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Abstract
Background and aims:

Glioblastoma (GBM) is a common and aggressive primary brain tumor, and the prognosis for GBM
patients remains poor. This study aimed to identify the key genes associated with the development of
GBM and provide new diagnostic and therapies for GBM.

Methods:

Three microarray datasets (GSE111260, GSE103227, and GSE104267) were selected from Gene
Expression Omnibus (GEO) database for integrated analysis. The differential expressed genes (DEGs)
between GBM and normal tissues were identi�ed. Then, prognosis-related DEGs were screened by
survival analysis, followed by functional enrichment analysis. The protein-protein interaction (PPI)
network was constructed to explore the hub genes associated with GBM. The mRNA and protein
expression levels of hub genes were respectively validated in silico using The Cancer Genome Atlas
(TCGA) and Human Protein Atlas (HPA) databases. Subsequently, the small molecule drugs of GBM were
predicted by using Connectivity Map (CMAP) database.

Results:

A total of 78 prognosis-related DEGs were identi�ed, of which10 hub genes with higher degree were
obtained by PPI analysis. The mRNA expression and protein expression levels of CETN2, MKI67, ARL13B,
and SETDB1 were overexpressed in GBM tissues, while the expression levels of CALN1, ELAVL3, ADCY3,
SYN2, SLC12A5, and SOD1 were down-regulated in GBM tissues. Additionally, these genes were
signi�cantly associated with the prognosis of GBM. We eventually predicted the 10 most vital small
molecule drugs, which potentially imitate or reverse GBM carcinogenic status. Cycloserine and 11-deoxy-
16,16-dimethylprostaglandin E2 might be considered as potential therapeutic drugs of GBM.

Conclusions:

Our study provided 10 key genes for diagnosis, prognosis, and therapy for GBM. These �ndings might
contribute to a better comprehension of molecular mechanisms of GBM development, and provide new
perspective for further GBM research. However, speci�c regulatory mechanism of these genes needed
further elaboration. 

Background
Glioblastoma (GBM) is a most common and aggressive malignant brain tumor, accounting for 16% of all
primary brain and central nervous system neoplasms [1]. The mean survival of GBM is approximately
14.6 months, and GBM is one of the most challenging malignancies to treat due to its high heterogeneity,
high recurrence rate, and diffusing invasiveness [2]. Despite extensive efforts to explore novel therapies,
the survival of GBM has not markedly improved. Therefore, it is necessary to develop effective treatment
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options. Currently, gene therapy, molecularly targeted therapy, and immunotherapy are promising
treatment approaches [3]. 

Extensive studies have reported the biomarkers and drug targets for GBM treatment. Previous study
indicated that genes such as estrogen receptor 2 (ESR2), ELOVL fatty acid elongase 6 (ELOVL6), iroquois
homeobox 3 (IRX3), PDZ binding kinase (PBK), centromere protein A (CENPA), and kinesin family member
15 (KIF15) were signi�cantly associated with the prognosis of GBM, suggesting that these genes might
be potential targets for GBM treatment [4, 5]. Additionally, drugs like triple-drug therapy (bevacizumab,
irinotecan, and temozolomide) had bene�t effect on recurrent GBM [6]. However, different studies often
yield diverse results and the molecular mechanism of GBM pathogenesis has not been entirely
elucidated. Thus, it is desperately required to explore novel biomarkers and small drug molecules.

Currently, the microarray gene expression research has been performed to uncover the molecular
mechanism of various cancers. The mRNA data are collected from two databases, including Gene
Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). The GEO database can be applied to
identify the differentially expressed genes (DEGs), explore molecular signal and its correlation, and
analyze gene regulation network [7]. However, due to the limited samples, the analysis results of a single
microarray dataset may be biased and unreliable. Hence, integrated analysis of multiple datasets can
improve the accuracy and reliability of the results, thus obtain a comprehensive discovery of DEGs in
tumors.

In the present study, three microarray datasets related GBM were selected for further study, the raw data
of mRNA pro�le were downloaded from GEO database and integrated bioinformatics analyses of three
data sets were conducted. The overlapping DEGs were identi�ed by the intersection of three datasets.
Then, the DEGs associated with GBM prognosis were screened using TCGA database. Functional
enrichment analysis was performed to understand the biological functions of these DEGs. We also
established a protein-protein interaction (PPI) network to screen hub genes. Thereafter, the mRNA and
protein expression level of hub genes were respectively veri�ed by using UALCAN online tool and Human
Protein Atlas (HPA) database. Finally, the small molecule drugs of GBM were explored by connectivity
map (CMAP) database. The �ow chart of this study protocol is shown in Figure 1.

Materials And Methods
Microarray data

GBM datasets were retrieved from the GEO database (http://www.ncbi.nlm.nih.gov/geo) [8] using the
keywords “microarray & GBM”. The limitation criteria included: (1) date of publication from 2017 to 2019;
(2) tissue samples gathered from human GBM and normal tissues; (3) studies included at least 10
samples; and (4) the samples were not treated by any chemical or physical treatment. Finally, three
datasets (GSE111260, GSE103227, and GSE104267) met our criteria, and the detailed information is
listed in Table 1.

http://www.ncbi.nlm.nih.gov/geo
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Data pre-processing

The preprocessing of raw data was performed using the limma package of the R software (Version
3.34.9, http://www.bioconductor.org/packages/release/bioc/html/limma.html) [9], and then data
normalization of samples from each expression pro�les was conducted by using robust multi-array
average (RMA) method [10, 11], including background adjustment, quantile normalization, and log2
conversion. Afterwards, the probes were annotated with the platform annotation �le. The probes that did
not matched the gene (gene symbol) were removed; in addition, for the multiple probes that mapped to
the same gene, their average values were calculated as the �nal expression value.

