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Objective. This study was designed to identify potential biomarkers for ulcerative colitis (UC) and analyze the immune infiltration
characteristics in UC. Methods. Datasets containing human UC and normal control tissues (GSE87466, GSE107597, and
GSE13367) were downloaded from the GEO database. Then, the GSE87466 and GSE107597 datasets were merged, and the
differentially expressed genes (DEGs) between UC and normal control tissues were screened out by the “limma R” package.
The LASSO regression model and support vector machine recursive feature elimination (SVM-RFE) were performed to screen
out the best biomarkers. The GSE13367 dataset was used as a validation cohort, and the receiver operating characteristic curve
(ROC) was used to evaluate the diagnostic performance. Finally, the immune infiltration characteristics in UC were explored
by CIBERSORT, and we further analyzed the correlation between potential biomarkers and different immune cells. Results. A
total of 76 DEGs were screened out, among which 56 genes were upregulated and 20 genes were downregulated. Functional
enrichment analysis revealed that these DEGs were mainly involved in immune response, chemokine signaling, IL−17
signaling, cytokine receptor interactions, inflammatory bowel disease, etc. ABCG2, HSPB3, SLC6A14, and VNN1 were
identified as potential biomarkers for UC and validated in the GSE13367 dataset (AUC = 0:889, 95% CI: 0.797~0.961).
Immune infiltration analysis by CIBERSORT revealed that there were significant differences in immune infiltration
characteristics between UC and normal control tissues. A high level of memory B cells, γδ T cells, activated mast cells, M1
macrophages, neutrophils, etc. were found in the UC group, while a high level of M2 type macrophages, resting mast cells,
eosinophils, CD8+ T cells, etc. were found in the normal control group. Conclusion. ABCG2, HSPB3, SLC6A14, and VNN 1
were identified as potential biomarkers for UC. There was an obvious difference in immune infiltration between UC and
normal control tissues, which may provide help to guide individualized treatment and develop new research directions.

1. Introduction

Ulcerative colitis (UC) is a chronic inflammatory bowel dis-
ease that can affect any part of colorectum [1–3]. It starts
with inflammation of the rectal mucosa and expands proxi-
mally in a continuous manner with varying degrees of dis-
ease [2]. Globally, the incidence of UC is on the rise, and
its proportion in developing countries has increased [4].
UC is characterized by alternating relapse and remission
processes, and the typical symptoms of patients are mucin-
ous pus and blood in the stool, abdominal pain, urgency of
stool and tenesmus [2, 3]. Due to the inflammatory nature

of UC, if improperly treated, it can cause continuous intesti-
nal damage and even further increase the risk of colorectal
cancer [3, 4]. UC is also a complex multifactorial disease,
and the specific pathogenesis of UC remains unclear, it
may be caused by the chronic intestinal mucosal injury
induced by the interaction between genetic and environ-
mental factors and then the imbalance of immune system
[5]. Some studies [4, 5] have shown that UC is characterized
by adaptive immune system imbalance, especially the imbal-
ance between regulatory T cells and T-helper (Th) 2 cells:
Th2 reaction can activate the natural killer T cells in colorec-
tum, which then secrete a large number of cytokines, inducing

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 5412627, 17 pages
https://doi.org/10.1155/2022/5412627

https://orcid.org/0000-0003-1325-8214
https://orcid.org/0000-0002-2211-7520
https://orcid.org/0000-0002-9591-730X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5412627


epithelial cell apoptosis and blocking tight junction; mean-
while, these cytokines can stimulate the expression of adhesion
molecules of vascular endothelial cell, thereby promoting leu-
kocyte adhesion and extravasation into tissues, resulting in
intestinal inflammation and injury. At present, the treatment
is mainly through diet control and symptomatic treatment of
drugs such as aminosalicylic acid and glucocorticoids, which
has some limitations; meanwhile, there were also no specific
markers for UC to assess the prognosis [2, 3, 6].

In recent years, gene expression microarray research
has been widely used in the exploration of potential bio-
markers for complex diseases, so as to further analyze its
pathogenesis and find new therapeutic targets [7, 8]. In
our study, we selected 3 datasets (GSE87466, GSE107597,
and GSE13367) in the Gene Expression Comprehensive
(GEO) database. Merged the GSE87466 and GSE107597
datasets, two machine learning algorithms were performed
to screen out the best feature genes that can distinguish
UC from the normal tissues. Finally, feature genes were
identified and validated in the GSE13367 dataset, and

CIBERSORT [9] was used to analyze the immune infiltra-
tion characteristics in UC.

