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Abstract

Background: Modern agriculture strives to sustainably manage fertilizer for both economic and environmental

reasons. The monitoring of any nutritional (phosphorus, nitrogen, potassium) deficiency in growing plants is a

challenge for precision farming technology. A study was carried out on three species of popular crops, celery

(Apium graveolens L., cv. Neon), sugar beet (Beta vulgaris L., cv. Tapir) and strawberry (Fragaria × ananassa

Duchesne, cv. Honeoye), fertilized with four different doses of phosphorus (P) to deliver data for non-invasive

detection of P content.

Results: Data obtained via biochemical analysis of the chlorophyll and carotenoid contents in plant material

showed that the strongest effect of P availability for plants was in the diverse total chlorophyll content in sugar

beet and celery compared to that in strawberry, in which P affects a variety of carotenoid contents in leaves. The

measurements performed using hyperspectral imaging, obtained in several different stages of plant development,

were applied in a supervised classification experiment. A machine learning algorithm (Backpropagation Neural

Network, Random Forest, Naive Bayes and Support Vector Machine) was developed to classify plants from four

variants of P fertilization. The lowest prediction accuracy was obtained for the earliest measured stage of plant

development. Statistical analyses showed correlations between leaf biochemical constituents, phosphorus

fertilization and the mass of the leaf/roots of the plants.

Conclusions: Obtained results demonstrate that hyperspectral imaging combined with artificial intelligence

methods has potential for non-invasive detection of non-homogenous phosphorus fertilization on crop levels.
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Background
Phosphorus (P) is an essential macronutrient that greatly

influences root development, plant growth and crop

productivity [1]. Moreover, P has a significant function

in various metabolic processes in plants, such as protein

formation, photosynthesis, cell division, respiration,

energy storage and nutrient movement within the plant,

and is an integral constituent of nucleic acids,

phospholipids, and coenzymes activating amino acid

production [2]. P has been found to be one of the most

important minerals for celery (Aqium graveolens)

growth, quality and yield. It was responsible for increas-

ing the total above-ground mass, marketable trimmed

yield and yield of larger grade sizes [3]. Phosphorus also

plays an important role in sugar beet development

because it is essential for root yield and sugar assimila-

tion [4, 5].

Inappropriate P fertilizer management is dangerous for

both plants and the environment and generates

additional costs. Fertilizers are commonly applied
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according to farmer experience, which can easily lead to

over- or misapplication, resulting in soil quality degrad-

ation, reduction in crop yields, contamination of the

environment, deterioration of water quality, eutrophica-

tion, and loss of biodiversity [6]. Therefore, adequate

phosphorus fertilization plays a key role in precision

agriculture. Currently, information about P status in

plants is obtained by visual inspection or chemical ana-

lyses, which are costly, time consuming and laborious.

Moreover, these methods are destructive, precluding

their usage for the continuous monitoring of P content

and thus P resources in the field during plant growth.

As a result, alternative and efficient methods of P con-

tent monitoring are needed in plants.

It is well known that phosphorus deficiency in plants

disturbs the production of chlorophyll, causing leaf chlor-

osis [7, 8]. Prolonged P deficiency may further result in

the accumulation of anthocyanins, consequently leading

to purple discolouration on the leaf surface [9, 10]. The

above-mentioned changes alter the spectral reflectance

characteristics of leaves or canopies and enable the appli-

cation of spectral reflectance methods, such as leaf colour

charts and chlorophyll metres, for the nondestructive esti-

mation of phosphorus status [11, 12]; however, most of

these methods focus on individual leaves. Hyperspectral

imaging, which combines spectroscopy with imaging

methods, allows collection of canopy images and delivers

representative reflectance data that are useful for the

determination of plant phosphorus status in the field. In

recent years, this technique has been effectively employed

for various crops to estimate biophysical parameters, such

as leaf area index [13, 14], leaf and fruit pigment content

[15–21], biomass [22] as well as detection of diseases and

fungal infections [23–26]. Several studies have been

reported on the spectral changes related to leaf water con-

tent [27, 28], chlorophyll content [29, 30] and macronutri-

ent content, e.g., nitrogen [31, 32] and potassium [33].

The objective of the automatic detection of nutri-

tional deficiencies is to identify the visual symptoms

that characterize such deficiencies. Most previous stud-

ies have focused on estimating the contents of bio-

chemical constituents in leaves as the response to

phosphorus deficiency of a single plant species, such as

citrus leaves [34, 35], rice [36], wheat [37], and oilseed

rape [6, 38]. Christensen et al. [39] indicated that P

content could be predicted with 74% accuracy based on

the spectral canopy reflectance. Similarly, high accuracy

(correlation coefficient of 0.710) has been obtained for

the determination of P content in oilseed rape leaves

using eight wavelengths selected from the visible and

near infrared (VIS-NIR) spectrum [6]. Mahajan et al.

[40] proposed the two-band (combination of 1080 nm

and 1460 nm wavelengths) vegetation index for the pre-

diction of P content in wheat. Most of these studies

have focused on the direct prediction of P content

based on reflectance indices combining a few spectral

bands or on indirect detection by predicting the con-

tent of a related substance (e.g., chlorophyll content).

