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A b s t r a c t  

In this paper we focus on the identification of discrete- 
time hybrid systems in the Piece-Wise Affine (PWA) 
form. This problem can be formulated as the recon- 
struction of a possibly discontinuous PWA map with 
a multi-dimensional domain. In order to achieve our 
goal, we propose an algorithm that  exploits the com- 
bined use of clustering, linear identification, and clas- 
sification techniques. This allows to identify both the 
affine submodels and the polyhedral partition of the do- 
main on which each submodel is valid. 

K e y w o r d s :  Nonlinear identification, hybrid systems, 
clustering, linear regression, classification. 

1 I n t r o d u c t i o n  

In recent years a large stream of research focused on hy- 
brid systems because of their capability to describe the 
interaction between dynamic and logical components. 
Among other formalisms for hybrid systems, Bemporad 
and Morari [2] developed a unified model for a wide 
range of discrete-time hybrid systems, the Mixed Logic 
Dynamical (MLD) form [2]. For instance, linear hybrid 
dynamical systems, hybrid automata, Piece-Wise Affine 
(PWA) systems and some classes of discrete-event sys- 
tems can be represented in the MLD form. The MLD 
representation is also suitable to solve many analysis and 
synthesis problems (like model predictive control [2], 
state estimation [7], verification problems [3], observ- 
ability and controllability tests [1]) by expressing them 
as mixed-integer programs. 

In this paper we focus on the problem of identifying hy- 
brid systems in the MLD form from experimental data. 
We exploit the equivalence between MLD and Piece- 
Wise Atone (PWA) systems [1] and we study the iden- 
tification problem for the latter class. In Section 2 we 
introduce the class of input-output models that  reflects 
the structure of a PWA system. Not surprisingly those 
models are obtained by generalizing classical AutoRe- 
gressive eXogenous (ARX) models to Piecewise ARX 

(PWARX) models. PWARX models are obtained by 
partitioning the space of the regressors in a finite num- 
ber of polyhedra and by considering an affine submodel 
on each one of those regions. Therefore the identification 
problem can be viewed as the problem of reconstructing 
a PWA map with a multi-dimensional domain from a 
finite set of input-output measurements. 

In the past years, the Neural Networks community de- 
veloped algorithms to solve regression problems with 
PWA maps. Among others, one may cite Breiman's 
hinging Hyperplanes [6] and multilayer neural networks 
with PWA activation functions [I0]. However all such al- 
gorithms focus on the estimation of a continuous PWA 
function. The key feature of PWARX models is that 
the output map can be discontinuous along the bound- 
ary of the regions. This is due to the fact that many 
logic conditions can be represented through discontinu- 
ities in the state-update and output maps of a PWA 
system. Therefore, an identification algorithm for hy- 
brid systems should be capable of identifying discon- 
tinuos PWA maps. To the knowledge of the authors 
such problem received very little attention so far. In a 
very recent work [9] a regression problem with monodi- 
mensional PWA maps was considered whereas multi- 
layer neural networks with logic gates are proposed in 
[13]. 

The main difficulty in identifying discontinuos PWA 
maps is that  the estimation of the linear submodels can- 
not be separated from the problem of finding the domain 
of each sub-model. In order to achieve our goal, we ex- 
ploit a combined use of clustering, classification and lin- 
ear identification techniques. The various steps of the 
main algorithm are illustrated in Section 3. Moreover, 
in Section 4 we discuss the algorithm highlighting future 
research directions and possible modifications in order 
to estimate also the number of submodels and the model 
orders from the data set. 
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2 P r o b l e m  s t a t e m e n t  

A PWA system is defined by the state-space equations 

z(t + l) = Aiz(t)  + Biu(t) + di 
y(t) - Ciz(t) + gi for [z(t) 

(z, u) ~ z 

z C R TM × {0, 1}n~ are the continuous and binary states, 
u c R "~c × {0, 1} TM are the inputs, y E R p~ × {0, 1} p~ 
are the outputs.  Moreover, the s t a te+ inpu t  set Z c 
R ~ × {0,1 }~  × R "~ × {0, 1 }m~ is a bounded polyhedron, 

8 {Zi}i=l is a polyhedral part i t ion 1 of Z and di, gi are 
constant vectors of suitable dimension. In particular, 
we restrict our at tent ion to single-output PWA systems, 
i.e. pc + p~ = 1. 

