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Identification of Positive Real Models in Subspace
Identification by Using Regularization

Ivan Goethals, Tony Van Gestel, Johan Suykens, Paul Van Dooren,
and Bart De Moor

Abstract—In time-domain subspace methods for identifying linear-time
invariant dynamical systems, the model matrices are typically estimated
from least squares, based on estimated Kalman filter state sequences and
the observed outputs and/or inputs. It is well known that for an infinite
amount of data, this least squares estimate of the system matrices is unbi-
ased, when the system order is correctly estimated. However, for a finite
amount of data, the obtained model may not be positive real, in which
case the algorithm is not able to identify a valid stochastic model. In this
note, positive realness is imposed by adding a regularization term to a least
squares cost function in the subspace identification algorithm. The regu-
larization term is the trace of a matrix which involves the dynamic system
matrix and the output matrix.

Index Terms—Positive realness, regularization, ridge regression,
stochastic systems, subspace identification.

I. INTRODUCTION

In this note, we will consider stochastic systems and models of the
form

xk+1 =Axk + wk

yk =Cxk + vk (1)

with

E
wp

vp
w
T
q v

T
q =

Q S

ST R
�pq � 0 (2)

whereEf�g denotes the expected value operator and�pq the Kronecker
delta. The elements of the vectoryk 2 l are given observations at
the discrete-time indexk of the l outputs of the system. The vector
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xk 2
n is the unknown state vector at timek. The unobserved process

and measurement noisewk 2 n andvk 2 l are assumed to be
white, zero mean, Gaussian with covariance matrices as given in (2).
The system matricesA, C and the covariance matricesQ, S, andR
have appropriate dimensions.

Denoting the output covariance matrices as�m = Efyk+my
T
k g, and

the cross-covariance matrix between the states and the observations as
G = Efxk+1y

T
k g, one can derive that�m = CAm�1G,�

�m = �T
m,

m � 1. Hence, the output covariances can be considered as Markov
parameters of a deterministic linear time invariant system with system
matrices (A,G,C,D) whereD+DT = �0. Throughout this note, we
will refer to (A,G,C,D) as the “covariance model.” The spectral den-
sity�(z) of the system (1) can be expressed in terms of the covariance
model as�(z) = S(z)+ST (z�1)withS(z) = D+C(zIn�A)

�1G

and is assumed to be positive for allz on the unit circle, in which case
the model (A, G, C, D) is called positive real.

Stochastic subspace identification methods [1] make extensive use
of the covariance model. Typically they start by making an estimate
(Â, Ĝ, Ĉ, D̂) based on available measurements. In a second step the
covariance model is then transformed into a so-called forward inno-
vation model which is statistically equivalent to a model of the form
(1). However, it is known that the second step may fail if the estimated
model (Â, Ĝ, Ĉ, D̂) is not positive real due to modeling errors (see,
for instance, [2]). In such cases, no physically meaningful model will
be returned by the subspace identification algorithm.

In recent years, several modifications to the standard stochastic sub-
space identification algorithms have been suggested to solve the posi-
tive realness problem. This, however, at the cost of introducing a small
bias in the obtained solution. In this note, we impose positive real-
ness by adding a regularization term to a least squares cost function
appearing in most stochastic subspace identification algorithms. Al-
though a bias is still introduced, the regularization approach will be
seen to outperform those reported in the literature.

The outline of this note is as follows. In Section II, the stochastic
subspace identification algorithm will be outlined, and its problems
with positive realness will be described. A proposal for a technique
to impose positive realness on an identified covariance model will be
given in Section III, the performance of this technique will be compared
to that of various existing ones in Section IV, and a real-life example
will be introduced in Section V. Finally, the conclusions will be drawn
in Section VI.

II. SUBSPACEIDENTIFICATION

Stochastic subspace identification algorithms typically start by cal-
culating Kalman filter state sequencesX̂i 2

n�j andX̂i+1 2
n�j

of the system and an estimate of the system ordern̂ directly from output
data. This is done using geometric operations of subspaces spanned by
the column or row vectors of block Hankel matrices. For instance, the
output data block Hankel matrixYp = Y0ji�1 of past outputs is con-
structed from the observationsy0; y1; . . . ; yi+j�2 as follows:

Y0ji�1 =

y0 y1 . . . yj�1

y1 y2 . . . yj
...