DEGs screening and Meta-analysis

DEGs between GBM and control sample in the three datasets were respectively screened by using the
Limma package. P < 0.05 and |log Fold change (FC)| >1 were considered as the criteria for DEGs.

The integration of DEGs from three microarray datasets was conducted by NetworkAnalyst 3.0 database
[12] (https://www.networkanalyst.ca/NetworkAnalyst/uploads/MetaLoadView.xhtml), which could
compare and analyze of DEGs generated from different studies via various statistical methods. In this
study, three statistical methods, including Fisher's method, Fixed effects models, and Vote Counting, were
applied to integrate multiple data sets. DEGs with P < 0.001 (both Fisher’s method and Fixed effects
models) and vote counts ≥ 2 were considered as shared DEGs. Meanwhile, the ComBat function of the R
package sva [12] was utilized to eliminate heterogeneity between these three datasets.

VENN analysis

The DEGs obtained from each dataset were analyzed by VENN analysis to observe the up- or down-
regulation of the genes. Additionally, the DEGs screened by the three integration methods were also
analyzed by VENN, and the DEGs that existed in at least two methods were selected as the focus of the
further analysis.

Survival analysis

Both the mRNA-seq data and clinical information of GBM patients were acquired from TCGA genomic
data commons (GDC) (https://xenabrowser.net/) portal [13]. According to the shared DEGs identi�ed
from the integrated analysis, the samples with no overall survival (OS) time (or less than one mouth) and
the DEGs with median expression level less than 0 were removed. Afterwards, the remaining samples
were divided into high expression group and low expression group based on the median expression levels
of genes. Survival analysis was performed using Kaplan-Meier and the log-rank statistical test. P < 0.05
was regarded as statistically signi�cant threshold.

Functional enrichment analysis of prognostic related DEGs

http://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.networkanalyst.ca/NetworkAnalyst/uploads/MetaLoadView.xhtml
https://xenabrowser.net/
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To investigate the biological functions and pathways involved in these prognostic related DEGs, the Gene
Ontology (GO) terms and pathway analysis were performed by using metascape database
(http://metascape.org) [14]. Metascape utilized hypergeometric test and Benjamini-Hochberg p-value
correction algorithm to identify all statistically enriched terms (GO or KEGG terms). P < 0.01 and count > 3
were set as the threshold of signi�cantly enriched terms. In order to further explore the relationship
between the signi�cantly enriched terms, the kappa-statistical similarities of these terms were calculated,
and the overlapping or related terms were identi�ed to perform functional network clustering. According
to the gene similarity enriched in each term (similarity of >0.3), the interaction relationship of the terms
was obtained. Subsequently, the functional enrichment network was constructed.

The PPI network construction

The prognostic related DEGs were mapped into Search Tool for the Retrieval of Interacting Genes
(STRING, version: 11.0, https://string-db.org) database [15] to recognize their potential interaction
relationships from protein level. The species was Homo sapiens and the con�dent interaction score more
than 0.15 (low con�dent) was set as signi�cant interaction. The PPI network was visualized using
Cytoscape software (version: 3.6.1, http://www.cytoscape.org/) [16]. In addition, the degree of each
protein node was calculated and nodes with degree ≥ 10 were selected as hub genes.

Veri�cation of hub genes

We used the online software UALCAN (http://ualcan.path.uab.edu/index.html) [17] to verify the hub genes
identi�ed from the PPI network. The candidate hub genes were submitted to the UALCAN database and
the TCGA data were applied to validate the relationship between the genes expression and the prognosis
of GBM.

Gene mutation analysis

The cBio Cancer Genomics Portal could analyze the molecular data obtained from cancer tissues and
cytology, to recognize and understand the heredity, epigenetics, and gene expression. Thus, we used the
CBiocancer genomics portal (https://www.cbioportal.org/) [18] to analyze the genetic mutations of the
key genes among samples.

Immunohistochemical Analysis

The HPAs database, composed of tissue atlas, cell atlas, and pathology atlas, is provided the data of
transcriptomics and proteomics in speci�c human tissues. In this study, the protein level of hub genes in
GBM tissues and compared normal tissues was investigated by using HPA database [19].

Identi�cation of candidate small molecule drugs for GBM

The CMAP database, composed of 7056 gene expression pro�les induced by 1309 small molecules, is
widely applied to explore the potential unknown roles of existing drugs on diseases [20]. First, the

http://metascape.org/
https://string-db.org/
http://www.cytoscape.org/
http://ualcan.path.uab.edu/index.html
https://www.cbioportal.org/
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prognosis related genes were classi�ed into up-regulated and down-regulated groups. Then, these genes
from two groups were uploaded into CMAP database to obtain the potential small drug molecules, and P
< 0.05 was regarded as the cut-off criteria. Finally, the enrichment scores (-1 to +1) that could assess the
similarity between genes and drugs were calculated. Speci�cally, enrichment score > 0 indicated the
molecules had potential synergistic effects to GBM, suggesting they were able to imitate the biological
status of GBM cell; while enrichment score < 0 revealed molecules had potential antagonistic effects,
indicating they could reverse the GBM carcinogenic status and could serves as therapeutic drugs.