Until now, few investigations have been dedicated to

analysing the temporal dynamics of leaf morphology

and colour under different P treatments covering lon-

ger periods of plant growth and development and mul-

tiple bands of visible/infrared spectrum [41, 42].

It is evident from previous studies that the monitoring

of P status in different crops using hyperspectral systems

is possible; however, more attention should be paid to

properly characterize plant spectral response to varied P

fertilization, including the key stages of growth. More-

over, to our knowledge, there is still insufficient effort

dedicated to the classification of nutritional anomalies in

root vegetables (such as wild celery - Apium graveolens

L.). These limitations have become the prerequisites for

undertaking research to develop robust and more spe-

cific algorithms for predicting P status in plants (includ-

ing root vegetables) at different development stages and

fertilization doses.

The aim of the present study was to develop a discrim-

ination model for monitoring the dynamics of plant

phosphorus (P) status across the different developmental

stages of wild celery, strawberry and sugar beet crops

under different P fertilizations using hyperspectral

reflectance measurements. The three species selected for

this study are very popular in temperate climatic zones

due to the economic importance (sugar beet is the main

source of sugar in many countries), as well as their

nutritional value and taste (celery and strawberry).

Results and discussion
Reference data of chlorophyll and macronutrient content

Different P treatments caused major variations in pig-

ment content in all the studied plants. Figure 1 illus-

trates the contents of Chlorophyll a, Chlorophyll b, Total

chlorophyll and Carotenoids in sugar beet, celery and

strawberry plants in response to different P fertilizations.

The results show that, in the case of sugar beet and

strawberry plants, exceeding the recommended dose of

phosphorus in the nutrient solution (yellow bars in Fig. 1

depicting a 33% increase of P) caused a decrease in the

chlorophyll content, which refers to all the measured

kinds of chlorophyll (Chlorophyll a, Chlorophyll b and

Total chlorophyll). The same trend was observed in cel-

ery plants, but to a smaller extent. For the three studied

species, the maximum chlorophyll concentrations were

recorded for various P doses: for sugar beet, the dose

was under 33% of the recommended dose, for celery,

under 67% of the recommended dose and, for straw-

berry, under the recommended dose. These differences

speak to the varying impacts of P on the chlorophyll
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activity of various species. The deficiency or excessive

application of P into the growing pots caused very high

decreases in chlorophyll and carotenoid concentrations

only in strawberry leaves compared to the control group

(those with the recommended dose), which can be

related to leaf chlorosis. This result indicates a high sen-

sitivity of strawberry plants to imbalanced phosphorus

dosing, in agreement with observations of Trejo-Téllez

and Gómez-Merino [43], who noticed a considerable

decrease of chlorophyll content in P-deficient strawberry

leaves, which became uniformly yellow under P stress.

Additionally, Estrada-Ortiz et al. [44] confirmed a strong

relationship between P content in strawberry plants and

the accumulation chlorophylls in its leaves. Moreover,

Fig. 1 Measured content of Chlorophyll a, Chlorophyll b, total Chlorophyll and Carotenoids in sugar beet (a), celery (b) and strawberry (c) plants

under different P applications. Bars followed by the same letter do not differ statistically by Tukey’s test at p=0.05
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these authors indicated that excess P application causes

a decrease in the contents of photosynthetic pigments

and also influences serious soil and environmental deg-

radation. Figure 1 shows that the concentrations of

chlorophyll a in the studied species were much higher

than the concentrations of chlorophyll b. This result is

not in agreement with Costa et al. [45], who observed

that Chlorophyll b concentrations were higher than

Chlorophyll a in 2 cultivars of strawberry under varied

lightening conditions. However, it was previously indi-

cated that the relationship between chlorophyll a and b

depends on many factors, including source of light,

shading, ambient conditions of plant growth [46–48]

and the specific role of these two pigments in plant

physico-chemistry. Chlorophyll a is responsible for

the collection of photons and plays an essential role

in photosynthesis, while chlorophyll b additionally

participates in the transference of light radioactive

energy [49, 50].

In celery leaves, the chlorophyll concentration (for all

3 types of chlorophyll) at the lowest P treatment (P-33)

was much lower than in other P treatments, indicating

that such low P supply has a stress effect on celery. For

celery leaves, the highest values of chlorophyll concen-

tration occurred for the variant P-67, not P-100, which

speaks to the overestimation of the recommended P

dose in the fertilizer in this case. The same was noticed

for the carotenoid content in celery leaves (the highest

value was noticed for the P-67 variant). It was also ob-

served in celery plants that the highest dose of P in

fertilizer (P-133 variant) did not lead to such high

decreases in chlorophyll a, b or total concentrations, as

was the case for the lowest fertilizer dose (variant P-33),

which suggests that celery is more sensitive to the scar-

city of P than to its excess.

The total N, P, K, Mg and Ca contents, measured by

reference methods at 49, 51 and 45 DAT for celery,

sugar beet and strawberry plants, are shown in Fig. 2.

