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We consider the problem of determining pollution sources in a river by using boundary measure-
ments. The mathematical model is a two dimensional advection-diffusion-reaction equation in the
stationary case. Identifiability and a local Lipschitz stability results are established. A cost function
transforming our inverse problem into an optimization one is proposed. This cost function repre-
sents the difference between the two solutions computed from the prescribed and measured data
respectively. This representation is achieved by using values of these two solutions inside the do-
main. Numerical results are performed for a rectangular domain. These results are compared to
those obtained by using a classical least squares regularized method.
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1 Introduction

When we observe a river, the transparency of its water, the natural aspect
of its banks and its bottom can sometimes reflect its quality. However, to be
insured of this quality, we have to analyze the composition of the water, and
the quality of the sediments the river transports.

By the quality of water we understand its physical, chemical and biological
properties which can be estimated by measuring, for example, the quantity of
organic matter contained in water.

By organic matter, we mean a set of organic substances that their degradation
implies consumption of oxygen dissolved in water with direct consequences
on aquatic life. These substances are contained in discharges of human and
agricultural origin and in the numerous industrial discharges. The importance
of these pollution is estimated by the measures of the so-called BOD (Biologic
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Oxygen Demand) and COD (Chemical Oxygen Demand). See [12] and [13] for
more details.

In order to manage and supervise efficiently the water quality in rivers, ac-
curate determination of the location and magnitude of pollution sources is
necessary.

Moreover, information regarding pollution sources is useful for addressing judi-
cial issues of responsibility when the pollution spill is accidental or intentional.

In the present study, we are concerned with the problem of identifying the
location and the magnitude (intensity) of pollution point sources from the
measurements of BOD on a part of the river. The portion of the river under
surveillance is assimilated to a simply bounded domain in R

2 denoted Ω with
smooth boundary Γ. The governing equation and the problem statement are
specified in section 2. We then prove in section 3 that the pollution sources
are uniquely determined by using boundary measurements of the BOD con-
centration on some part Γout of the boundary Γ. In section 4, a local Lipschitz
stability result is established. In section 5 we propose an identification method
based on the so-called Kohn and Vogelius cost function for which we estab-
lish the gradient. This function is based on the energy gap between the two
solutions: the first is the solution of the “Neumann” problem that considers
the flux as a boundary condition on Γout, and the second is the solution of
“Dirichlet” problem that considers the measured value as a boundary condi-
tion on Γout ⊂ Γ. Provided the data are exact and obviously compatible, we
prove that the minimum of this cost function is null and then the minimum
argument is exactly the solution of our inverse problem which will be stated
in the next section. Section 6, is devoted to numerical results, where some
experiments are given with respect to the introduction of a Gaussian noise on
the measurements and compared to those obtained using the classical least
squares regularized method.

2 Governing equations and problem statement

The pollutant concentration u that we consider here (BOD) is governed by
the following equations:

L[u] = F in Ω
ν.γ∇u = 0 on ΓN

u = 0 on ΓD

(2.1)

where
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L[u] = −∇.(γ∇u) + v.∇u+ ru

with u the concentration of pollutant, v the mean velocity vector (v1, v2)
t of

the river, r the reaction coefficient and F the source term. For this purpose,
let γ = γij denote the anisotropic tensor diffusion of the medium Ω. The
coefficients γij are constant and the matrix γ is assumed to be symmetric
positive definite. For more information one can see [12] or [13] where detailed
derivations and discussions of the governing equations for flow and transport
on surface water systems are available.

The domain Ω is assumed to be a bounded open, connected set in R
2 of

sufficiently regular boundary Γ = ∂Ω. The boundary Γ is assumed to be of
the form Γ = Γ̄D ∪ Γ̄N , where ΓD and ΓN are disjoint, open subset of Γ
with nonempty interior and ν denote the outward unit normal vector to Γ.
Moreover, the part ΓN is defined by ΓN = Γout ∪Γs, with Γs = Γs

1 ∪Γs
2 where

Γs
1, Γs

2 and Γout are given as follows.

Γ

Γ
Γ

s

s
2
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Figure 1. Polluted river

Before starting our study, we can say here that one of the difficulties for an
inverse problem regarding the identification of a function source F is the fact
that we cannot uniquely determine F in its general form. We can see [8] where
an example in one-dimensional case is given and [7] for the two-dimensional
case.