...
...

yi�1 yi . . . yi+j�2

(3)

wherei, the number of block rows in the block Hankel matrix, and
j, the number of columns, are user defined dimensions with typically
i� j. In many cases,i will be chosen first whereafterj is adapted so
as to use all available observations in the block Hankel matrices.
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After the estimation of the Kalman filter state sequencesX̂i and
X̂i+1 in the first step (see [1] and [3]), an estimate for the covariance
model (Â, Ĝ, Ĉ, D̂) can be obtained. The system matrices (Â; Ĉ) can
be identified as the solution to the following least-squares problem:

(Â; Ĉ) = argmin
A;C

J1(A;C) (4)

with

J1(A;C) =
X̂i+1

Yiji
�

A

C
� X̂i

2

: (5)

One possible way to obtain an estimatêG for the matrix
G = Efxk+1y

T
k g is by taking the lastl columns of the reversed con-

trollability matrix �̂i = [Âi�1Ĝ Âi�2Ĝ . . . ÂĜ Ĝ], where�̂i is cal-
culated aŝ�yiYij2i�1Y

T
0ji�1, with �̂i = [ĈT ÂT Ĉ

T . . . ÂT ĈT ]T ,
and�̂0 can immediately be derived as(1=j)YijiY

T
iji. This is essentially

a square root version of the deterministic realization [4], [5] applied to
the observed output covariance matricesf��mg

2i�1
m=1, with

��m =
1

N

N�m�1

k=0

yky
T
k+m: (6)

In a last step, the covariance model is used to conceive a model in
forward innovation form

x̂k+1 = Âx̂k + K̂ek

yk = Ĉx̂k + ek (7)

obtained by first calculating an estimatêP = Efx̂kx̂
T
k g for the for-

ward state covariance matrix of (7) through the solution of the forward
algebraic Riccati equation:

P̂ = ÂP̂ ÂT +(Ĝ� ÂP̂ ĈT )(�̂0� ĈP̂ ĈT )�1(Ĝ� ÂP̂ ĈT )T (8)

with the forward Kalman filter gainK̂ = (Ĝ � ÂP̂ ĈT )(�̂0 �
ĈP̂ ĈT )�1. The resulting model matrices of the stochastic system
are (Â, K̂, Ĉ, Il) and the covariance matrixEfekeTk g is given by
R̂ = �̂0 � ĈP̂ ĈT . A transformation from (7) to a system of the form
(1) is now straightforward [1].

It is important to note here that a valid forward innovation model (7)
can only be found if the estimated covariance model (Â, Ĝ, Ĉ, D̂) is
positive real. This follows immediately from the positive real lemma
[6], that states that a covariance model (A, G, C,D) is positive real if
and only if the following matrix inequality is satisfied for at least one
positive–definite matrixP = P T > 0:

Q S

ST R
=

P G

GT D +DT �
APAT APCT

CPAT CPCT � 0: (9)

By applying the Schur decomposition to (9) it is clear that no solution to
(8) will be found unless the covariance model (Â, Ĝ, Ĉ, D̂) is positive
real. Also, note from the Lyapunov equation in the upper left block
of (9) that a positive real model is necessarily stable. In the following
section, we will introduce a regularization term in the least-squares cost
function (4) to impose positive realness on the covariance model and
to ensure a solution to (8).

III. I MPOSINGPOSITIVE REALNESS BYUSING REGULARIZATION

A. Main Idea

The estimation problem that we consider is the following: given ma-
tricesX̂i+1, Yiji andX̂i and given initial estimateŝA, Ĉ, Ĝ, and�̂0,
estimate new model matrices~A, ~C such that the resulting model~A,
Ĝ, ~C, �̂0 is positive real. To impose positive realness, we will add a
regularization term to the cost functionJ1(A;C) from (4)

( ~Ac; ~Cc) = argmin
A;C

J1(A;C) + cJ2(A;C) (10)

with

J2(A;C) = Tr
A

C
W

A

C

T

(11)

wherec � 0 is a positive real scalar andW a positive definite matrix
of appropriate dimensions that satisfiesW � Ĝ�̂�1

0 ĜT > 0 and is
typically chosen to be the unity matrix, which is motivated by [7].

A similar regularization termTr(AWAT ), involving only the
system matrixA was described in [8], and was shown to impose sta-
bility on a model. We will show that by the choice of the regularization
termJ2(A;C) the covariance model cannot only be made stable, but
also positive real, provided the regularization coefficientc is chosen
sufficiently large. A further advantage of the regularization term is
that the problem (10) remains quadratic and that the optimal solution
follows from a linear set of equations

~Ac
~Cc

=
X̂i+1

Yiji
� X̂T

i � X̂iX̂
T
i + cW

�1

=
Â

Ĉ
X̂iX̂

T
i X̂iX̂

T
i + cW

�1

: (12)

From the optimality of the least-squares estimate (12), it follows that
the regularization termJ2( ~Ac; ~Cc) is a nonincreasing function ofc.