Generally, considerable and statistically significant differ-

ences in macronutrient contents were observed between

various P treatments in the studied species. However,

neither foliar P concentrations in the sugar beet and cel-

ery plants nor Mg concentrations in celery and straw-

berry were significantly affected by P treatment. It was

difficult to find strict tendency in macronutrient content

changes in the leaves of the three studied species with

changing P fertilization. For example, in sugar beet and

celery, the lowest dose of P in fertilizer (P-33) led to the

highest values of N, which could be due to specific inter-

actions between nutrient elements in the substrate, as

explained in research conducted by Y. Li et al. [3]. Simi-

larly, the lowest dose of P in fertilizer (P-33) was

reflected in the highest concentrations of K for each of

the species. The highest contents of Ca were observed in

celery leaves; however, increasing trends with rising P

concentrations in the treatments were not confirmed in

sugar beet or strawberry. These results confirm the com-

plicated relationships between the contents of macronu-

trients in leaves and P treatments in the soil, which was

also suggested in other sources [3, 51, 52].

Correlation between leaf biochemical constituents,

phosphorus fertilization and mass of the leaf/roots of the

plants

Pearson correlation coefficients (PCC) between the leaf

macronutrients (N, P, K, Ca, Mg), total chlorophyll

(Chltot), carotenoids (Car), phosphorus fertilization level

(Psuppl), mass of the leaf (mleaf) and mass of root (mroot)

for the studied species are presented in Fig. 3 as correl-

ation matrices. The leaf pigments and nutritional ele-

ments were evaluated through laboratory analysis at the

end of the experiment. All plants showed a negative cor-

relation between the level of P supply and the concentra-

tion of nitrogen (N) and potassium (K) macronutrients.

The results obtained for celery showed a strong positive

correlation (PCC=0.77) between the applied dosed of

phosphorus fertilizer and the calcium content in plant

leaves, whereas the other plants indicated a negative cor-

relation (PCC=-0.81 for sugar beet and PCC=-0.69 for

strawberry). Earlier reports also indicated a strong phos-

phorus fertilization effect on other macronutrient accu-

mulation in plants [53, 54].

A negative and highly significant correlation was

observed between the level of P supplementation and

chlorophyll concentration in sugar beet, while the

other plants showed non-significant correlations. The

applied fertilization had no strong effect on the con-

centrations of carotenoids in plant leaves. Phosphorus

fertilization was positively correlated with the concen-

tration of this element in plant leaves, especially cel-

ery (PCC=0.70) and strawberry plants (PCC=0.70).

Sugar beet showed a smaller correlation between the

level of P supplementation and P content in plant

leaves. This dependence is consistent with some ob-

servations in previous studies indicating that P

fertilization increases the phosphate content of sugar

beet roots [55]. Most of the plant nutritional elements

were highly correlated with each other. Numerous

significant correlations existed between nutrients in

sugar beet, especially between K and Ca (PCC=0.88)

and N and Mg (PCC=0.82). The strong correlations

between chlorophyll content and carotenoids were ob-

served for celery (PCC=0.85) and strawberry (PCC=

0.95) plants. This is because chlorophylls and caroten-

oids are co-varying in nature (as a components of

photosynthetic antenna complexes) and statistically

dependent, as observed in previous studies [16, 56].
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Negative correlations between P supplementation in soil

and mass of the plant roots suggest that P deficiency pro-

motes a reduction in the mass and length of roots in root

vegetables and causes the reduction in yield. In the case of

strawberry, this correlation was positive. The concentra-

tion of chlorophylls and carotenoids in the above-ground

parts of the tested plants significantly affected the mass of

their roots. Sugar beet had a positive correlation between

the carotenoid content and root mass (PCC = 0.6),

whereas a strong negative correlation was observed

between the concentration of chlorophyll and carotenoid

content in leaves and root mass for celery plants.

Fig. 2 Effect of phosphorus treatment on N, P, K, Ca and Mg in leaf samples determined by traditional methods. Bars followed by the same letter

are not significantly different according to Tukey’s test (p< 0.05)
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Spectral features of plants

Figure 4 represents the general scheme of the proced-

ure to obtain spectral characteristics from the leaf

surfaces of the three studied plants. The average

reflectance spectra of ROIs, covering the spectral

range of 400–2500 nm for leaf samples of the three

studied species of plants with different P treatments

and for five development stages, are shown in Fig. 5.