2. Materials and Methods

2.1. Data Preparation. The flowchart for our study was
shown in Figure 1. The GSE87466, GSE107597, and
GSE13367 datasets were downloaded from the NCBI Gene
Expression Synthesis (GEO) database. The GSE87466 data-
set was based on the GPL13158 platform of Affymetrix HT
HG-U133+ PM Array Plate, which included 87 UC and 21
normal control tissues. The GSE107597 dataset was based
on the GPL15207 platform of Affymetrix Human Gene
Expression Array, which included 76 UC and 45 normal
control tissues. The “limma R” package and the “sva R”
package were used to merge two datasets which served as a
discovery cohort. The GSE13367 dataset that included 35
UC and 23 normal control tissues was based on the
GPL570 platform of Affymetrix Human Genome U133 Plus
2.0 Array, which served as a validation cohort.
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expression analysis
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SVM-RFE algorithms

Functional enrichment
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Figure 1: Flowchart of the analysis process.
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2.2. Identification of DEGs and Functional Enrichment
Analysis. Using false discovery rate ðFDRÞ < 0:05 and fold
change ðFCÞ ≥ 2 or ≤-2 as test criteria, the “limma R” pack-
age was used to detect differentially expressed genes. Then,
the “clusterProfiler R” package and “DOSE R” package were
used for disease ontology (DO) enrichment analysis, GO
function enrichment analysis, and KEGG pathway enrich-
ment analysis, which were used to study the potential
biological functions of these DEGs. Furthermore, GSEA
software (version: 4.1.0) was used for GSEA analysis, and
“c2.cp.kegg.v7.0.symbols.gmt” was selected as the reference
gene set to explore important functional pathways between
the UC and control group.

2.3. Potential Biomarker Screening. The least absolute
shrinkage and selection operator (LASSO) is a regression
analysis algorithm that improves prediction accuracy and
selects the best features for high-dimensional data [10].
The “glmnet R” package was used to perform the LASSO
regression algorithm to identify genes that were significantly
associated with the discrimination of UC and normal tissues.
Support vector machine recursive feature elimination (SVM-
RFE) is a machine learning method based on support vector
machines. It is used to find the best variables by deleting the
feature vectors generated by SVM. Compared to the other
machine learning methods, SVM is very powerful at recog-
nizing subtle patterns in complex datasets and widely used
for classification and regression [11, 12]. The “e1071 R”
package was used to perform SVM algorithm to select the
most significant feature genes. Finally, we took the intersec-
tion of genes from LASSO regression and SVM-RFE algo-
rithms to obtain the best feature genes, which were used to
construct regression models and further verified its expres-
sion levels in the GSE13367 dataset.

2.4. Immune Infiltration Characteristics in UC. CIBERSORT
was used to calculate the relative proportions of 22 immune
cells in the UC gene expression profile. The “vioplot R”
package was used to compare the differences in the levels
of 22 immune cells between the UC and the normal control
group. The “corrplot R” package was used to calculate the
level of 22 kinds of immune cells in each sample and draw
a correlation heatmap which revealed the correlation of 22
kinds of immune cells.

2.5. Correlation Analysis between Feature Genes and
Immune Cells. In R software, the Spearman rank correlation
analysis was used to explore the correlation between the
selected feature genes and different immune cells, and the
analysis results were visualized and drawn by the “ggplot2
R” package.

2.6. Statistical Analysis. All statistical analysis was performed
by R software (version 4.0.3). The Wilcoxon test was used
for comparison between two groups. Kruskal-Wallis tests
were used for comparison between two or more groups. Stu-
dent’s t-test was used for normally distributed variables and
Mann–Whitney U test was used for variables with abnormal
distribution. P < 0:05 was considered statistically significant.

3. Results

3.1. Identification of DEGs in UC. The data used for analysis
came from the two datasets (GSE87466 and GSE107597),
including a total of 163 UC and 66 normal control tissues.
All expression values were standardized, and a total of 76
DEGs were identified at last (the analysis results were shown
in Table 1 of the Supplementary Material), among which 56
genes were upregulated and 20 genes were downregulated
(Figure 2). Moreover, the heatmap (Figure 3) has shown
the expression of these DEGs in each sample.