Since inpu t /ou tpu t  da ta  are used for the identification 
of a PWA system, we need an input/output description 
of (1). We consider Piecewise ARX (PWARX) models 
tha t  are defined relying on the s submodels 

a l , l y ( k  - 1) + a l , 2 y ( k  - 2) + . . .  + 
+ a l , n a y ( k  - ha )  + b l , l u ( k  - 1) -t- b l , 2 u ( k  - 2)+ 
+ . . .  + bl,nb u ( k  - rib) + f l  + ek 

y(k)=  : 

as,lY([g - -  1) + a s , 2 y ( k  - 2) + . . .  + 

+ . . .  + bs,nb U(k - rib) + f s  + ck 

where u and y are the inputs and the output  respec- 
tively, fi are displacements and ek are noise samples. 
We consider a simple noise model by assuming tha t  e~ 
are Gaussian independent identically distributed ran- 
dom variables with zero mean and variance cr 2. The 
vector of the regressors is denoted by 

x(k) ~ [y(k-1)  . . .  y ( k - n ~ )  u ( k - 1 )  . . .  u(k--nb)]' 

and we assume tha t  the regressors lie in a bounded 
polyhedron A" hereafter referred to as regressor set. Ob- 
viously, ~' c I[{ ~ where n = n~ + nb. In order to spec- 
ify a PWARX model completely, a polyhedral part i t ion 
{X~}~=I of X is given and the switching law between 
the models is specified by the rule: if x(k) ~ 2d~, the i-th 
dynamic of (2) is active. When an inpu t /ou tpu t  pair 
(x(k), y(k)) is such tha t  x(k) ~ 2di we say tha t  the pair 
belongs to the i-th submodel. 

(2) 

An advantage of model (2) is that it is easy to map 
this representation into the standard state-space form 
(I). In fact it is enough to choose the state vector as 
z(k) = x(k), to set Z = X and Zi = Xi, i = l,...,s 
and to exploit classical realization theory (for instance 
controllability/observability canonical forms) in order to 
derive the matrices Ai, Bi, Ci, di and gi from the pa- 
rameters  of the i-th submodel in (2). 

Throughout  this paper we assume tha t  N inpu t /ou tpu t  
points (y(k),u(k)),  k = 0 , . . . , N  have been collected. 

1Each set Z i  is a (not necessarily closed) convex polyhedron 
s.t. Zi ~ Zy = 0, Vi ~- j ,  U~=I Zi = Z. 

These are the data available for the identification of the 
PWARX model. 

A s s u m p t i o n  1 The data are generated from the 
P W A R X  model (2) specified by the orders ~a, nb the 
number of submodels ~, the parameter vectors 

0-'/ = [ai, 1 hi, 2 . . .  a i , ~ a b i , 1  bi,2 . . .  bi,~b ~]!  (3) 

and the sets 2d, Xi, i - 1 , . . . ,  ~, 

R e m a r k  1 If the da ta  are generated according to As- 
sumption 1 and ~a, ~b, ~, A" and Xi, i - 1 , . . . , ~  are 
known, the identification problem amounts to identify 
the $ ARX submodels in (2). In fact, since the sets A'i 
are known, we can classify the vectors x(k) i.e. parti t ion 
them in ~ sets ~ri according to the rule (x(k), y(k)) E ~i 
if x(k) c Xi. Then the i-th submodel can be identified 
by using the datapoints  in the set 9ri. 

The identification problem becomes non-trivial if we do 
not know all the quantities mentioned in Remark 1. In 
part icular the difficulty of the identification problem de- 
pends on which quantities are assumed to be known. 

A s s u m p t i o n  2 The number of submodels s is given. 

The number of models depends on the number of op- 
erative conditions in which the data  are collected. For 
instance one can collect da ta  knowing in advance that  
the systems may only switch between a normal and a 
faulty operating condition, i.e. s = 2. In this paper we 
first exploit Assumption 2 and in Section 4 we discuss 
how to est imate s from the data. 