The spectral curves of the leaves of the three studied

species exhibited similar shapes, although differences

are visible between the spectra belonging to specific

variants. In the visible spectral region, a characteristic

peak was observed at 550 nm with some differences

between variants, especially in sugar beet and straw-

berry. This peak is characteristic of chlorophyll

absorption. In the region of rapid change in the

reflectance of vegetation in the near infrared range of

650–750 nm of the electromagnetic spectrum (so

called red edge), high increases of reflectance occur,

which enabled us to distinguish differences between

some variants of the experiments. The highest differ-

entiation between the spectral curves of the plants

belonging to specific variants was observed in the

range of 750–1300 nm, in which reflectance patterns

are strongly connected with the internal cellular

structure of plants [57]. Unfortunately, in this range,

there was a break (discontinuity) in the registered

reflected radiation, which is connected to low sensi-

tivity of the two spectral cameras used in the part of

this range. Because of this, the raw spectra of the

leaves in this range were not good at distinguishing

between variants. Another part of the spectrum that

seems to be appropriate for distinguishing differences

between variants is absorption at approximately 1400

and 1950 nm, which are highly related to the absorp-

tion by water. The results presented in Fig. 5 indicate

quantitative relationships between the amount of

reflected light and P treatment at the succeeding

growing stages. In plants of all three species, the

highest changes in reflectance values were observed in

the SWIR region (2200–2400 nm). It suggests that the

SWIR region is useful for distinguishing levels of P

fertilization. Wavelengths in the SWIR region are

mainly associated with light absorption by proteins,

nitrogen, cellulose, starch and sugar. It is known that

P plays an important role in protein synthesis, which

may explain these differences, as suggested by Knox

et al. [58].

Fig. 3 Correlations between carotenoids (Car), chlorophyll (Chltot), magnesium (Mg), calcium (Ca), potassium (K), phosphorus (P), nitrogen (N)

content in leaf, leaf mass (mleaf), root mass (mroot) and phosphorus supplementation (Psuppl)
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Effective wavelength selection

To reduce the high dimensionality of the extracted spec-

tral data and to make the classification models more

robust, the most appropriate wavelengths that give the

highest discrimination among different levels of P-

treatment were selected based on 2nd derivative trans-

formation of raw spectra. The 2nd derivative averaged

spectra are shown in Fig. 6. Based on the second deriva-

tive transformation of the original spectra and by apply-

ing the CFS algorithm with greedy stepwise selection

method, 10, 7 and 4 wavelengths were selected for classi-

fication according to the P treatment of sugar beet,

celery and strawberry plants, respectively (Table 1). The

wavelengths used to distinguish between levels of P

fertilization were localized in the blue spectral band

(400–480 nm), NIR (760–900 nm) and SWIR (1000–

2500 nm) regions of the spectrum. In all studied plants,

the level of P supply did not significantly affect the

reflectance in the green (500–560 nm) region. In the

case of strawberry plants, the wavelengths from the red

region (715 and 723 nm) and SWIR region (2301 and

2332 nm) had particular importance for the separation

of the levels of P treatment. The wavelengths in the red

and far-red regions of the electromagnetic spectrum

(723, 754, 715 and 723 nm) in plants are mainly associ-

ated with the absorption of Chlorophyll a. It was shown

that varied P rates cause changes in the concentration of

Chlorophyll a in plant leaves (Fig. 1).

The previous study performed by Osborne et al. [9]

also indicated that NIR (730 nm and 930 nm) and blue

(440 and 445 nm) regions of the spectrum are useful for

the prediction of P concentrations in corn canopy. Dif-

ferences in the selected wavelengths among the three

studied species might be due to differences in plant

structure or changes in the chemical concentration.

Results of discrimination analysis

The prediction accuracies of the models created to dis-

tinguish between plants grown under different levels of

P treatment at different development stages obtained for

the three studied plant species are presented in Table 2.

It results from the analysis of the supervised classifica-

tion algorithms that very similar and relatively high pre-

diction accuracies in the majority of cases (ranging from

40 to 100% for validation sets) were obtained for all four

methods of machine learning model creation methods

Fig. 4 General scheme of the procedure to generate spectral characteristics from hyperspectral images of the three studied plants
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(i.e., backpropagation neural network, random forest,

naive Bayes and support vector machines). In all cases,

despite very limited numbers of wavelengths selected for

the classification (from 4 to 10), the prediction accur-

acies for training sets were very high in all variants of

the experiment. This confirms a good performance of

the CFS wavelength selection algorithm and is in agree-

ment with other studies on plant material classification

with the use of this algorithm [26, 59]. The performance

of the validation sets was considerably lower than that of

the training sets, but the accuracy at distinguishing be-

tween various levels of P treatment were equal or higher

than 80% in 11 variants among 15 variants of species/

stages of plant development. This result is very good al-

though difficult to compare with other studies that used

different experimental setups and limited numbers of P

treatment variants [38, 42]. The lowest percentages of

correctly classified instances were obtained for the first

Fig. 5 Average reflectance spectra of sugar beet (a), celery (b) and strawberry plants (c) grown under different phosphorus (P) fertilization rates

obtained for third development stage. Each line correspond to the spectral characteristics averaged for four plants from each variants of

the experiment
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Fig. 6 Second derivative transformed spectra of sugar beet (a), celery (b) and strawberry plants (c) grown under different phosphorus (P)

fertilization rates obtained for third development stage

Table 1 Wavelengths selected based on the second derivative transformed spectra and CFS algorithm with greedy-stepwise

selection methods

Plant species Number of selected wavelengths Selected wavelengths [nm]

Sugar beet 10 422, 569, 723, 850, 1250, 2227, 2276, 2314, 2345, 2351

Celery 7 414, 419, 429, 564, 754, 1395, 2264

Strawberry 4 715, 723, 2301, 2332
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stage of plant development; however, with progress in

the development of plants, this accuracy was higher.