To overcome this difficulty, people generally assumes that some a priori in-
formation on the sources is available. For example, time independent sources
F (x, t) = f(x) are treated by J.R. Cannon [3] using spectral theory, and by H.
Engl, O. Scherzer and M. Yamamoto [9] using the approximated controllability
of the heat equation. The results of this last paper are generalized by M. Ya-
mamoto [17, 18] to the sources of the form F (x, t) = α(t)f(x), f ∈ L2,where
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the time part function α ∈ C1[0, T ] is known and satisfying the condition
α(0) 6= 0. Recently, F. Hettlich and W. Rundell [10] considered a 2D problem
for the heat equation with the sources of the form F (x, t) = χD(x), where
D is a subset of a disk. They proved that the set D can be identified with
the measures of the flow at two different point on the boundary, and gave a
numerical method to identify it. Finally, the non linear source problem, where
F is dependent on the solution of the equation, that is: F (x, t) = G(u(x, t)),
is considered in the papers of P. DuChateau and W. Rundell [6], and J.R.
Cannon and P. DuChateau [4].

In our case, following the usual modelling of point sources in physics, we
assume that F is of the form

F (X) =

m
∑

i=1

λi δ(X − ai), X = (x, y) ∈ Ω (2.2)

where m is an integer, ai are points in Ω and λi are scalars. Furthermore, the
points ai are assumed to be distinct.

Since the source F given by (2.2) belongs to the Hilbert space H s(R2) for
s < −1, a variational formulation of the problem (2.1)-(2.2) is not possible.

However, this problem is well posed and the trace u|Γ is well defined in H
1

2 (Γ)
as we shall show it below. First, we define through a convolution the function

u0 = E ∗ F (2.3)

where E is the fundamental solution of the operator L in R
2, that is

L[E] = δ in R
2

where δ denotes the Dirac distribution at the origin. As it was known [16], E is
an analytic function in R

2
\{0}, the function u0 is also analytic in R

2
\∪{ai}.

Let us now define the function w ∈ H1(Ω) (see [5]) by

L[w] = 0 in Ω
ν.γ∇w = −ν.γ∇u0 on ΓN

w = −u0 on ΓD

(2.4)

for which the trace w|Γ is well defined in H
1

2 (Γ). Thus the problem (2.1)-(2.2)

is well posed and then the trace u|Γ is well defined in H
1

2 (Γ). Then one can
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define the observation operator

B[F ] = u|Γout
.

This is the so-called direct problem. The inverse problem that we are concerned
with is the following:

IP. Given the measurement f ∈ H
1

2 (Γout), find a source F such that the
solution to (2.1)-(2.2) satisfies

B[F ] = f. (2.5)

Several questions arise in such inverse problems: does the available data f
uniquely determine F (uniqueness) and if so, how does the source F depend
on f (stability)? Is there a constructive algorithm for determining this source
(identification)?

3 Identifiability

The identifiability issue allows us to know whether our inverse problem is well
posed in the following sense. If two measured concentration of BOD coincide
on Γout, then they are generated by the same source of the form (2.2). Fur-
thermore, to show that the solution of the optimization problem is that of the
inverse problem IP we need identifiability result.

Our identifiability result is given by the following theorem:

Theorem 3.1 Let Fi(X) =

mi
∑

j=1

λi
jδ(X − ai

j), i = 1, 2. If B[F1] = B[F2], then

m1 = m2 = m, λ1
j = λ2

j and a1
j = a2

j for j = 1, ...,m. �

Proof

Let ui, i=1,2 be the solutions of the following system:

L[ui] = Fi in Ω
ν.γ∇ui = 0 on ΓN

ui = 0 on ΓD

(3.6)

Assume that B[F1] = B[F2], we have to prove that F1 = F2.
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Consider the difference θ = u2 − u1 which is the solution of the following
system:

L[θ] = F2 − F1 in Ω
ν.γ∇θ = 0 on ΓN

θ = 0 on ΓD ∪ Γout

(3.7)

From Holmgren theorem [14], we know that θ is identically zero in Ω\∪{a1
i , a

2
i }.