The idea of using regularization to deal with undesirable properties
of an estimator is by no means new. In general, regularization amounts
to reducing the variance of an estimator at the expense of introducing
a hopefully small bias, the so-called bias-variance tradeoff. In function
approximation, for instance, regularization is used to impose a certain
amount of smoothness and deal with the well known problem of over
fitting [9]. Other applications are found in such areas as neural networks
[10] support vector machines [11], and system identification [12]. Fur-
thermore, some known techniques can be rewritten in a regularization
context. The technique described in [8] to impose stability on a model
using regularization, for instance, is essentially equivalent to a tech-
nique described in [13], provided a certain choice for the weighting
matrices is made in the former reference.

B. Choosing the Regularization Parameter

It will be shown in the following lemma that, by using the regulariza-
tion term introduced in (10), positive realness can always be imposed
provided the regularization coefficientc is chosen sufficiently large.

Lemma 1: Let Ĝ, �̂0 be given. LetW = QWQT
W > 0,

W � Ĝ�̂�1
0 ĜT > 0, and define �̂ = XiX

T
i , L =

�̂[ÂT ĈT ]
W Ĝ

ĜT �̂0

�1
Â

Ĉ
�̂, P0 = �̂W�1�̂ � L. Sup-

pose the covariance model (Â, Ĝ, Ĉ, �̂) is not positive real. Then,
there exists ac� such that the system~Ac, Ĝ, ~Cc, �̂0, with ~Ac and
~Cc as in (12), is positive real forc � c�, with c� = maxij� 2 �i,
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Fig. 1. Finding the optimal amount of regularizationc.

Fig. 2. Averaged spectral density over 1000 runs for the example(H(z)) with n̂ = 10, i = 16,N = 500 (dashed line) with 95% error region (dotted line). The
solid line is the spectral density of the original model used for simulation.

and� the set of generalized eigenvalues of the following eigenvalue
problem:

� = �
0n̂ �In̂

P0 2�̂
;�

In̂ 0n̂
0n̂ W

: (13)

Proof: We will show that (9), withA, C, G andP replaced by
~Ac, ~Cc, Ĝ, andP̂ , holds under the assumptions of the lemma forP̂ =
W . This means that

W Ĝ

ĜT �̂0

�
~AcW ~AT

c
~AcW ~CT

c

~CcW ~AT

c
~CcW ~CT

c

� 0 (14)

where the first term is positive semidefinite sinceW > 0,
W � Ĝ�̂�1

0
ĜT > 0, and ~Ac and ~Cc are as defined in (12). Taking the

Schur complement and defininĝ� = XiX
T

i leads to

W Ĝ Â�̂

ĜT �̂0 Ĉ�̂

�̂ÂT �̂ĈT (�̂ + cW )W�1(�̂ + cW )

� 0 (15)

and again taking the Schur complement, withW � Ĝ�̂�1
0
ĜT > 0

(�̂ + cW )W�1(�̂ + cW )�L � 0 (16)

TABLE I
PERFORMANCE ONSIMULATED DATA

which can also be written as

c
2
W + 2c�̂ + �̂W�1�̂�L � 0: (17)

Equation (17) is clearly satisfied forc ! 1. The exact lower bound
c� for c in (17) is given by the largest positive root of

det(c2W + 2c�̂ + �̂W�1�̂� L) = 0: (18)
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Fig. 3. Output spectra of one of the accelerometers on a steel mast (dashed lines), together with the estimated spectra usingREG and RES (full line). The
absolute differences between the spectra in the uppermost two figures are depicted in the figures in the bottom row. The variances of the differences are3:71 �10

for theREG case and11:05 �10 for the RES case. In similar experiments, the variances for theREG and SDP techniques were found to be10:47 �10

and15:05 � 10 , respectively.

Using the definition ofP0, this reduces to

det(c2W + 2c�̂ + P0) = 0

() det c(cW + 2�̂) + P0 =0

() det c
In̂ 0n̂
0n̂ W

+
0n̂ �In̂

P0 2�̂
=0: (19)

Hence, a positive real model is always obtained forc � c
�, and

in particular forc = c
�. Furthermore, since any positive real model

is necessarily stable [which follows immediately from the upper left
part of (9)], stability is automatically guaranteed. However,c

� can be
a too conservative estimate. In general it seems reasonable to keep the
amount of regularization as low as possible. Hence, one should search
for the smallest possiblec � c

� for which a positive real model is
found. A lower boundcs for c can be found from a theorem presented
in [8], wherecs follows from a generalized eigenvalue problem and is
shown to be the smallestc imposing stability on the estimated covari-
ance model. As shown in Fig. 1, a minimalc imposing positive realness
will always satisfycs � c � c

�. When the realization (~Ac , Ĝ, ~Cc ,
�̂0) is not yet positive real, i.e.,�(z) < 0 for a certainz = e

j� , we
can find ac � cs imposing positive realness, for instance by applying
a bisection algorithm on the intervalcs � c � c

�.