This result comes from the fact that, in the first period

of plant development, the changes in leaf spectral prop-

erties are considerably minimal between various P treat-

ments and misclassification, especially with one level or

higher of P fertilization. Although all four methods of

supervised classification model creation were highly ef-

fective, the highest overall classification performance

was obtained for RF models. The validation results indi-

cated that this model correctly classified more than 70%

of all instances in the case of strawberry plants and more

than 80% (except the second term) for celery across five

development stages. The average accuracy of RF classifi-

cation for sugar beet was lower compared to other

plants (65%). This result might be explained by the spe-

cific nutrient requirements of the sugar beet [55, 60] and

its lower sensitivity of imbalanced P-fertilization than

strawberry and celery plants.

To assess the performance of the analysed models

for specific P levels in five developmental stages, con-

fusion matrices were created, which enabled us to

identify misclassification percentages for analysed vari-

ants of the experiment. The summary of this analysis

is presented in Table 3 for RF models, which gave

the best overall results in the performed experiments.

The grey cells in this table represent variants with

100% accuracy (all cases classified correctly), yellow

cells show misclassified variants in which misclassifi-

cation refers to one level up or down with respect to

the analysed P fertilization level (e.g., P-33 level clas-

sified as P-67 level), and red cells indicate misclassifi-

cation higher than one P fertilization level (e.g.,

variant P-133 classified as P-33). The confusion matri-

ces for all models divided to 5 growth stages are pre-

sented in Table S1 in Supplement 1. For each

developmental stage, the percentages of misclassified

cases are given, and it is possible to see how mis-

classification occurred (second column in this table

indicates the analysed variants, and separate rows

show with which variants they were misclassified and

what percent of misclassification occurred). From this

table, 100% accuracy was achieved (all cases classified

correctly) for 26 variants of the experiment (P level

vs development stage), misclassification was one level

up or down with respect to the analysed P

fertilization level in 27 variants, and misclassification

was higher than one P fertilization level in only 13

variants. In the majority of misclassified variants (26),

improperly classified cases reached only 20%, there

Table 2 Model performance on selected wavelengths for classification of the level of P treatment at five developmental stages

obtained for the three studied species of plants

Plant species Sugar beet Celery Strawberry

Model BNN LIBSVM LOG RF BNN LIBSVM LOG RF BNN LIBSVM LOG RF

I Training set % 98 84 91 100 98 91 100 100 86 79 68 100

RMSE 0.12 0.28 0.18 0.15 0.12 0.21 0 0.12 0.19 0.32 0.31 0.1

Validation set % 55 45 50 65 75 60 80 80 80 60 55 70

RMSE 0.44 0.52 0.49 0.35 0.3 0.45 0.32 0.32 0.29 0.45 0.39 0.29

II Training set % 98 89 100 100 98 93 95 100 97 97 100 100

RMSE 0.11 0.24 0 0.11 0.12 0.18 0.17 0.13 0.09 0.11 0 0.05

Validation set % 70 70 65 70 55 60 50 55 80 90 80 95

RMSE 0.37 0.39 0.42 0.29 0.39 0.45 0.48 0.34 0.26 0.22 0.31 0.16

III Training set % 95 86 100 100 100 91 100 100 98 77 82 100

RMSE 0.13 0.26 0 0.12 0.06 0.22 0.01 0.11 0.15 0.34 0.22 0.09

Validation set % 65 60 40 75 80 95 55 80 100 85 80 95

RMSE 0.23 0.45 0.55 0.33 0.29 0.16 0.47 0.28 0.17 0.27 0.24 0.15

IV Training set % 100 93 100 100 100 97 100 100 100 100 100 100

RMSE 0.07 0.19 0 0.11 0.05 0.11 0 0 0.02 0 0 0.01

Validation set % 55 85 55 90 80 75 65 85 100 100 95 100

RMSE 0.38 0.27 0.47 0.27 0.27 0.35 0.41 0.27 0.03 0 0.14 0.05

V Training set % 87 86 100 100 100 95 100 100 91 86 100 100

RMSE 0.21 0.26 0 0.13 0.03 0.15 0 0 0.2 0.26 0 0.11

Validation set % 60 45 65 70 95 95 90 95 65 50 80 80

RMSE 0.37 0.52 0.41 0.35 0.15 0.16 0.22 0.16 0.34 0.5 0.32 0.3
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were only 9 variants with misclassified cases of 40%,

3 variants with misclassified cases of 60% and 1 vari-

ant with misclassified cases of 80%. Table 3 also

shows that there were only 6 variants for which two

different levels of P treatment were assigned for a

given level, five of which occurred for the first and

second plant developmental stages. In Fig. 7, the

numbers of misclassified cases in the validation data-

set for random forest (RF) models of P content in

plant treatment for 5 stages of plant growth and 3

studied species are presented, and these are based on

the confusion matrices presented in Table S1 in Sup-

plement 1. This figure shows that the highest number

of misclassified cases for sugar beet and strawberry

occurred during the first stage of plant growth,

whereas this occurred during the second stage of

plant growth for celery. This confirms that, in the

early stages of plant growth, spectral properties of the

affected plant leaves do not always distinguish differ-

ences in P content. Despite this, the overall classifica-

tion performance of the chosen models (and

especially RF models) was very good.