Moreover, since Fi ∈ H−1−ε, with ε > 0, one has θ ∈ L2(Ω). Thus θ = 0 a.e.
Ω which implies F 1 = F 2 and consequently m1 = m2 = m, λ1

j = λ2
j , and

a1
j = a2

j , for j = 1, ...,m.

4 Stability

In this section, we investigate the stability of our inverse problem IP. This
means continuous dependence of the source F on the measurements B[F ].
Stability is a crucial issue for numerical applications and it has been considered
by many authors in other situations. In this section, we prove a local Lipschitz
stability result derived from the Gâteaux differentiability, by establishing that
the Gâteaux derivative is not null. Furthermore, we need techniques developed
for stability in order to calculate the gradient given in the section 5.3.

Let Iad = (R+ × Ω)m. Let ϕ = (λk, ak)1≤k≤m ∈ Iad, which will be denoted
ϕ = (λk, ak) for simplicity.

First, given ϕ = (λk, ak) ∈ Iad and let ψ = (µk, bk) be any vector in R
3m, then

for a sufficiently small real h, ϕh := ϕ+ hψ ∈ Iad.

Thus, we define the corresponding source term

F h(X) =

m
∑

k=1

(λk + hµk) δ(X − (ak + hbk)). (4.8)

Let uh be the solution to the following problem

L[uh] = F h in Ω
ν.γ∇uh = 0 on ΓN

uh = 0 on ΓD.
(4.9)
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and set

B[F h] = uh
|Γout

. (4.10)

As for the problem (2.1) the problem (4.9) is well defined and (4.10) makes

sense in H
1

2 (Γout).

Now, we are able to state our stability result given by the following theorem:

Theorem 4.1 (Local Lipschitz stability)
If ψ 6= 0, then

lim
h−→0

B[F h] −B[F ]

h
6= 0. �

Proof

Let bk = (bk,i)1≤i≤2. The Taylor expansion applied to F h shows that, there
exists 0 < θ < 1, such that

F h = F + hF 1 + h2F 2(h) (4.11)

with

F 1 =

m
∑

k=1

µkδ(X − ak) − λkbk.∇δ(X − ak)

and

F 2(h) =
m

∑

k=1



−µkbk.∇δ(X − ak) +
1

2
(λk + hµk)

2
∑

i,j=1

bk,ibk,j∂
2
xixj

δ(X − (ak + θhbk))



 .

Here ∂2
xixj

(δ(x − c)) denotes the second partial derivative of the Dirac distri-
bution at point c with respect to xi and xj.

Therefore

uh = u+ hu1 + h2u2(h) (4.12)
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where u1 and u2(h) are respectively solutions of (4.13) and (4.14) defined as
follows

L[u1] = F 1 in Ω
ν.γ∇u1 = 0 on ΓN

u1 = 0 on ΓD

(4.13)

and

L[u2(h)] = F 2(h) in Ω
ν.γ∇u2(h) = 0 on ΓN

u2(h) = 0 on ΓD.
(4.14)

Then from (4.12), one deduces

B[F h] = B[F ] + hB[F 1] + h2B[F 2(h)].

First, as h is small enough, the locations {ak+θhbk} are far from the boundary
Γ. Then, since the distributions F 1 and F 2(h) are supported respectively by
{ak} and {ak}, {ak + θhbk}, the corresponding solutions u1 and u2(h) are well

defined, from which the traces u1
|Γout

and u2
|Γout

are well defined in H
1

2 (Γout).

Moreover, according to the form of the source F 2(h), and the fact that the
dipole sources are well separated from the boundary, one obtains

lim
h−→0

B[F h] −B[F ]

h
= B[F 1].

Then we have to prove that B[F 1] 6= 0. That is given by the following lemma.

Lemma 4.2 If the solution u1 to the problem (4.13) satisfies u1
|Γout

= 0, then

ψ = 0. �

Proof.

By the same technique used to show identifiability, we will prove that u1
|Γout

6=

0.
Assume that u1

|Γout

= 0, so u1 satisfies the following system:
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L[u1] = F 1 in Ω
ν.γ∇u1 = 0 on ΓN

u1 = 0 on ΓD ∪ Γout.