Results
Identi�cation of DEGs from GEO datasets analysis

The raw data from three gene expression pro�les (GSE103227, GSE104267, and GSE111260) were
downloaded from NCBI GEO database. There were 81 GBM samples and 11 normal samples in this
study. DEGs between GBM samples and normal samples were screened from three studies, and then
visualized by volcano plots and Principal Components Analysis (PCA) score plots (Figure 2A and 2B).
Afterwards, the number of DEGs obtained from three datasets is shown in Supplementary Table 1.
Furthermore, the Venn diagrams showed that 24 overlapping DEGs were obtained among three datasets,
including 18 up-regulated genes (Figure 2Ca) and 6 down-regulated genes (Figure 2Cb).

Meta-analysis of three GEO datasets

By employing three statistical methods, a total of 5801, 640, and 2368 DEGs were identi�ed by Fisher’s
method, Fixed effects models, and Vote counting, respectively. Additionally, 613 shared genes were
obtained by all three statistical methods and 2357 DEGs were existed in at least two methods (Figure
2D).

Survival analysis of DEGs

In order to clarify the relationship between gene expression and GBM prognosis, we used K-M and log
rank test for survival analysis. The clinical data of 167 patients with GBM was downloaded from TCGA,
and the overall survival analysis of 2357 DEGs was performed. Finally, we obtained 78 DEGs were
signi�cantly connected with the prognosis of GBM (Supplementary Table 2).

GO enrichment and KEGG pathway analysis of prognosis related genes

According to the result mentioned above, the functional enrichment analysis of 78 prognosis-related
genes was conducted. Three categories of GO enrichment analysis were performed, including biological
process (BP), cellular component (CC), and molecular function (MF). The results indicated that these
genes were mainly associated with GO_BP terms such as behavior, sensory organ morphogenesis, and
chromosome separation. As for GO_CC terms, genes were primarily enriched in histone deacetylase
complex, neuron to neuron synapse, transferase complex, and axon. For MFs, DEGs were particularly
related to DNA-binding transcription repressor activity, RNA polymerase II-speci�c, actin �lament binding,
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and chromatin binding. Additionally, the KEGG pathway analysis revealed that these genes were
signi�cantly involved in longevity regulating pathway, bile secretion, insulin secretion, and thyroid
hormone signaling pathway (Figure 3A and Supplementary Table 3). Furthermore, all terms were grouped
into clusters based on the similarities, and a total of 13 clusters of signi�cantly enriched terms were
obtained (Figure 3B), among these, sensory organ morphogenesis was the most enriched term.

Establishment of PPI network

In order to understand the potential relationships between prognostic related DEGs, the PPI analysis was
conducted. The PPI network was composed of 71 nodes and 214 edges (Figure 4). A total of 16 nodes
with the higher connectivity degrees were screened as hub genes, including ELAV like RNA binding protein
3 (ELAVL3), histone deacetylase 2 (HDAC2), Calbindin 1 (CALB1), cullin 3 (CUL3), synapsin II (SYN2),
citron Rho-Interacting serine/threonine kinase (CIT), SH3 and multiple ankyrin repeat domains 2
(SHANK2), solute carrier family 12 member 5 (SLC12A5), superoxide dismutase 1 (SOD1), SET domain
bifurcated histone lysine methyltransferase 1 (SETDB1), calneuron 1 (CALN1), cyclase associated actin
cytoskeleton regulatory protein 2 (CAP2), ADP ribosylation factor like GTPase 13B (ARL13B), adenylate
cyclase 3 (ADCY3), centrin 2 (CETN2), and marker of proliferation ki-67 (MKI67). Additionally, the speci�c
degree values of these genes are listed in Table 2.

The mRNA level and mutation state of hub genes

By analyzing the expression of the hub genes in the TCGA GBM data, we observed that the expression
levels of 10 hub genes were consistent with the results of microarray datasets, including MKI67, ARL13B,
SETDB1, ELAVL3, ADCY3, SOD1, CALN1, SYN2, and SLC12A5. Notably, compared with normal samples,
the expression level of MKI67, ARL13B, and SETDB1 was signi�cantly up-regulated in GBM samples,
while ELAVL3, ADCY3, SOD1, CALN1, SYN2, and SLC12A5 were markedly down-regulated (Figure 5 and
Table 3). In addition, we also display the K-M curves of hub genes in Supplementary Figure 1. Results
showed that CETN2, MKI67, ARL13B, and SETDB1 with lower expression level were related to a
signi�cantly longer survival time; meanwhile, high expression of CALN1, ELAVL3, ADCY3, SYN2, ARL13B,
SLC12A5, and SOD1 were associated with better overall survival of patients with GBM. The results of
prognosis were consistent with the mRNA expression levels of hub genes.

Furthermore, the hub gene mutations in GBM were tested using cBioPortal. The MKI67, SLC12A5, and
SOD1 exhibited higher mutation frequencies, and the proportion of them was 2.2, 0.7, and 0.2%,
respectively (Supplementary Figure 2A). Meanwhile, approximately 3% of GBM clinical cases showed
signi�cant alterations in the 10 hub genes (Supplementary Figure 2B).