Conclusions
There is high potential of hyperspectral screening for

controlling adequate phosphorous nutrition of culti-

vated plants, which is vital for creating proper condi-

tions of their production and responses to

environmental factors. The experiment conducted on

sugar beet, celery and strawberry indicated that it is

possible for these species to distinguish, with high ac-

curacy, the differences in phosphorous nutrition using

machine learning modelling on the basis of second

derivatives of the reflectance spectra in the spectral

Table 3 Summary of confusion matrices created for the random forest (RF) models of the phosphorous content in treatments for

the three studied species (sugar beet, celery and strawberry) at five stages of plant growth

m.a means “misclassified as” - name of a variant to which a given variant was assigned during the classification

% - percent of misclassified cases belonging to a given variant

The grey cells - all cases classified correctly; yellow cells - one level up or down misclassified variants with respect to the analysed P fertilization level; red cells -

misclassification higher than one P fertilization level
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region of 450–2500 nm. Moreover, it elaborated that

procedures provide a chance to distinguish different

levels of phosphorus fertilization at different develop-

mental stages of plants. Phosphorus deficiency can be

accurately classified at an early plant developmental

stage, especially for celery and strawberry; however,

the classification accuracy increases during plant

growth.

The results have several practical implications. First,

they can be applied to the fast and non-destructive ana-

lysis of phosphorous availability for the examined three

species as an element of precision farming. In particular,

the detection of insufficiencies in P content is possible

with multispectral scanners installed on tractor plat-

forms supported with GPS systems, through implement-

ing selected spectral bands into available sensors, and

through direct use of the elaborated procedures of data

analysis and supervised classification. The method en-

ables us to pin-point areas in the cultivated fields or

even individual plants requiring attention. In this con-

text, it is especially important that elaborated models

concern different stages of plant growth, which is an

additional advantage of such screening. The second pos-

sible application of the study is its implementation to

unmanned aerial vehicles that are capable of distant ana-

lysis of large areas at a time. However, some additional

technical aspects should be considered in such systems,

such as irregular lightening of the analysed scene, the

occurrence of strong vibrations, and controlling flight

trajectories.

The authors are aware that further studies are

needed to explore the impact of soil type on accumu-

lated phosphorous in plants, interactions between

phosphorous status in plants frequently undergoing

abiotic and biotic stresses and their representation in

reflectance spectra and chemometric analysis. Such

additional studies will strengthen the performance of

the elaborated method in detecting phosphorous sta-

tus in plants.

Methods
Plant material

The same number of plants of three species was used

for the experiment: 64 celery (Apium graveolens L., cv.

Neon), 64 sugar beet (Beta vulgaris L., cv. Tapir) and 64

strawberry (Fragaria × ananassa Duchesne, cv. Hon-

eoye). The seeds of celery (produced by SEMO) and

sugar beet (produced by SESVanderHave) were pur-

chased commercially, while the strawberry seedlings

with qualification certificate were obtained from Li-

censed Strawberry Nursey (Niewczas Krystyna & Józef,

Wielowicz 31, 89–412 Sośno, Poland). On March 2018,

seeds of celery (Apium graveolens L., cv. Neon) and

sugar beet (Beta vulgaris L., cv. Tapir) were sown in

plastic pots containing peat. After germination, seedlings

of similar sizes were transplanted to pots (one seedling

per pot) containing sand. The seedlings of strawberry

plants were directly placed in pots with sand. The plants

were grown in the greenhouse under natural sunlight

supplemented white LED light at light intensity of

320 μmol m− 2 s− 1 using a photoperiod of day/night set

to 12/12 h, with temperature ranging from 20 °C to 22 °C

during the months of March–June and September and

from 24 °C to 26 °C during the months of July–August.

Treatments

In this experiment, the plants from each species were

divided equally into four groups of 16 plants each and

were subjected to four different phosphorus rates, which

were applied to the pots to stimulate different nutrient

Fig. 7 Numbers of misclassified cases in a validation dataset for random forest (RF) models of P content in plant treatment for 5 stages of plant

growth and 3 studied species
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levels in plant leaves to test the hyperspectral imaging

system. P fertilizer in the form of superphosphate (P2O5)

was applied to the pots directly before seedling in vari-

ous quantities to obtain different fertilization schemes

named P-33%, P-67%, P-100%, and P-133%. In the vari-

ant P-100%, which was the control group for the whole

experiment, the dose recommended in the literature for

these types of varieties was used [61–63], namely 1.2 g P

per pot (40 mg/kg of the soil). Other variants were

treated with 1/3, 2/3, and 4/3 of this value. After initial

differentiation, each plant was irrigated with 100 ml of

the treatment solution every two days for 60 days. The

nutrient solution contained 33.3 mg/l of N, 13.3 mg/l of

P and 50mg/l of K applied as NH4NO3, Ca(H2PO4)2
and KNO3, respectively. The concentrations of micronu-

trients were B 0.28, Fe 2.4, Mn 1.0, Zn 0.35, and Mo

0.05 mg/l, which were applied as a commercial fertilizer

Micro Plus (produced by Intermag, Olkusz, Poland).