Using Holmgren theorem, one gets u1 = 0 in Ω\ ∪ {ak}. Therefore, u1 is a
linear combination of Dirac distribution and its derivatives at points ak [15].
Now, since F 1 ∈ H−2−ε with ε > 1

2 , u1 ∈ H−ε. Thus, F 1 = 0 and then ψ = 0.

5 Identification

In this section, we propose an algorithm based on the minimization of a cost
function of Kohn and Vogelius type. This kind of cost functions has been
used by many authors for various inverse problems (see for example [1] [2]).
It indicates the energy gap between a so-called “Neumann solution” and a
so-called “Dirichlet” problem corresponding to the measured data f .

5.1 Kohn and Vogelius cost function

If the source F was regular, we would have introduced the Kohn and Vogelius
cost function by comparing the solutions of the problem (2.1) with Neumann
condition on Γout and the following one

L[ud] = F in Ω
ν.γ∇ud = 0 on Γs

ud = 0 on ΓD

ud = f on Γout

(5.15)

However, since the source F belongs to H−1−ε(Ω) with ε > 0, the solutions of
the problems (2.1) and (5.15) do not belong to H 1(Ω), so we do not proceed
as mentioned above.

Nevertheless, to overcome this difficulty, we proceed in the following way.

Let u0 be the solution of (2.3). Let w be the solution of (2.4) and wd = ud−u0

the solution of the following problem
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L[wd] = 0 in Ω
ν.γ∇wd = −ν.γ∇u0 on Γs

wd = −u0 on ΓD

wd = f − u0 on Γout

(5.16)

for which we make some variable changes in order to make this problem ”sym-
metric”.

Let the vector κ be such that:

2γκ − v = 0.

For simplicity of reading, we set

g0 = −e−κ.X u0,
g1 = −e−κ.X ν.γ∇u0,
f0 = e−κ.X (f − u0),

where κ.X denotes the inner product of vector κ and X = (x, y)

Finally, we introduce the functions

z = e−κ.X w

and

zd = e−κ.X wd

which are respectively solutions of the following systems

−∇.(γ∇z) + ρz = 0 in Ω
ν.γ∇z + 1

2v.ν z = g1 on ΓN

z = g0 on ΓD

(5.17)

and
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−∇.(γ∇zd) + ρzd = 0 in Ω
ν.γ∇zd + 1

2v.ν zd = g1 on Γs

zd = g0 on ΓD

zd = f0 on Γout

(5.18)

where

ρ = κ.γκ+ r,

which is positive since the matrix γ is symmetric positive definite and r ≥ 0.
The cost function J is then defined as follows

J(ϕ) =
1

2

[
∫

Ω
(|γ

1

2∇z − γ
1

2∇zd|
2 + ρ|z − zd|

2)dx+

∫

Γout

|z − zd|
2ds

]

.

5.2 Optimization problem

Consider now the following optimization problem:

Find ϕ ∈ Iad such that J(ϕ) ≤ J(ξ) ∀ ξ ∈ Iad. (5.19)

At first, we show that the solution of the inverse problem (2.1)-(2.2), (2.5) is the
solution of the optimization problem (5.19). It leads us naturally to calculate
the gradient of the functional J which will be the object of paragraph 5.3.

Proposition 5.1 Let f ∈ H
1

2 (Γout). Let ϕ ∈ Iad be the solution of the inverse
problem (2.1)-(2.2). Then ϕ is the unique element of Iad such that

J(ϕ) ≤ J(ξ) ∀ ξ ∈ Iad. �

Proof.
Let ϕ be the solution of the inverse problem (2.1)-(2.2), (2.5), then u|Γout

= f.
Thus, w|Γout

= f − u0|Γout
and therefore, z|Γout

= f0.

Using Holmgren theorem, one gets z = zd in Ω. The function ϕ is therefore a
minimum of J with J(ϕ) = 0.
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Let now ϕ1, another minimum for J with J(ϕ1) = 0. Let u(ϕ1), w(ϕ1), z(ϕ1),
zd(ϕ1) be the corresponding solutions respectively of (2.1), (2.4), (5.17), (5.18).
Since J(ϕ1) = 0, one gets, z(ϕ1) = zd(ϕ1) on Γout and then w(ϕ1) = wd(ϕ1)
and finally u(ϕ1) = f . Furthermore, as f = u(ϕ) and thanks the identifiability,
we get ϕ = ϕ1.