Immunohistochemical analysis

Apart from investigating the mRNA level of hub genes, the protein expression levels were also explored
using the HPA database. Because the immunohistochemical information of SYN2 was not existed in HPA,
we have displayed nine pairs of staining results in Figure 6. The protein level of MKI67 and ARL13B was
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undetected in normal tissues, while the level of these genes was medium and high in the GBM tissues,
respectively. The protein level of CETN2 was low in normal samples, while the level of it was high in GBM
samples. Additionally, the medium protein level of SETDB1 was observed in normal tissues, whereas the
high protein level was revealed in GBM tissues. Meanwhile, the protein level of CALN1 was medium in
normal samples, while was low in the GBM samples. SOD1 moderately expressed in normal tissues but
undetectable in GBM tissues, and ELAVL3 and ADCY3 lowly expressed in normal tissues but undetectable
in GBM tissues. Moreover, SLC12A5 was undetectable in normal and GBM samples. Thus, CETN2, MKI67,
ARL13B, SETDB1, and CALN1 might be potential biomarkers for screening high-risk patients with GBM.

Analysis of GBM-related small molecular drugs

To identify candidate small molecular drugs targeting the gene expression of GBM, all the prognosis-
related DEGs were divided into up-regulated and down-regulated groups, which were submitted to the
CMAP database. A total of 98 small molecular drugs that closely related to the biological status of GBM
were obtained, of which 45 drugs might play potential synergies role in the development of GBM
(enrichment score> 0), while 53 drugs might serve repress role in the GBM progression (enrichment score<
0). The top 10 vital small molecule drugs were selected (Figure 7). Among these drugs, cycloserine
(enrichment score =-0.844) and 11-deoxy-16,16-dimethylprostaglandin E2 (enrichment score =-0.835)
showed highly signi�cant negative correlation and had potential to reverse the carcinoma status of GBM.
These identi�ed small molecule drugs with enrichment scores <0 could reverse the abnormal gene
expression and serve as potential drugs for GBM treatment.

Discussion
Although signi�cant breakthrough in GBM treatment programs, including surgery, molecular therapy, and
drug treatment, the prognosis for GBM patients remains poor and unchanged over the last 30 years [21].
Therefore, revealing the etiology and molecular mechanism of GBM might play important role in the
diagnosis and treatment of tumor. In this study, bioinformatics analysis was used to screen the potential
hub genes associated with GBM. By integration analysis of three GEO datasets of GBM, 613 overlapping
DEGs were identi�ed, among these, 78 DEGs were signi�cantly associated with the OS of GBM. The GO
analysis showed that these DEGs was mainly enriched in trans-synaptic signaling; and the KEGG
pathways enrichment analysis indicated that DEGs were signi�cantly involved in longevity regulating
pathway. PPI analysis revealed that CETN2, MKI67, ARL13B, SETDB1, CALN1, ELAVL3, ADCY3, SYN2,
SLC12A5, and SOD1 with high degree of connectivity were selected as hub genes. For CETN2, MKI67,
ARL13B, and SETDB1, patients with high expression experienced a worse OS, while high expression of
CALN1, ELAVL3, ADCY3, SYN2, ARL13B, SLC12A5, and SOD1 were associated with better overall survival
among patients with GBM. To validate the results of bioinformatics analysis, we evaluated the mRNA and
protein expression levels of hub genes by using TCGA and HPA databases. The results showed the same
gene expression trend as observed in the GEO database, which further con�rmed the accuracy of our
�ndings. Specially, CETN2, MKI67, ARL13B, SETDB1, and CALN1 might be potential biomarkers for
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screening high-risk patients with GBM. Furthermore, the small molecular drugs analysis showed that
cycloserine and 11-deoxy-16,16-dimethylprostaglandin E2 might as potential therapeutic drugs for GBM.

In this study, GO analysis revealed that trans-synaptic signaling was the signi�cantly enriched term for
DEGs, which was consistent with previous study [22]. During the process of synaptogenesis, the glycans
could modulate trans-synaptic signaling [23]; interestingly, glycans served important role in cancer
progression and treatment. Glycosylation resulted in a variety of functional changes in glycoproteins,
including adhesion molecules and cell surface receptors, such as e-cadherin and integrin. Notably, these
changes conferred distinctive phenotypic characteristics connected with cancer cells [24]. Bassoy et al.
observed that the sensitivity of glioma cells to cytotoxic lymphocytes might increase with the decrease of
glycan surface expression [25]. Besides, metabotropic glutamate receptors, which involved in synaptic
signaling, also participated in the transformation of multiple cancer types, such as GBM, breast cancer,
and melanoma skin cancer [26]. These �ndings suggested that trans-synaptic signaling might play a vital
role in the pathogenesis of GBM.

PPI analysis showed that CETN2 was a hub gene, as well as the mRNA and protein expression levels of it
were over-expressed in the GBM tissues. CETN2 was a member of the calcium-binding protein family, and
caltractin played a fundamental role in structure and function of the microtubule-organizing center [27]. In
addition, CETN2 was also involved in nucleotide excision repair that was linked with the risk of cancer
[28]. Accumulating evidences demonstrated that CETN2 was identi�ed in various types of cancers. Huan
et al. revealed that CETN2 was associated with invasive ductal carcinoma of the breast, and might be
potential biomarker for breast cancer [29]. It was reported that the down-regulated of CETN2 might have
tumor suppressive function in bladder cancer [30]. Similarly, we found that the low expression level of
CETN2 was signi�cantly related to better survival of GBM patients. However, no studies have reported the
potential mechanism of CETN2 in the initiation and progression of GBM. Hence, the mechanism of how
CETN2 contributed to the GBM still need further research.

