitivity rate. Furthermore, G.722 and
NWC VoIP sessions were classified as PCM since these
codecs are based on PCM baseline, whose signature
appeared first in the list of signatures. Nonetheless,
we still chose to consider as false positives the VoIP
sessions based on those codecs and classified as PCM.
The results of sensitivity and specificity for each speech
codec were included in Table 8 of the supplemental ma-
terial. Additionally, since the dataset of the Politecnico di
Torino contains only the flows that result from the VoIP
sessions, it does not have any negative case. Hence, it
does not make sense to calculate the specificity for this
dataset. The percentage of the traffic in datasets 1, 2, 3,
and 4, from each class of applications, that caused false
positive cases is presented in Table 7 of the supplemental
material, showing that they were caused by streaming,
P2P file-sharing, and P2P streaming traffic.

The results show that the method is capable of classi-
fying the traffic from VoIP sessions and identifying the
used speech codec with interesting accuracy. Moreover,
we obtained similar results for the same speech codec
despite the fact that the datasets used for the perfor-
mance evaluation contained traffic from VoIP sessions
generated with different applications, transport proto-
cols, and operating systems, showing the independence
of the classifier from these factors.

The performance of the proposed classifier was also
compared with the performance of three available clas-
sifiers: l7-filter [39], l7-netpdlclassifier [40], and Tstat [41].
The results and details of the performance evaluation of
these three classifiers are described in subsection E.2 of
the supplemental material. The results demonstrate that
most classifiers have difficulty to identify the specific
flows related with conversations, even when they are
able to identify other flows of the VoIP application like
signaling data. The three mechanisms seem to have more
problems to identify traffic from VoIP sessions over TCP,
as shown by the low sensitivity rates for dataset 4. The
specificity rates for the same dataset are also lower,
mostly due to the larger share of traffic from other
P2P applications. Tstat seems to be more conservative in
the identification of VoIP traffic, which also helps it to
perform better in terms of false positive cases. The Polito
dataset contains only 10 VoIP sessions, and therefore
any misclassified flow has a strong negative impact in
the sensitivity. Since the packets in this dataset do not
contain the payload data, l7-filter was unable to identify
any VoIP flow. Generally, the classifier proposed herein
presents a better accuracy when used to distinguish
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TABLE 3

Results of the performance evaluation of the VoIP classifier for the different levels of signatures.

Dataset Bit rate level Group level Codec level

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

first second first second first second

Dataset 1 92.31% 100.00% 99.97% 100.00% 100.00% 100.00% 84.62% 92.31% 100.00%

Dataset 2 92.86% 100.00% 99.99% 100.00% 100.00% 100.00% 78.57% 100.00% 100.00%

Dataset 3 100.00% 100.00% 99.98% 80.00% 80.00% 100.00% 93.34% 93.34% 100.00%

Dataset 4 96.97% 96.97% 99.51% 96.97% 96.97% 99.56% 84.85% 84.85% 99.99%

Polito 100.00% 100.00% not applicable 100.00% 100.00% not applicable 70.00% 100.00% not applicable
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between CBR, VBR, and VBR with low variation, and it
is also able to make an accurate prediction of the codec
used in each session. Furthermore, the accuracy of the
identification of the flow of the real conversation is much
higher than for the other classifiers.

As it happens with most traffic classifiers, the method
used by the classifier may be bypassed if the target appli-
cations are able to modify the behavior matched by the
signatures. Nonetheless, since the packet lengths depend
on the speech codec used in a VoIP session, the pattern
may not be so easily modified by the target applications.
This subject is further discussed in subsection E.2 of the
supplemental material.

In addition to the performance evaluation, an analysis
of the computational resources used by the classifier has
been made showing that the consumption of resources
grows linearly with the analyzed data, as illustrated
by Fig. 4. The details of the resource evaluation are
presented in subsection E.3 of the supplemental material.

6 C

In this article, a new method for the identification of P2P
VoIP traffic was described. The proposed mechanism is
focused on the properties of the speech codec used in

the VoIP session instead of the application and it aims
to identify the flow used for the conversation rather
than the signaling data. The traffic from several VoIP
sessions, using many codecs and made using different
applications was collected and analyzed to identify prop-
erties that could be used in the classification process.
The lengths of the payloads presented different levels of
heterogeneity for distinct codecs. Although the lengths
of the packets have already been used in different ways,
its level of heterogeneity has never been used for the
classification of traffic in real-time. To the best of our
knowledge, this is the first behavioral method capable
of identifying the codecs used on a VoIP session. In
order to quantify the level of heterogeneity and use it to
identify traffic, an approach based on entropy was used.
Its value was calculated by resorting to sliding windows
with size of a constant number of packets. By doing so,
it is possible to monitor the value of the entropy, in real-
time, from the beginning of the flow to its end. The
identification of VoIP sessions is made by using a set
of behavioral signatures formed by an interval for the
entropy, an interval for the length of the payload, and a
minimum number of matches that should be reached for
the traffic to be classified by the corresponding signature.

The performance of the proposed classifier was eval-
uated by resorting to aggregated traffic from multiple
VoIP sessions, using different codecs and applications,
and several P2P and non-P2P applications. The results
showed that the classifier was capable of identifying
the VoIP sessions with very good accuracy, performing
better that the remaining analyzed tools. Furthermore,
the mechanism was able to recognize the specific speech
codec that was used with a sensitivity rate between
70.00% and 93.34%. Additionally, the resource consump-
tion was also analyzed, showing that the resource usage
grows linearly with the amount of the input data.

In the future, we plan to address the classification
of traffic from other types of P2P applications. For P2P
media streaming and file-sharing, the differences in the
entropy are not so clear in the traffic from each flow,
which prevents the use of the same approach for these
types of P2P traffic. Furthermore, we expect to study the
challenges inherent to the optimization of the classifier,
to build an optimized prototype of the proposed classi-
fier, and to test it in high-speed network scenarios.
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