5.3 Gradient computation

Thanks to the above proposition, the inverse problem (2.1)-(2.2), (2.5) is
turned into the optimization problem (5.19). Furthermore, in order to use
the non-linear optimization routine optim of the scientific software Scilab
(www.scilab.org), we need to compute the gradient of J , which is a vector
in R

3m. To do that, it suffices to compute its Gâteaux derivative with respect
to ϕ, in a direction ψ, defined as follows

J ′(ϕ).ψ = lim
h→0

J(ϕ+ hψ) − J(ϕ)

h
.

First , by using Green formula and by integrating by parts, one has

∫

Ω
(|γ

1

2∇z−γ
1

2∇zd|
2+ρ|z−zd|

2)dx =

∫

Γout

(z−zd)γ∇(z−zd).ν ds−
1

2

∫

Γs

|z−zd|
2v.ν ds,

which leads to

J(ϕ) =
1

2

∫

Γout

|z − zd|
2ds+

1

2

[
∫

Γout

(z − zd)γ∇(z − zd).νds−
1

2

∫

Γs

|z − zd|
2v.νds

]

.

Let now F h (4.8) be the corresponding source to ϕh. Let uh
0 be the solution

of problem (2.3) with F h as source term.

From (4.11), we get an asymptotic expansion of uh
0 with respect to the param-

eter h:

uh
0 = u0 + hu1

0 + h2u2
0 (5.20)

with u1
0 = E ∗ F 1 and u2

0 = E ∗ F 2(h).
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Now, set

g0,h = −e−κ.X uh
0 ,

g1,h = −e−κ.X ν.γ∇uh
0 ,

f0,h = e−κ.X (f − uh
0)

and denote zh and zh
d the associated solutions defined respectively by,

−∇.(γ∇zh) + ρzh = 0 in Ω
ν.γ∇zh + 1

2v.ν z
h = g1,h on ΓN

zh = g0,h on ΓD

and

−∇.(γ∇zh
d ) + ρzh

d = 0 in Ω
ν.γ∇zh

d + 1
2v.ν z

h
d = g1,h on Γs

zh
d = g0,h on ΓD

zh
d = f0,h on Γout

for which one can easily derive the asymptotic expansion

zh = z + hz1 + h2z2(h)
zh
d = zd + hz1

d + h2z2
d(h)

(5.21)

which we need to compute the gradient of the cost function J .

Here z1 and z1
d are respectively solutions of the following problems

−∇.(γ∇z1) + ρz1 = 0 in Ω
z1 = g0,1 on ΓD

ν.γ∇z1 + 1
2v.ν z

1 = g1,1 on ΓN

(5.22)

and

−∇.(γ∇z1
d) + ρz1

d = 0 in Ω
z1
d = g0,1 on ΓD

ν.γ∇z1
d + 1

2v.ν z
1
d = g1,1 on Γs

z1
d = g0,1 on Γout

(5.23)
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with

g0,1 = −e−κ.X u1
0,

g1,1 = −e−κ.X ν.γ∇u1
0.

Therefore, a straightforward calculation using the above asymptotic expan-
sions (5.21) leads to

J ′(ϕ).ψ =

∫

Γout

(z1 − z1
d) [γ∇(z − zd).ν + (z − zd)] ds−

1

2

∫

Γs

(z − zd)(z
1 − z1

d)v.νds.

Finally, according to the condition satisfyed by z on Γout, we obtain the fol-
lowing result.

Proposition 5.2 The Gâteaux-derivative of the cost function J at point ϕ in
the direction ψ is given by

J ′(ϕ).ψ =

∫

Γout

(z1 − g0,1)

[

g1 − f0 + z(1 −
1

2
v.ν) − γ∇zd.ν

]

ds−
1

2

∫

Γs

(z1 − z1
d)(z − zd)v.νds.�

In order to compare the identification results obtained by the Kohn and
Vogelius cost function, we also solve the identification problem by using a
Tikhonov regularized least squares method. That means to minimize the fol-
lowing cost function with respect ϕ in Iad

JLS(ϕ) =
1

2
‖u− f‖2

L2(Γout)
+
ε2

2
‖ϕ‖2

L2

where ε is a regularization parameter.