Meanwhile, we also found MKI67 was closely related to the prognosis of GBM. The protein encoded by
MKI67 was necessary for cellular proliferation. Hou et al. showed that the down-regulated of MKI67 could
suppress cell growth in the hepatocellular carcinoma cell [31]. Laible et al. indicated that MKI67 was a
biomarker of breast cancer [32]. Meanwhile, MKI67 was connected with nuclear features and the survival
of GBM [33, 34]. In this study, MKI67 was up-regulated in GBM tissues, and GBM patients with a low
MKI67 expression level displayed longer survival. Györffy et al. showed MKI67 was a prognostic factor in
breast carcinoma [35]. Taken together, we speculated that MKI67 played vital roles in GBM progression
and might serve as a molecular target for GBM treatment.

ARL13B was also involved in the GBM development, and the protein level of ARL13B was higher in tumor
samples than in normal samples. Casalou et al. con�rmed that breast cancer was promoted by ARL13B,
which was connected with cancer cell migration and invasion [36]. Another gene, SETDB1 regulated
histone methylation, gene silencing, and transcriptional repression [37]. SETDB1 mediated Akt
methylation promoted its k63-linked ubiquitination and activation, leading to tumorigenesis [38].
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Meanwhile, the oncogenic role of SETDB1 has been reported in GBM [39], which was further supported
our �ndings. In addition, CALN1 was another hub gene in PPI analysis. CALN1 encoded a protein with
high similarity to the calcium-binding proteins of the calmodulin family. CALN1 might in�uence the
invasion and migration of osteosarcoma cell line, and it was also associated with the survival of
osteosarcoma [40]. We found the high expression level of CALN1 was related to the poor prognosis of
GBM. ELAVL3 was one of neuronal-speci�c RNA-binding proteins (Hu antigens), which was recognized by
anti-hu antibody in the serum of patients with paraneoplastic encephalomyelitis and sensory neuropathy
[41]. Delgado-López et al revealed that the expression of ELAVL3 was increased in the GBM tissues [42].
Unfortunately, we found ELAVL3 was down-regulated in the tumor samples, this discrepancy required
further study. ADCY3 could catalyze the formation of cyclic adenosine monophosphate [43]. Hong et al.
indicated that ADCY3 was overexpressed in the gastric cancer tissues and promoted cell proliferation,
migration, as well as invasion [44]. In this study, we found the high expression level of ADCY3 with worse
overall survival. Additionally, we observed SLC12A5 was closely involved in the development of GBM.
Verhaak et al. found that SLC12A5 was a common biomarker of GBM [45], which was consistent with our
results. Furthermore, we observed that SOD1 was closely relevant to the prognosis of GBM. The protein
encoded by SOD1 bound copper and zinc ions, and SOD1 was responsible for destroying superoxide free
radicals in the body. Kato et al. demonstrated that the expression level of SOD1 was signi�cantly changed
in the GBM [46]. Gao et al. indicated that GBM with low expression level of SOD1 had better response to
radiotherapy [47]. In the present study, patients with low expression of SOD1 experienced a better
prognosis. Taken together, these genes served vital role in the development of GBM. However, our study
was performed based on the bioinformatics analysis, further experimental studies must be conducted to
understand the potential effect of key genes in the GBM pathogenesis.

Based on the small molecular drugs analysis, we determined a set of small molecule drugs that had
potential to reverse the abnormal gene expression changes of GBM. Among these, cycloserine and 11-
deoxy-16,16-dimethylprostaglandin E2 showed highly signi�cant negative correlation and might serve as
potential drugs for GBM treatment. Cycloserine is a cyclic analog to D-alanine, which can target alanine
racemase and d-alanine ligase, thereby preventing the formation of bacterial cell walls [48]. Recently,
cycloserine has been widely used in tuberculosis treatment, but no research has focused on the potential
role of it in GBM. In addition, previous study revealed that 11-deoxy-16,16-dimethylprostaglandin E2
(DDM-PGE2) protected proximal renal tubular epithelial cells from potent nephrotoxicity-induced cell
damage by exerting anti-oxidative stress [49]. Meanwhile, it also protected against oncotic cell death
which induced by H(2)O(2) and iodoacetamide [50]. Similarly, the relationship between DDM-PGE2 and
GBM was not investigated. Given the emergence of these small molecules drugs in silico, further studies
that explore the potential effects of them on GBM are imperative and will contribute to the study on new
therapeutic drugs for GBM.

Despite studies devoted to investigate the molecular mechanisms of GBM development, integrated
studies based on multiple datasets are rare. In the present study, 10 hub genes were identi�ed for the �rst
time in GBM by integrated bioinformatics analysis; meanwhile, the mRNA and protein expression levels of
them were veri�ed by using TCGA and HPA databases. Importantly, we also screened the putative
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therapeutic agents for GBM. This study comprehensively analyzed the pathogenesis of GBM, which
provided certain guiding signi�cance for the diagnosis and treatment of this disease. Although the
clinical value of these genes and drugs in GBM has not been reported in previous study, the importance of
them should not be underestimated.

Conclusions
In summary, with the integrated bioinformatics analysis of three GBM-related gene expression pro�les, we
identi�ed 10 key genes connected with pathogenesis and prognosis of GBM. These hub genes might
serve as novel diagnostic and treatment biomarkers of GBM, which might conduct to elucidate the
molecular mechanism of the occurrence and progression of GBM. Additionally, a series of small molecule
drugs which could reverse the abnormal gene expression of GBM were identi�ed. Our work may provide
powerful evidence for the genomic individualized treatment of GBM.

Declarations
Acknowledgements

The authors thank all members in our lab for the excellent technical help.

Authors’ contributions

AHW conceived and designed this study. WCL carried out the plan and wrote this paper. HX, CY, JJL and
ZYL gave advice and carried out the data analysis. All authors read and approved the �nal manuscript.