After 60 days, a constant level of the soil water content

was maintained in pots corresponding to the field cap-

acity of water. To do so, the field capacity of water for

the used soil was determined for selected soil samples

under the soil water potential of 15,596 J·m− 3 (pF equal

to 2.2) in the Richard’s chambers (Soilmoisture Equip-

ment Corp., Santa Barbara, CA, USA). At that stage, the

plants were watered using tap water, and the appropriate

soil water content was controlled using a weighting

method.

Hyperspectral imaging system

Spectral data were recorded by a laboratory hyper-

spectral imaging system, which was composed of two

hyperspectral cameras manufactured by SPECIM

(Spectral Imaging Ltd., Oulu, Finland) to cover the

ranges of visible and near-infrared (VNIR) and short-

wavelength infrared (SWIR), a belt conveyor (Reall,

Lublin, Poland) with belt speed regulated for each

camera separately (to conduct line scanning of the

plant leaves) and the illumination system Brilum

(Piaseczno, Poland) model LAVADO416 with 4 light-

ing modules (each of them had 4x20W halogen lamps

made by Philips, the Netherlands). The following im-

aging spectrographs were used inside the hyperspec-

tral cameras: ImSpector V10E (400–1000 nm) and

N25E 2/3″ imaging spectrometer (1000–2500 nm).

The constant distance of 20 cm between the lenses of

the cameras and the plant surfaces were maintained

for each scan. The angle between the halogen lamps

frames and the conveyor belt surface was 45°.

Image acquisition and correction

The three-dimensional hyperspectral data, composed of

960 images of the plants (4 nutrient treatment × 5 devel-

opment stages × 16 replications × 3 species of plants),

were collected before chemometric analysis, and super-

vised classification were performed. Plants were scanned

with the hyperspectral camera when staying in pots with-

out uprooting. Data collection was performed five times

during the experiment under differing stages of plant de-

velopment, numbered as 1, 2, 3, 4 and 5. They represented

7, 14, 21, 35 and 49 days after transplanting (DAT) for cel-

ery plants; 7, 21, 31, 41 and 51 DAT for sugar beet plants;

and 7, 14, 21, 35 and 45 DAT for strawberry plants. De-

scription of development stages achieved by each plant

species along with the code assigned on BBCH scale is

provided in Table 4. For three studied species they cov-

ered the broad period from the unfolding of the second

leaf till the appearance of the first fruit.

Hyperspectral images were recorded at a wavelength

range of 400–1000 nm with a spectral resolution of 2.8

nm using a VNIR camera and in the range of 1000–2500

nm with a spectral resolution of 10 nm using a SWIR

camera. During image acquisition, the plant samples were

placed on the mobile platform using the scanning speed

of 6 mm/s and 8mm/s, and the camera exposure time was

set to 2.3 and 7.6ms for the VNIR and SWIR cameras, re-

spectively. The hyperspectral images obtained during the

measurements were recorded using data acquisition

Table 4 The description of measurement dates based on BBCH (Biologische Bundesanstalt, Bundessortenamnt and Chemische

Industrie) development stages [64, 65]

Measurement
term

Plant species

Sugar beet Celery Strawberry

BBCH
Code

Description BBCH
Code

Description BBCH
Code

Description

I 12 2nd true leaf unfolded 12 2nd true leaf unfolded 12 2nd true leaf unfolded

II 15 5th true leaf unfolded 14 4th true leaf unfolded 14 4th true leaf unfolded

III 19 9 or more true leaves
unfolded

19 9 or more true leaves unfolded 58 Early balloon stage: first flowers with petals
forming a hollow ball

IV 32 Leaves cover 20% of
ground

42 20% of the expected root
diameter reached

65 Full flowering: 50% of flowers open

V 35 Leaves cover 50% of
ground

45 50% of the expected root
diameter reached

85 First fruits have cultivar-specific colour
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software SpectralDAQ ver. 2.1, which is specially dedi-

cated to SPECIM cameras. For each series of measure-

ments, white and dark calibrations were performed

according to the procedure described in Baranowski et al.

[24] to obtain the reflectance from the raw data.

Hyperspectral image pretreatment

The corrected images were used to extract spectral in-

formation, select effective wavelengths, and elaborate the

method of identification of P content in plants. First, the

regions of interest (ROIs), including leaf surfaces, were

pinpointed via ENVI software (ENVI5.4, Research Sys-

tem Inc., Boulder, CO, USA). Next, segmentation was

implemented to segregate the ROIs. The segmentation

was performed according to the procedure described by

Baranowski et al. [59]. After image segmentation, reflect-

ance values of all the pixels in each separate ROI were

averaged to generate one mean value for each band.

That way, the mean values of reflectance from 434 bands

produced the representative reflectance spectrum of

each sample. This procedure is referenced in the

manuscript as the averaging of the reflectance spec-

tra. Before the classification analysis, the extracted

spectra were preprocessed using the second deriva-

tive, calculated with the Savitzky-Golay (SG) method

(second-order polynomial and 11 smoothing points).