A s s u m p t i o n  3 The orders na and nb are fixed. If As- 
sumption 1 holds, na and ~b are known and na = ha, 
n b  - -  ~tb. 

Assumption 3 is useful to discuss the property of the 
identified PWARX model, especially when Assump- 
tion 1 holds as well. For instance, consistency prop- 
erties of ARX models are often proved in this scenario 
(i.e. the t rue system belongs to the class of models con- 
sidered [11]). However, in practice na and nb are seldom 
known and a large s t ream of research focused on the es- 
t imat ion of the "best" orders [11, 14] of ARX models. 
Note tha t  if na and ~b a r e  unknown, also the dimen- 
sion ~ = na + n b  o f  ~' is unknown. This means that  
neither A' nor the part i t ion ~'i, i - 1 , . . . ,  s can be in 
general assumed as given. Assumption 3 will be used in 
order to focus on the peculiarities of the identification 
of PWARX systems by avoiding the difficulties arising 
from the order estimation. Nevertheless, in order to 
study the identification problem in a fair scenario, the 
regions Xi are assumed unknown. 
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Concerning the set X, once na and nb are chosen, it is 
often possible to specify a candidate regressor set 2d. In 
fact, the shape of A" should reflect physical constraints 
on the inputs and the output of the system. In prac- 
tice, it is common to specify constraints in terms of 
box-bounds on each input /output  sample or on each in- 
put /output  increment. For example, typical constraints 
on the output are 

ly(t)l _< y , ~ ,  or ly(t + 1) - y(t)l _< A y ~  (4) 

Then it is easy to derive from (4) the explicit represen- 
tation of the bounded polyhedron A" E R ~ where the 
regressors lie. 

3 T h e  m a i n  a l g o r i t h m  

Based on the previous discussion, the first identification 
problem we consider reads as 

P r o b l e m  I Assume that the data (y(k),u(k)),  k = 
0 , . . . ,  N are generated according to Assumption 1 and 
that Assumptions 2 and 3 hold true. Estimate the par- 
tition A'i, i = 1 , . . . ,  s and the parameter vectors 

O;-[ai,1 ai,2 . . .  ai,n~bi,1 bi,2 . . .  bi,nbA] (5) 

characterizing the P W A R X  model (2) on the basis of the 
collected data. 

The main difficulty in solving Problem 1 is that  the 
problem of estimating the regions Xi cannot be decou- 
pled from the identification of each submodel. The al- 
gorithm we propose to solve Problem 1 exploits a com- 
bined use of clustering, classification and linear regres- 
sion techniques. Such a procedure will be illustrated by 
using the following toy example. 

E x a m p l e  1 The data are generated by the P W A R X  
system 

;(k) = 

[ -1  0 ] [ u ( k - 1 )  1 ] '+e(k) ,  

if u(k - 1) = x(k) C 21 = [-4, 0] 

[ 1 0 ] [ u ( k - 1 )  1 ] '+e(k) ,  

if u ( k -  1) = x(k) E 22 = (0, 2) 

[ 3 -2  ] [ u ( k - 1 )  1 ] '+e(k) ,  

if u ( k -  1) = x(k) C A?3 -- [2, 4] 

(6) 

where ~ = 3, ~a - 0, nb  -~ 1, A' = [-4, 4], and the input 
samples u(k) E N are generated randomly according to 
the uniform distribution on 2d. 

8 

7 

6 ~?': " 

~5 

4 ÷ 

, : .! 

u(k) 

F i g u r e  1: The PWARX system (6) (-) and the dataset 
(crosses) 

The first step of our algorithm is to cluster the data- 

points (x(k) ,y(k))  in a suitable way. In fact, a PWA 
map is locally linear. Thus small subsets of points x(k) 
that  are close each other are likely to belong to the same 
region A'i [12]. For a fixed integer c and for each dat- 
apoint (x(j), y(j)),  j - 1 , . . .  ,N ,  we build a cluster Cj 
collecting (x(j), y(j)) and the c -  1 distinct datapoints 
(x, !?) that  satisfy 

v(~, ~) e Cy, IIx(j)-~ll  2 s Ilx(j)-~ll  2, v(~,9)  ~ s \ %  
(7) 

In other words the cluster Cj collects the point x(j)  and 
its c -  1 neighboring samples along with the correspond- 
ing output samples. Note that each cluster Cj can be 
labeled with the point x(j)  so having a bijective map 
between x-points and clusters. The parameter c has to 
be fixed by the user and this is a knob of our algorithm 
that  can be adjusted. Some clusters will collect only 
data belonging to a single submodel (for instance the 
cluster C5 in Figure 1). Those clusters will be referred 
to as pure clusters. Clusters collecting da,ta generated 
by different submodels will be called mized clusters (see 
the cluster C13 in Figure 1). 