Funding

This work was supported by grants from Guidance Plan of Natural Science Foundation of Liaoning
Province (No. 201602773; 2019-ZD-0340).

Availability of data and materials

The data that support the �ndings of this study are available from University of California Santa Cruz
Genome Browser and GEO database.

Ethics approval and consent to participate

No applicable.

Consent of publication

Not applicable.

Competing interests



Page 12/24

The authors declare that they have no competing interests.

Abbreviations
GBM: Glioblastoma; ESR2: Estrogen receptor 2; ELOVL6: ELOVL fatty acid elongase 6; IRX3: Iroquois
homeobox 3; AhR: Aryl hydrocarbon receptor; GSCs: GBM stem cells; PBK: PDZ binding kinase; CENPA:
Centromere protein A; KIF15: Kinesin family member 15; GEO: Gene Expression Omnibus; TCGA: The
Cancer Genome Atlas; PPI: Protein-protein interaction; CMAP: Connectivity map; RMA: Robust multi-array
average; FC: Fold change; GDC: Genomic data commons; OS: Overall survival; KM: Kaplan-Meier; GO:
Gene Ontology; HPAs: Human Protein Atlas; CETN2: Centrin 2; MKI67: Marker of proliferation ki-67;
ARL13B: ADP ribosylation factor like GTPase 13B; SETDB1: SET domain bifurcated histone lysine
methyltransferase 1; CALN1: Calneuron 1; ELAVL3: ELAV like RNA binding protein 3; ADCY3: Adenylate
cyclase 3; SYN2: Synapsin II; SLC12A5: Solute carrier family 12 member 5; SOD1: Superoxide dismutase
1;

References
1. Lukas RV, Rodon J, Becker K, Wong ET, Shih K, Touat M, et al. Clinical activity and safety of

atezolizumab in patients with recurrent glioblastoma. Journal of neuro-oncology. 2018;140(2):317-
328.

2. Alexander BM, Cloughesy TF. Adult glioblastoma. Journal of Clinical Oncology. 2017;35(21):2402-
2409.

3. Delgado-López P, Corrales-García E. Survival in glioblastoma: a review on the impact of treatment
modalities. Clinical and Translational Oncology. 2016;18(11):1062-1071.

4. Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities
in treating glioblastoma. Pharmacological reviews. 2018;70(3):412-445.

5. Stangeland B, Mughal AA, Grieg Z, Sandberg CJ, Joel M, Nygård S, et al. Combined expressional
analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in
glioblastoma stem cells. Oncotarget. 2015;6(28):26192-26215.

�. Lu G, Rao M, Zhu P, Liang B, El-Nazer RT, Fonkem E, et al. Triple-drug therapy with bevacizumab,
irinotecan, and temozolomide plus tumor treating �elds for recurrent glioblastoma: a retrospective
study. Frontiers in neurology. 2019;10:42.

7. Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau W-C, Ledoux P, et al. NCBI GEO: mining millions of
expression pro�les—database and tools. Nucleic acids research. 2005;33(suppl_1):D562-D566.

�. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, et al. NCBI GEO: mining tens of
millions of expression pro�les—database and tools update. Nucleic acids research.
2006;35(suppl_1):D760-D765.

9. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression
analyses for RNA-sequencing and microarray studies. Nucleic acids research. 2015;43(7):e47-e47.



Page 13/24

10. Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high
density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185-193.

11. Irizarry RA, Hobbs B, Collin F, Beazer‐Barclay YD, Antonellis KJ, Scherf U, et al. Exploration,
normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics.
2003;4(2):249-264.

12. Zhou G, Soufan O, Ewald J, Hancock RE, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics
platform for comprehensive gene expression pro�ling and meta-analysis. Nucleic acids research.
2019;47(W1):W234-W241.

13. Goldman M, Craft B, Hastie M, Repecka K, Kamath A, McDade F, et al. The UCSC Xena platform for
public and private cancer genomics data visualization and interpretation. bioRxiv. 2019. doi:
10.1101/326470.

14. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a
biologist-oriented resource for the analysis of systems-level datasets. Nature communications.
2019;10(1):1523.

15. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in
2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic
acids research. 2016;45(D1):D326-D368.

1�. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software
environment for integrated models of biomolecular interaction networks. Genome research.
2003;13(11):2498-2504.

17. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi
BV, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses.
Neoplasia. 2017;19(8):649-658.

1�. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex
cancer genomics and clinical pro�les using the cBioPortal. Sci Signal. 2013;6(269):pl1-pl1.

19. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human
cancer transcriptome. Science. 2017;357(6352):eaan2507.

20. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A next generation
connectivity map: L1000 platform and the �rst 1,000,000 pro�les. Cell. 2017;171(6):1437-1452.
e1417.

21. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU. Glioblastoma multiforme: a review of its
epidemiology and pathogenesis through clinical presentation and treatment. Asian Paci�c journal of
cancer prevention: APJCP. 2017;18(1):3-9.

22. Yang S, Gao K, Li W. Identi�cation of hub genes and pathways in glioblastoma by bioinformatics
analysis. Oncology letters. 2019;17(1):1035-1041.

23. Dani N, Broadie K. Glycosylated synaptomatrix regulation of trans‐synaptic signaling. Developmental
neurobiology. 2012;72(1):2-21.



Page 14/24

24. Taniguchi N, Kizuka Y. Glycans and cancer: role of N-glycans in cancer biomarker, progression and
metastasis, and therapeutics. Advances in cancer research. 2015;126:11-51.