3.2. Functional Enrichment Analysis. GO enrichment analy-
sis results (Figure 4(a)) showed that DEGs were mainly
associated with humoral immune response, antimicrobial
humoral response, secretory granule lumen, cytokine recep-
tor binding, G protein-coupled receptor binding, receptor-
ligand activity, etc. KEGG enrichment analysis results
(Figure 4(b)) showed that DEGs were mainly involved in
IL-17 signaling pathway, cytokine-cytokine receptor interac-
tion, viral protein interaction with cytokine and cytokine
receptor, chemokine signaling pathway, etc. The DO path-
way enrichment analysis results (Figure 4(c)) showed that
diseases enriched by DEGs mainly included inflammatory
bowel disease, lung disease, intestinal disease, and intrinsic
system disease. In the GSEA analysis, the pathways
enriched in the UC group (Figure 4(d)) mainly included
“CELL_ADHESION_MOLECULES_CAMS,” “CHEMOKI-
NE_SIGNALING_PATHWAY,” and “CYTOKINE_CYTO-
KINE_RECEPTOR_INTERACTION.” In short, functional
enrichment analysis indicates that these DEGs are mainly
involved in immune response, inflammation, chemokine
pathways, and cytokine receptor interactions.

3.3. Screening and Verification of Potential Biomarkers. Two
different algorithms were used to screen out the best bio-
markers for diagnosing UC. 26 genes were identified by the
LASSO regression algorithm (Figure 5(a)), and 11 genes
were identified by the SVM-RFE algorithm (Figure 5(b)).
Eventually, we got four overlapping features genes between
these two algorithms (Figure 5(c)): ABCG2, HSPB3,
SLC6A14, and VNN1, among which the expression of
ABCG2 and HSPB3 was downregulated, and the expression
of SLC6A14 and VNN1 was upregulated. The predictive
model was constructed by using the logistic regression algo-
rithm. In order to further evaluate the accuracy and predic-
tive power of the four genes as diagnostic biomarkers, the
GSE13367 dataset was used for verification. The results
showed that in UC, the expression levels of ABCG2 and
HSPB3 were significantly lower than normal control group,
while the expression levels of SLC6A14 and VNN1 were sig-
nificantly higher than normal control group (Figure 5(d)).
The area under the ROC curve (AUC) was used to evaluate
the predictive value of four genes for diagnosis of UC in the
two cohorts. In the discovery cohort (Figure 5(e)), the AUC
of ABCG2 was 0.975 (95% CI: 0.954~0.991), the AUC of
HSPB3 was 0.902 (95% CI: 0.839 to 0.954), the AUC of
SLC6A14 was 0.955 (95% CI: 0.914 to 0.987), and the
AUC of VNN1 was 0.957 (95% CI: 0.929~0.987). Then,
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when these four genes were fitted into one variable, and the
AUC was 0.977 (95% CI: 0.951~0.995). The accuracy and
F1-score of the predictive model constructed by four genes
were 95.20% and 95.20%. In the validation cohort
(Figure 5(f)), the AUC of ABCG2 was 0.717 (95% CI:
0.574 to 0.852), the AUC of HSPB3 was 0.726 (95% CI:
0.584 to 0.856), the AUC of SLC6A14 was 0.811 (95%
CI: 0.691) ~0.922), and the AUC of VNN1 is 0.886 (95%
CI: 0.797~0.961). Moreover, when the four genes were
fitted into one variable, the AUC was 0.889 (95% CI:
0.797~0.961), and the accuracy of this model was 87.4%,
and similarly, the F1-score was 87.4%. The above analysis
results showed that these four feature genes had great
diagnostic value and predictive power for distinguishing
UC from the normal control group.

3.4. Immune Infiltration Analysis. CIBERSORT was used to
analyze the immune infiltration between the UC and the
normal control group. Firstly, the percentage of 22 kinds of
immune cells in each sample was calculated (Figure 6(a)).