6 Numerical results

For numerical experiments, we are concerned with a portion of Aisne river
(France) [11] assimilated to a rectangular domain Ω with a length L = 1000
meters and a width ` = 100 meters. We reduce Ω to

Ω̃ =
{

X̃ = (x̃, ỹ) ∈ ]0, 1[×]0, 0.1[
}



December 6, 2006 9:5 Inverse Problems in Science and Engineering Article2D

Identification of Point Sources in Two Dimensional Advection-Diffusion-Reaction Equation 15

and consider the following:

L̃[ũ] = F̃ in Ω̃

ũ = 0 on Γ̃D

ν̃.D∇ũ = 0 on Γ̃N

(6.24)

with

L̃[ũ] = −∇.(D∇ũ) + V.∇ũ+ rũ

and Γ̃D, Γ̃N , ν̃ are, respectively, defined in the same manner that ΓD, ΓN , ν
in the domain Ω. In addition, we denote by

X̃ =
X

L
, ũ(X̃) = u(X), Si =

ai

L
, V =

1

L
v, D =

1

L2
γ

and

F̃ (X̃) =

m
∑

i=1

λ̃iδ(X̃ − Si)

where λ̃i = λi

L2 , i = 1, ...,m. Experimental measurements are simulated by syn-
thetic data obtained by solving the problem (2.4), using P 1 finite elements with
20 nodes on the width of Ω̃ and 100 nodes on its length. These measurements
are taken at the nodes of mesh on the boundary Γ̃out.

The gradient has been computed thanks to proposition 2.

For numerical purpose, we consider γ11 = 8 m2s−1 [11], so with respect to
Okubo’s law [13], γ22 is given by

γ22 = (
`

L
)

4

3 γ11 =⇒ γ22 = 0.37 m2s−1

and we suppose that γ12 = γ21 = 0. For the mean velocity vector, we have v =
(v1, 0)t where v1 = 0.08 ms−1 [11]. The reaction coefficient is r = 2.2E−06 s−1

[11].
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6.1 Sensitivity of the identification results with respect to a Gaussian
noise

In this paragraph, we study the sensitivity of the results obtained by both
identification methods, that is the first approach (Kohn and Vogelius method),
developed in section 5, and the Tikhonov regularised least squares method,
with respect to the introduction of a Gaussian noise on the data f . We make
synthetic measurements from the source located at S = (0.643, 0.02) emitting
the intensity coefficient λ = 2.3 g/ms. The results of this study are presented
in the table below as follows: in the first column, we indicate the % noise
while the two next columns are devoted to the identification results obtained
respectively by the first approach and the least squares method. Given a %
noise, we present the x-coordinate, the y-coordinate of the location S and
the intensity λ identified by each method. As far as the least squares method
is concerned, we consider the cost function JLS with the geometric sequence
εn = (0.1)n, n = 1, ..., 5 and we choose as regularisation parameter ε the
optimal term of this sequence. The ε-values are represented in the last column.

% noise Kohn and Vogelius Least squares ε
0 0.645 0.0192 2.21 0.644 0.0195 2.24 0.001
1 0.647 0.0189 2.18 0.648 0.0193 2.16 0.001
2 0.638 0.0182 2.13 0.661 0.0228 2.08 0.01
3 0.631 0.0176 2.06 0.656 0.0181 1.84 0.01
4 0.657 0.0168 2.03 0.668 0.0290 1.79 0.01
5 0.671 0.0372 1.89 0.687 0.0415 1.61 0.01
6 0.693 0.0463 1.63 0.712 0.0630 1.57 0.1
7 0.707 0.0597 1.37 0.702 0.0531 1.54 0.1
8 0.731 0.0724 1.19 0.729 0.0694 1.12 0.1
10 0.786 0.0912 0.71 0.805 0.1130 0.83 0.1

Table 1. Identification with respect to % noise

In order to compare these identification results, we compute from table 1 the
following mean squared errors (MSE)

1

10

10
∑

j=1

(0.643 − xj
KV )2 = 3.6E − 03,

1

10

10
∑

j=1

(0.643 − xj
LS)2 = 4.5E − 03;
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1

10

10
∑

j=1

(0.02 − yj
KV )2 = 1.04E − 03,

1

10

10
∑

j=1

(0.02 − yj
LS)2 = 1.46E − 03;

1

10

10
∑

j=1

(2.3 − λj
KV )2 = 0.542,

1

10

10
∑

j=1

(2.3 − λj
LS)2 = 0.568;

where xj
KV , y

j
KV , λ

j
KV and xj

LS , y
j
LS, λ

j
LS are the x-coordinate, the y-coordinate

of the location S and the intensity λ obtained respectively by the first approach
and the least squares method for the j th-considered % noise.