The derivative processing suppresses the background

signal as well as reduces image artefacts caused by

non-uniform illumination [66]. Moreover, this pre-

processing method increases the spectral resolution,

has an input in the baseline correction, and enables

an increased resolution of overlapping peaks [32].

Spectra obtained with the use of this preprocessing

method are referenced in the manuscript as second

derivative transformed spectra. The Unscrambler X

ver. 10.1 (CAMO Software, Oslo, Norway) was used

to pre-treat the spectral data.

Effective wavelength selection

Hyperspectral image data contain large amounts of in-

formation, with redundancy and multi-collinearity be-

tween adjacent wavelengths, causing complex problems

with their processing and application. To solve these

problems, it is necessary to extract a number of essential

wavelengths carrying the most relevant information be-

fore further analysis and implementation. To reduce the

high dimensionality of the spectral data, the Correlation-

Based Feature Selection (CFS) algorithm was applied to

the SG transformed data. This algorithm uses heuristics

that assign high scores to feature subsets that are highly

correlated with the class and highly uncorrelated with

each other [67]. In this research, a greedy-stepwise (GS)

search strategy was applied in the CFS algorithm to se-

lect attributes through the space of subsets.

Classification algorithms

Supervised classification experiments were performed on

the hyperspectral data of the plant leaves. Different

machine-learning algorithms, i.e., Backpropagation Neural

Network (BNN), Random Forest (RF), Naive Bayes (NB)

and Support Vector Machine (SVM), were used to classify

plants under different phosphorus fertilizations at

Table 5 Chosen features of the classifiers used in the study

Name of WEKA
classifier’s library

Algorithm description Acronym Used parameters

Multilayer Perceptron Neural networks with backpropagation used for tuning the weights of a neural net
based on the error rate (i.e. loss).

BNN AutoBuild: true;
Learning rate: 0.3;
Momentum: 0.1;
Training time: 500
Hidden layers = 25

LibSVM This library enables users to deal with One-class SVM, Regressing SVM, and nu-SVM.
Many useful statistics are allowed including confusion matrix, precision estimation,
ROC score.

LIBSVM SVM Type: nu-SVC;
Kernel Type: radial basis
function;
Nu: 0.g;
gamma: 0.1;
degree: 3
Normalize: true;
Probability Estimates:
true

Logistic Used for building and using a multinomial logistic regression model with a ridge
estimator.

LOG Debug: false;
MaxIts: −1;
Ridge: 1.0E-6

Random Forests This classifier enables to create forest of random trees. It induces each constituent
decision tree from a bootstrap sample of the training data

RF Debug: false;
MaxDepth: 0;
Num of Features: 0;
Num of Trees: 10;
Seed: 1
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different developmental stages. Extensive work has been

performed to optimize the parameters of individual

models using trial and error. The parameters of the elabo-

rated models are described in Table 5. For the classifica-

tion experiment, samples were randomly selected for the

test set and the validation set at the ratio 75:25. The train-

ing data set was used to build the classification model,

while the test data set was used to check the model’s cap-

ability to properly classify new samples. The experiment

of learning and testing was repeated 10 times with the

random data selection (cross-validation method). All clas-

sification algorithms were implemented from a compre-

hensive software called the Waikato Environment for

Knowledge Analysis, or WEKA [68]. Initially, the majority

of available classifiers in these categories were tested on

representative groups of training and test data. The four

with the best prediction accuracies were chosen for

comparison.

Reference analysis

At the end of the experiment, fresh leaves from each plant

were clipped from the canopy with a pair of scissors, put

in plastic bags, frozen in a cooler and brought to the la-

boratory for measurements of leaf pigments and nutri-

tional element content. To determine the chlorophyll

content, fresh leaves (approximately 0.6 g) were ground in

80% acetone solution. Then, the leaf chlorophyll concen-

tration was measured using a UV-VIS spectrophotometer

(UV-5600, Metash, China) according to the method de-

scribed by Lichtenthaler [69]. The rest of the plant sam-

ples were oven-dried (105 °C for 0.5 h followed by 80 °C

until the constant weight was attained) and then ground

into fine powder for mineral content analysis. The total P

content was quantified spectrophotometrically using the

vanado-molybdate phosphoric acid yellow colour method

[70]. Total N content was determined by the micro Kjel-

dahls’ method. Total K concentration in the leaf was ana-

lysed using the flame-photometric method. The calcium

content (Ca) and magnesium (Mg) content were deter-

mined using an atomic absorption spectrometer (Spektr

AA 800, Varian, CA, USA).

Statistical analyses

To test the effects of P fertilizer treatments on leaf

photosynthetic pigments and nutritional elements, one-

way analysis of variance (ANOVA) was followed by

Tukey’s honest significant difference (HSD). P< 0.05 was

considered statistically significant. Pearson’s correlation

coefficient (R) was also used to test the relationship be-

tween leaf biochemical constituents, P fertilization and

parts of the plants. All these statistical analyses were

conducted using STATISTICA v13.4 (TIBCO Software

Inc., Palo Alto, California, United States).
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