We assume that  c > n so that  we can identify an affine 
model by using the samples contained in each cluster. 
For this purpose every linear regression technique can 
be used and we adopt least squares estimation. The 
vector of coefficients 0 Ls'j estimated from the data in 
Cj is then computed through the well-known formula 

= ' q b )  - 1  , 0 LS'j (~j g2jYcj, 

[ Xl x2 . . .  ~j [ 1 1 . . .  

X c  

1 

(8) 

where xi are the vectors of regressors belonging to Cy and 
ycj is the vector of the output samples in Cj. For the 
toy example, the vectors 0 LS'j corresponding to clusters 
with c = 6 elements are shown in Figure 2. It is apparent 
that  the vectors 0 LS'j belong to the dual space R ~+1. 

The system and a data set of 50 samples with noise 

variance cr 2 = 0.01 are depicted in Figure I. 

If the data are corrupted by a small amount of noise 

and c is "small enough", a picture of 0 LS'j, j = I,..., N 
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F i g u r e  2: The vectors 0 LS'j in the dual space 

should show s major clusters and some isolated points 
hereafter referred to as outliers. In fact we observe that  
if Cjl and gj~ are pure clusters collecting datapoints be- 
longing to the same submodel, then 0 LS'jl and 0 Ls'j~ 
should be similar. In the limit case of noiseless data 
(0"2 _ 0) all such vectors coincide. The outliers corre- 
spond to parameter vectors computed from mixed clus- 
ters. 

At this point the role of the parameter c should be clear: 
if the signal to noise ratio is high, even a low c would 
produce well defined clusters in the dual space. More- 
over a low c means that the ratio between the number 
of mixed and non mixed clusters is low and then the 
number of isolated points in the dual space is low. For 
instance, from Figure 1 it is apparent that with c = 2 
the number of mixed clusters is at most 4. Anyway, 
when noise is present, a low c means that the parameter 
vectors will be poorly estimated i.e. they will have a 
high variance. Then, it may happen that the clusters 
in the dual space become overlapping, thus preventing 
a good partitioning of the parameter vectors. In this 
case, the natural remedy is to increase c. On the other 
hand, if c is too large a high number of mixed clusters 
(and then outliers) will be generated. In the limit case 
c = N all the clusters are mixed and all the 0 LS'j will 
be outliers. Then, in order to have well defined clusters, 
a good choice of the parameter c is always a trade-off 
between the two phenomena described above. A rea- 
sonable idea would be to tune c with cross-validation 
techniques and this will be the subject of further inves- 
tigations. On the basis of these remarks, the next step 
amounts to clustering the parameter vectors in s disjoint 
subsets. 

given by 

J = Z II0 (9) 
i=10LS,J ET)i 

In (9) #i is the mean of the data points in set 19i and is 
given by 

# i =  1 oLS, j Z It I 
OLS,J ET) ~ 

where Ni is the cardinality of 79i. However, the K-means 
algorithm does not exploit all the information we have 
on the vectors 0 Ls'j. 

Consider the vectors 0 LS'j identified on a pure cluster. 
Then, a classical result on least squares [11] states that 
0 Ls'j is a Gaussian random vector whose mean and co- 
variance are given by 

E [0 LS'j] -- Oi, Cov [0 LS'j] - o2((1)3 (I)j)-l .  (11) 

Since the variance 0"2 is unknown a priori, a common 
way to estimate the covariance matrix is 

SS/~j  ((i)~ (i)j) _ 1 (12) 
Vj = c - n + l  

ssRj  - y4 ( I -  (13) 

where SS_Rj is the sum of the squared residuals. 