IV. RELATION TO OTHER ALGORITHMS

As mentioned in Section I, some alternative techniques have been re-
ported in the literature in order to impose positive realness on a covari-
ance model [1], [14]–[17], many of whom rely on regularization prin-
ciples. Apart from changinĝA andĈ in the initial covariance model,
regularization could also be applied tôG, �̂0, or a combination of both.
A common problem with many of these alternatives, in contrast to the

method presented here, is that they cannot be used if the initial covari-
ance model is unstable. A situation which is not uncommon in many
practical situations. Furthermore, the approach proposed in this note
is seen to outperform existing techniques in simulations. As an ex-
ample, we take a known single-input–single-output (SISO) system with
transfer function

H(z) =
(z � 0:99e�2j)(z � 0:98e�1:4j)

(z � 0:8e�2:1j)(z � 0:8e�j)

�
(z � 0:99e�0:6j)(z � 0:9)(z + 0:9)

(z � 0:8e�1:7j)(z � 0:8e�0:8j)
(20)

of which the spectral density is displayed as the solid curves in
Fig. 2(a)–(d). 1000 sequences of Gaussian, zero mean, unit variance
white input noise with lengthN = 500 were filtered through (20)
and used as input for the stochastic subspace identification algorithm
with n̂ = 10 andi = 16. As a total of 727 of the obtained covariance
models turned out not to be positive real of whom 182 were unstable,
regularization was applied where necessary. The average of the ob-
tained spectra over all 1000 runs are depicted under the titleREGÂ;Ĉ

in Fig. 2(d), together with those of the best-performing methods
described in the literature, namely the following.

• RES: A method described in [1] and [16], using an algorithm
based on the residuals of the least squares problem (4) displayed
in Fig. 2(a). The method described in [16] also deals with the re-
lated problem of systems of the form (1) for which an innovation
model simply does not exist, e.g., if the output noise in (1) is zero.

• SDP: A method described in [17] which obtains positive real
covariance models by solving an SDP-problem, displayed in
Fig. 2(b).

• REGĜ: A method described in [14] using regularization onĜ,
displayed in Fig. 2(c).
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As RES andREGĜ were unable to deal with unstable covariance
models, the covariance model was stabilized for RES andREGĜ
where necessary by using the techniques described in [8]. For a fair
comparison, the numerical results for all methods, which are given in
Table I, are limited to the set of 545 models that were stable but not
positive real. The table lists the average performance of each method
on these covariance models and the variance upon this performance.
The performance is measured as the average distancedx between the
transfer function of the original modelH(z) and the estimated transfer
function inx-norm, wherex is chosen from the setf1; 2;1g.

From the figures and the table it is clear that the regularization tech-
nique described in this note outperforms the others. As for the com-
plexity, all algorithms are roughlyO(qn3), with q the number of itera-
tions in a regularization approach or an SDP problem. For RES,q = 1

as no optimization is performed. These complexity results have been
found to be consistent with the required computation times for each
iteration in our simulations which were comparable for all methods
discussed.

V. PRACTICAL APPLICATION

The regularization procedure described in this note was used to iden-
tify a stochastic subspace model from measurements on a steel trans-
mitter mast for cellular phone networks [18]. Nine accelerometers were
placed on the mast and the mast’s response on the wind turbulence was
measured. A 16th-order stochastic SISO subspace model was there-
after created for one of the accelerometers using subspace identification
with i, the number of block rows, set to 32. For this set of parameters,
a stable but nonpositive real covariance model was obtained, where-
after the different regularization techniques described in this note were
used to obtain positive real models. The original measurement spec-
trum and the modeled spectra resulting from the two best performing
techniques in the simulations of Section IV, namely RES andREGÂ;Ĉ
are displayed in Fig. 3, together with the absolute values of the differ-
ences between them. Note that all the spectra are strictly positive. Also,
note that the RES technique performs better in the regions between the
peaks, whileREGÂ;Ĉ is seen to fit the peaks themselves better. For
comparison, the variances of the model fit errors forREGĜ and SDP
are given in below the figure.

VI. CONCLUSION

Stochastic subspace methods for the identification of linear time-in-
variant systems are known to be asymptotically unbiased [3]. However,
if a finite amount of data is used, the procedure might break down due to
positive realness problems. In this note, a regularization approach was
proposed to impose positive realness on a formerly identified covari-
ance model. It was shown that, if an adequate amount of regularization
is used, a positive real model can always be obtained. The simulation
results indicate that this new approach yields better models than other
existing techniques.
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