25. Bassoy EY, Kasahara A, Chiusolo V, Jacquemin G, Boydell E, Zamorano S, et al. ER–mitochondria
contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem‐like
cells. The EMBO journal. 2017;36(11):1493-1512.

2�. Lumeng JY, Wall BA, Wangari-Talbot J, Chen S. Metabotropic glutamate receptors in cancer.
Neuropharmacology. 2017;115:193-202.

27. Krasikova YS, Rechkunova N, Maltseva E, Craescu C, Petruseva I, Lavrik O. In�uence of centrin 2 on
the interaction of nucleotide excision repair factors with damaged DNA. Biochemistry (Moscow).
2012;77(4):346-353.

2�. Kamileri I, Karakasilioti I, Garinis GA. Nucleotide excision repair: new tricks with old bricks. Trends in
genetics. 2012;28(11):566-573.

29. Huan J, Gao X, Xing L, Qin X, Qian H, Zhou Q, et al. Screening for key genes associated with invasive
ductal carcinoma of the breast via microarray data analysis. Genet Mol Res. 2014;13:7919-7925.

30. Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H, et al. miR-218 on the
genomic loss region of chromosome 4p15. 31 functions as a tumor suppressor in bladder cancer.
International journal of oncology. 2011;39(1):13-21.

31. Hou Y-Y, Cao W-W, Li L, Li S-P, Liu T, Wan H-Y, et al. MicroRNA-519d targets MKi67 and suppresses
cell growth in the hepatocellular carcinoma cell line QGY-7703. Cancer letters. 2011;307(2):182-190.

32. Laible M, Schlombs K, Kaiser K, Veltrup E, Herlein S, Lakis S, et al. Technical validation of an RT-qPCR
in vitro diagnostic test system for the determination of breast cancer molecular subtypes by
quanti�cation of ERBB2, ESR1, PGR and MKI67 mRNA levels from formalin-�xed para�n-embedded
breast tumor specimens. BMC cancer. 2016;16(1):398.

33. Wang R-j, Li J-w, Bao B-h, Wu H-c, Du Z-h, Su J-l, et al. MicroRNA-873 (miRNA-873) inhibits
glioblastoma tumorigenesis and metastasis by suppressing the expression of IGF2BP1. Journal of
Biological Chemistry. 2015;290(14):8938-8948.

34. Kong J, Wang F, Teodoro G, Cooper L, Moreno CS, Kurc T, et al. High-performance computational
analysis of glioblastoma pathology images with database support identi�es molecular and survival
correlates. Proceedings (IEEE Int Conf Bioinformatics Biomed). 2013;2013:229-236.

35. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to
rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809
patients. Breast cancer research and treatment. 2010;123(3):725-731.

3�. Casalou C, Faustino A, Silva F, Ferreira IC, Vaqueirinho D, Ferreira A, et al. Arl13b Regulates Breast
Cancer Cell Migration and Invasion by Controlling Integrin-Mediated Signaling. Cancers.
2019;11(10):1461.

37. Fuks F. DNA methylation and histone modi�cations: teaming up to silence genes. Current opinion in
genetics & development. 2005;15(5):490-495.



Page 15/24

3�. Wang G, Long J, Gao Y, Zhang W, Han F, Xu C, et al. SETDB1-mediated methylation of Akt promotes
its K63-linked ubiquitination and activation leading to tumorigenesis. Nature cell biology.
2019;21(2):214-225.

39. Spyropoulou A, Gargalionis A, Dalagiorgou G, Adamopoulos C, Papavassiliou KA, Lea RW, et al. Role
of histone lysine methyltransferases SUV39H1 and SETDB1 in gliomagenesis: modulation of cell
proliferation, migration, and colony formation. Neuromolecular medicine. 2014;16(1):70-82.

40. Gong L, Bao Q, Hu C, Wang J, Zhou Q, Wei L, et al. Exosomal miR-675 from metastatic osteosarcoma
promotes cell migration and invasion by targeting CALN1. Biochemical and biophysical research
communications. 2018;500(2):170-176.

41. Pignolet BS, Gebauer CM, Liblau RS. Immunopathogenesis of paraneoplastic neurological
syndromes associated with anti-Hu antibodies: a bene�cial antitumor immune response going awry.
Oncoimmunology. 2013;2(12):e27384.

42. Delgado-López PD, Corrales-García EM. Survival in glioblastoma: a review on the impact of treatment
modalities. Clinical & translational oncology : o�cial publication of the Federation of Spanish
Oncology Societies and of the National Cancer Institute of Mexico. 2016;18(11):1062-1071.

43. Goni L, Riezu-Boj JI, Milagro FI, Corrales FJ, Ortiz L, Cuervo M, et al. Interaction between an ADCY3
genetic variant and two weight-lowering diets affecting body fatness and body composition
outcomes depending on macronutrient distribution: A randomized trial. Nutrients. 2018;10(6):789.

44. Hong S-H, Goh S-H, Lee SJ, Hwang J-A, Lee J, Choi I-J, et al. Upregulation of adenylate cyclase 3
(ADCY3) increases the tumorigenic potential of cells by activating the CREB pathway. Oncotarget.
2013;4(10):1791-1803.

45. Labak CM, Wang PY, Arora R, Guda MR, Asuthkar S, Tsung AJ, et al. Glucose transport: meeting the
metabolic demands of cancer, and applications in glioblastoma treatment. American journal of
cancer research. 2016;6(8):1599-1608.