In the K-means algorithm, the centers #i of the clusters 
_ 

should represent the vectors 0i. Then, it is natural to 
weight the deviation of the points from the centers with 
the matrices Vj-1. This can be done by simply replacing 
the cost functional (9) with 

Y - - ' ~  E IIoL~'j--~JlI~/1" (14) 
j= l  OLS,] E~{ 

Note that  this modification changes only the norm used 
in K-means and does not spoil the efficiency of the al- 
gorithm. 

Concerning the parameter vectors identified from data 
in mixed clusters, it is sensible that  they have a high 
variance. Indeed we fit a single model to data belonging 
to (at least) two different models. It turns out that the 
cost functional (14) puts little emphasis on such param- 
eter vectors. Then it is expected that  the centers #J 
will mainly depend on the 0 LS'j based on pure clusters. 
The output of this second clustering algorithm are the s 
disjoint sets ~Di, of 0-points. The result concerning the 
toy problem is plotted in Figure 3. 

The clustering technique we adopt is a variation of the 
classical K-means algorithm. K-means (see [5, 8] for 
comprehensive tutorials) is a clustering algorithm where 
the number of clusters is given that  seeks to partition 
the data points 0 LS'j into s disjoint subsets I)i in such a 
way to minimize the sum-of-squares clustering function 

By using the bijective maps between coefficient vec- 
tors and clusters gj and between clusters gj and points 
(x(j), y(j)) ,  we can map back the clusters 19i from the 
dual space to the data-space thus classifying the origi- 
nal datapoints. More precisely this can be done in the 
following way. 

3 5 2 4  
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F i g u r e  3: Clustering of the vectors 0 Ls'j with the modi- 
fied K-means algorithm. Triangles" first cluster, 
diamonds: second cluster, circles: third cluster. 
The crosses are the centers of each cluster. 
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F i g u r e  4: Clustering of the datapoints with Algorithm 1. 
Triangles: first cluster, diamonds: second clus- 
ter, circles: third cluster. 

A l g o r i t h m  1 

Let /)i, i -- l,...,s be specified by the 

modified /(-means algorithm and set 3ci = 

for i = l : s  

i. for all O LS'j E ~)i 

i.I. find the point (x(j),y(j)) by using 

the following maps: O LS'j ~-+ Cj ~-, 

(~(J), y(J)). 
1.2.  Add the  p a i r  ( x ( j ) , y ( j ) )  to )c i. 

2. end f o r  

end for i 

For the toy problem, the sets )ci, i = 1,2, 3 computed 
by Algorithm 1 are drawn in Figure 4. 

Since the original data are now classified, it is possible 
to identify the final s ARX submodels on the basis of the 
s clusters ;Pi in the data space. Again we exploit least 

squares to accomplish this task. One may guess that this 
step is superfluous, since the centers #J already yield an 
estimate of the coefficient vectors. However the estimate 
provided by #J may be poor, especially if the parameter 
c (the cardinality of the C-clusters) is close to n + I. 
Moreover the use of least squares allows checking the 
goodness of each submodel by using standard criteria 
like confidence intervals. 

For the toy problem, by using the final clusters 3ci, i = 
1, 2, 3 represented in Figure 4, we obtained the following 

-- [ - 1 . 0 2 2 8  -0.0446 ] 

01 -- [09 66 004nS]  

= [ a 0 2 4 7  - 2 0 9 7 6 ]  

estimates 

that  provide a good approximation of the PWARX sys- 
tem (6). 

So far we have obtained an estimate of each affine sub- 
model of the PWARX representation. The final step 
is to look for the shape of the polyhedral regions A'i. 
Since the data have been classified, the problem of es- 
timating the sets A'i amounts to a pattern recognition 
problem [5]. Note that  there is a hyperplane that sep- 
arates the set ~'i from the set A'j, Vj ~ i because all 
the sets A'i are polyhedral and convex. We can estimate 
such hyperplanes by applying a linear pattern recogni- 
tion algorithm that  separates the x-points in 3ci from the 
x-points in 9cj, Vj 7~ i. The estimated hyperplane sep- 
arating $'i from 9cj is denoted with M i j x  = mij  where 
Mij and rnij are matrices of suitable dimensions. More- 
over, we stipulate that  the points in A'i belong to the 
half-space M i j x  <_ rnij . 