The above numerical tests indicate that the identification results obtained by
the first approach are better than those given by the least squares method.
However, the higher intensity of noise constitutes a common limit for the two
identification methods.

Below, we present the percentage relative errors on λ, that is
|λ−λ

j

KV |
λ

× 100

and
|λ−λ

j

LS |
λ

× 100 for j = 1, ..., 10 deduced from the table 1 with respect to %
noise.
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Figure 2. Percentage relative error on λ with respect to % noise

From figure 2, we remark that the Kohn and Vogelius method improves the
quality of identification results especially for the lower values of % noise. In-
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deed, the identification results given by this method are more stable than those
obtained by the Tikhonov regularised least squares method with respect to the
introduction of a Gaussian noise on the data f .

6.2 Case of several active sources

In this part, we compare the results obtained by the two identification meth-
ods where we consider several active sources. For these numerical tests, we
introduce a fixed intensity of a Gaussian noise (% noise=3%) on the data f .
The results of this study are represented in the table below where the first
column is reserved for the source from which, for each case, we constitute
the synthetic measurements. The two others are reserved for the identification
results given by the two methods.

measure sources Kohn and Vogelius Least squares (ε=0.01)
0.227 0.092 1.47 0.216 0.086 1.28 0.203 0.077 1.19
0.841 0.069 3.25 0.834 0.060 3.11 0.827 0.058 2.98
0.100 0.001 2.43 0.079 0.002 2.18 0.053 0.003 1.96
0.617 0.098 1.65 0.608 0.084 1.46 0.602 0.076 1.38
0.832 0.034 4.12 0.838 0.043 3.98 0.821 0.026 3.74

Table 2. Case of several active sources

From the numerical tests given in the table 2, we remark an advantage for the
Kohn and Vogelius method to improve the identification results especially in
the case where the pollution has occured far from the observatory Γout.

7 Conclusion

In this paper, we have considered the inverse source problem of determining
pollution point sources in a river by using boundary measurements. Identifia-
bility and local Lipschitz stability results are established. For numerical pur-
pose, we proposed a new cost function J of Kohn and Vogelius type based on
the energy gap between the solutions of the so-called “Neumann” and “Dirich-
let” problems for which we have proved that the unique minimum argument
is the solution of the inverse problem. Several numerical tests are performed.

The comparison of the identification results obtained by this cost function
J and those given by the Tikhonov regularised least squares method shows
the advantage of this new identification method to improve the quality of the
identification results. Indeed, the cost function J can be seen as other manner
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to regularize the least squares method which enables the identification results
to be more stable with respect to the introduction of a Gaussian noise on the
measurements and to improve them especially in the case where pollution has
occured far away from the observatory.

Discussion

In the presented work, we assumed a linear advection-diffusion model for trans-
port process and point sources. This model is also used in [8] to identify a
point source and to recover its intensity function in the one-dimensional time-
dependent case. As far as the applicability of this model to identify distributed
sources is concerned, in [7] the authors used it to identify spherical sources
F (x, t) =

∑m
i=1 λi(t)χωi

(x) where χ designates the characteristic function and
ωi the sphere centred at Si. They also considered this model to recover a source
with separated variables F (x, t) = λ(t)g(x), where the function λ is supposed
known and the function g ∈ L2 is unknown.

In practice the values of the diffusion and advection coefficients are largely
variable from one river to another. As the precision on the numerical solution of
this model depends on the transport nature: advection dominant (high Peclet
number) or diffusion dominant (low Peclet number), it seems to be interesting
to study the effects of the transport nature on the performance of these inverse
methods. This study could be useful to identify eventual limitations of the
supposed model.
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