4�. Kato S, Esumi H, Hirano A, Kato M, Asayama K, Ohama E. Immunohistochemical expression of
inducible nitric oxide synthase (iNOS) in human brain tumors: relationships of iNOS to superoxide
dismutase (SOD) proteins (SOD1 and SOD2), Ki-67 antigen (MIB-1) and p53 protein. Acta
neuropathologica. 2003;105(4):333-340.

47. Gao Z, Sarsour EH, Kalen AL, Li L, Kumar MG, Goswami PC. Late ROS accumulation and
radiosensitivity in SOD1-overexpressing human glioma cells. Free Radical Biology and Medicine.
2008;45(11):1501-1509.

4�. Li Y, Wang F, Wu L, Zhu M, He G, Chen X, et al. Cycloserine for treatment of multidrug-resistant
tuberculosis: a retrospective cohort study in China. Infection and drug resistance. 2019;12:721-731.

49. Towndrow KM, Jia Z, Lo HH, Person MD, Monks TJ, Lau SS. 11-Deoxy,16,16-dimethyl prostaglandin
E2 induces speci�c proteins in association with its ability to protect against oxidative stress.
Chemical research in toxicology. 2003;16(3):312-319.

50. Jia Z, Person MD, Dong J, Shen J, Hensley SC, Stevens JL, et al. Grp78 is essential for 11-deoxy-
16,16-dimethyl PGE2-mediated cytoprotection in renal epithelial cells. American journal of physiology



Page 16/24

Renal physiology. 2004;287(6):F1113-1122.

Additional Files
Supplementary Fig.1 Survival analysis for hub genes in GBM.

Kaplan-Meier plots show 10 hub genes related to overall survival rate (P<0.05). A: CETN2, B: MKI67, C:
ARL13B, D: SETDB1, E: CALN1, F: ELAVL3, G: ADCY3, H: SYN2, I: SLC12A5, J: SOD1.

Supplementary Fig.2 Gene mutation frequencies of hub genes.

A: The mRNA alterations of hub genes. The dark blue bars represent deep deletion, the pink bars represent
mRNA up-regulation, the pool blue bars represent mRNA down-regulation, and gray bars represent no
alteration. B: Percentage of gene mutations in GBM patients.

Tables
Table 1 Characteristics of studies composing the gene expression compendium

Dataset Study(Citation) Platform Organism Sample (Glioblastoma) Sample (Control)GSE103227 chun luo฀2018 Agilent-045997 Arraystarhuman lncRNA microarrayV3  Homosapiens 5 5
GSE104267 Jianjun Gu฀2017 Phalanx Human lncRNAOneArray v1_mRNA Homosapiens 9 3
GSE111260 JeanmouginJeanmougin฀2018 Affymetrix Human Exon 1.0ST Array Homosapiens 67 3

 
  Table 2 The degree value of hub genes in PPI network

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606
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Symbol Degree Betweenness ClosenessELAVL3 18 649.4292 0.479452HDAC2 17 758.398 0.486111CALB1 16 283.0139 0.469799CUL3 16 345.8947 0.479452SYN2 15 363.5061 0.44586CIT 13 246.3135 0.434783SHANK2 13 332.2537 0.47619SLC12A5 12 300.8864 0.4375SOD1 11 222.0949 0.457516SETDB1 11 338.4737 0.457516CALN1 10 77.96878 0.434783CAP2 10 185.884 0.434783ARL13B 10 185.142 0.406977ADCY3 10 160.4279 0.414201CETN2 10 111.9884 0.414201MKI67 10 247.3053 0.434783
 
  Table 3 The expression level of hub genesGenes Comparison Statistical significance TCGA type GEO typeMKI67 Normal-vs-Primary 1.62E-12 up upELAVL3 Normal-vs-Primary 7.37E-12 down downADCY3 Normal-vs-Primary 4.05E-06 down  CETN2 Normal-vs-Primary 8.01E-05 up  SOD1 Normal-vs-Primary 1.18E-03 down  ARL13B Normal-vs-Primary 9.18E-03 up upCALN1 Normal-vs-Primary 2.39E-02 down downSYN2 Normal-vs-Primary 2.61E-02 down downSETDB1 Normal-vs-Primary 2.81E-02 up  SLC12A5 Normal-vs-Primary 4.31E-02 down down
Figures
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Figure 1

A �ow chart of this study protocol.
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Figure 2

Identi�cation of DEGs in three GEO datasets. A: Volcano plot. Green indicates down-regulated DEGs, and
red indicates up-regulated DEGs. B: PCA plot. Red represents control sample, and blue represents GBM
sample. C: VENN diagram of DEGs identi�ed from three datasets (a: up-regulated DEGs, b: down-
regulated DEGs). D: The DEGs identi�ed by three statistical methods.
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Figure 3

Functional enrichment analysis of prognosis-related DEGs. A: Top 13 clusters from Metascape pathway
enrichment analysis of prognosis-related DEGs. B: Network of GO and KEGG enriched terms colored by
clusters. Nodes of the same color belong to the same cluster. Terms with Kappa similarity score >0.3 are
linked by an edge.
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Figure 4

The PPI network of survival related DEGs. The color depth of nodes represents the corrected P-value. The
size of nodes represents the number of genes involved.
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Figure 5

The mRNA expression level of hub genes according to the TCGA database. Blue box indicates normal
tissue, and red box indicates GBM tissue.
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Figure 6

Immunohistochemistry images of hub genes in GBM tissues and normal tissues derived from the HPA
database.
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Figure 7

The top 10 small molecule drugs identi�ed by CMAP database The bubble size represents p value, the
smaller the p value, the larger the bubble.
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