Due to errors in clustering, it may be not possible to find 
all the separating hyperplanes. Therefore, the classifica- 
tion algorithm should look for the hyperplanes that min- 
imize the number of misclassified samples. For the clas- 
sification we used linear Support Vector Machines [15] 
because they are appealing from a computational point 
of view (they can be solved through Linear or Quadratic 
Programming) and they isolate, as a byproduct, the mis- 
classified samples. 

In order to obtain a description of the set A'i in terms 
of linear inequalities, it is then enough to consider the 
bounded polyhedron 

! ! 

[M/1 . . .  M;' s M'] ' x  < [m~l . . .  mis m'] .  (15) 

where M x  <_ m are the linear inequalities describing X'. 
In (15) there may be redundant constraints that can be 
eliminated by using standard linear programming tech- 
niques. For the toy example, the following estimated 
sets were obtained 

X1 = [-4,-0.143] ,  (16) 

A'2 = [-0.143,1.873], (17) 

& = [1.873, 4]. (~8) 
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that provide a good approximation of A'1, A'2 and A'3 in 
Example 1 

4 Discussion and  genera l iza t ions  

The proposed algorithm is made of six steps: build small 
clusters of the original data; identify a parameter vector 
based on each cluster; partition the parameter vectors 
in s clusters; classify the original data; estimate the s 
submodels; estimate the partition Xi, i = 1 , . . . , s  by 
using a linear classification algorithm. 

For the clusterization in the dual space, we propose a 
modified/(-means algorithm. However K-means algo- 
rithm is not guaranteed to converge to the optimal clus- 
ters and may be trapped in local minima. Therefore it 
would be safer to repeat the clusterization in the dual 
space many times by randomly initializing the centers. 
A different way to cope with this problem is to resort to 
soft competitive clusterization algorithms that are less 
sensitive to initializations [8]. In order to improve the 
performance of the modified/(-means, it is also possible 
to exploit the probabilistic information on the regressor 
vectors in order to detect the outliers in the dual space, 
eliminate them from the set of the 0-points and elimi- 
nate the corresponding data points from the clusters 9~i. 
In fact, the clusterization of the outliers may have a high 
degree of uncertainty and classification errors may spoil 
the accuracy of the final linear identification procedure. 
Such a procedure is currently under investigation. 

The proposed algorithm gives good results under the 
implicit assumption that the sampling in the x-space is 
"fair", i.e. that the input is persistently exciting and 
that the x points are not all concentrated around the 
boundary of the sets Xi. In fact, in the latter case it 
may happen that all the clusters gj become mixed even 
if a large number of samples belonging to each submodel 
has been collected. A thorough characterization of such 
conditions will be the subject of further research. 

In the previous Sections we exploited Assumption 2. 
However, if the number s of submodels is unknown it 
can be estimated from the dataset. This can be done 
by replacing the modified /(-means algorithm with a 
clustering algorithm where the number of clusters is not 
fixed a priori such as the Growing Neural Gas [8] or the 
MDL-based algorithm proposed in [4]. In such proce- 
dures the number of clusters is automatically detected. 
It is apparent that once that the regressor vectors have 
been classified, the remaining part of our procedure can 
be applied without modifications. 

If the order na and nb are unknown, we expect that their 
under/over estimation can be detected from a picture of 
the coefficients in the dual space (i.e. the clusters do not 
have a clear boundary). Under/over parametrization 
can be also detected by comparing the magnitude of the 
final parameter vectors with their standard deviation. 

5 Conclus ions  

In this paper we propose an algorithm for the identi- 
fication of hybrid systems in the piecewise affine form. 
Our procedure hinges on the combined use of cluster- 
ing, linear identification and classification techniques. 
This allows us to identify both the affine submodels and 
the polyhedral partition of the domain on which each 
submodel is valid. Future investigations will focus on 
the performance analysis of the method. For instance it 
would be desirable to have bounds on the errors affect- 
ing the algorithm both in identifying the submodels and 
in detecting the regions. Also the order selection issue 
needs to be investigated further. 
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