Secondly, according to the vioplot (Violin Plot) of the differ-
ence in immune cell infiltration between the UC and normal
control groups (Figure 6(b)), there was a high proportion of
memory B cells, γδ T cells, activated mast cells, M1 macro-
phages, and neutrophils in UC; however, in normal control
group, there was a high proportion of M2 type macrophages,
resting mast cells, eosinophils, and CD8+ T cells. The corre-
lation heatmap of immune cells (Figure 6(c)) showed that
resting mast cells were positively correlated with M2 type
macrophages (r = 0:68) and CD8+ T cells (r = 0:43). Acti-
vated mast cells were positively correlated with neutrophils
(r = 0:47), activated CD4+ memory T cells (r = 0:37), and
M1 macrophages (r = 0:44). Follicular helper T cells were
positively correlated with M1 type macrophages (r = 0:37)
and naive B cells (r = 0:51); however, memory B cells were
negatively correlated with eosinophils (r = −0:42), activated
NK cells (r = −0:39), and plasma cells (r = −0:47). Based on
the above analysis results, there were significant differences
in immune cell infiltration between the UC and normal
control groups.
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3.5. Correlation between Four Feature Genes and Immune
Cell Infiltration. Correlation analysis showed that ABCG2
(Figure 7(a)) was positively correlated with M2 type macro-
phages (r = 0:78, P < 0:001), resting mast cells (r = 0:69,
P < 0:001), eosinophils (r = 0:49, P < 0:001), and plasma
cells (r = 0:25, P < 0:001) but was negatively correlated with
M1 type macrophages (r = −0:64, P < 0:001), neutrophils
(r = −0:63, P < 0:001), activated mast cells (r = −0:60, P<
0.001), activated CD4+ memory T cells (r = −0:53, P <
0:001), and follicular helper T cells (r = −0:48, P < 0:001).
HSPB3 (Figure 7(b)) was positively correlated with M2
type macrophages (r = 0:55, P < 0:001), resting mast cells
(r = 0:59, P < 0:001), and CD8+ T cells (r = 0:25, P <
0:001) but was negatively correlated with M1 type macro-
phages (r = −0:44, P < 0:001), neutrophils (r = −0:43, P <
0:001), activated mast cells (r = −0:46, P < 0:001), activated
CD4+ memory T cells (r = −0:35, P < 0:001), and gamma
delta T cells (r = −0:27, P < 0:001). SLC6A14 (Figure 7(c))

was positively correlated with activated mast cells (r = 0:70,
P < 0:001), neutrophils (r = 0:67, P < 0:001), M1 macro-
phages (r = 0:62, P < 0:001), and activated CD4+ memory T
cells (r = 0:58, P < 0:001) but was negatively correlated
with M2 type macrophages (r = −0:66, P < 0:001), resting
mast cells (r = −0:76, P < 0:001), eosinophils (r = −0:40,
P < 0:001), and CD8+ T cells (r = −0:35, P < 0:001).
VNN1 (Figure 7(d)) was positively correlated with activated
mast cells (r = 0:61, P < 0:001), neutrophils (r = 0:58, P <
0:001), M1 macrophages (r = 0:42, P < 0:001), activated
CD4+ memory T cells (r = 0:40, P < 0:001), and memory
B cells (r = 0:26, P < 0:001) but was negatively correlated
with resting mast cells (r = −0:72, P < 0:001), M2 type
macrophages (r = −0:53, P < 0:001), CD8+ T cells
(r = −0:35, P < 0:001), and regulatory T cells (r = −0:48,
P = 0:002). In general, the four feature genes (ABCG2,
HSPB3, SLC6A14, and VNN1) were all related to immune
cell infiltration.
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4. Discussion

Although the early diagnosis and treatment of UC have
been greatly improved in the past ten years, because of
unclear specific pathogenesis, the main purpose of treat-

ment is to induce and maintain remission, and the long-
term prognosis is not optimistic [4–6]. By looking for
new potential biomarkers at the gene level and analyzing
the characteristics of UC immune cell infiltration, it will
have a very beneficial impact on the early diagnosis and
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Figure 5: (a) The LASSO regression model used 10-fold cross-validation and the minimum absolute shrinkage criterion to identify the
optimal penalty coefficient λ. (b) Screening out feature genes by SVM-RFE algorithm. (c) Venn diagram of intersection feature genes
between the LASSO regression model and SVM-RFE algorithm. (d) The expression levels of the four genes between UC group (red) and
normal control group (blue) in the validation cohort. (e) ROC curve of the four feature genes in the discovery cohort. (f) ROC curve of
the four feature genes in the validation cohort.
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Figure 6: Continued.
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prognosis evaluation of UC patients and can also provide
insights for finding new treatment targets [7, 13, 14]. In
this study, we had identified a total of 76 DEGs based
on the gene expression dataset of the UC and normal con-
trol groups, among which 56 genes were upregulated and
20 genes were downregulated. Multiple functional enrich-
ment analysis showed that these DEGs were significantly
related to immune response, chemokine signaling pathway,
IL-17 signaling pathway, and cytokine receptor interaction.
Then we selected four best feature genes (ABCG2, HSPB3,
SLC6A14 and VNN1) based on two machine learning
algorithms (LASSO regression model and SVM-RFE algo-
rithm). Meanwhile, the high expression of ABCG2 and
HSPB3 may play a protective role in the prognosis of
UC, while the high expression of SLC6A14 and VNN1
may promote the occurrence and development of UC.

The overexpression of ATP-binding cassette trans-
porter G2 (ABCG2), also known as breast cancer resis-
tance protein (BCRP), can make cancer cells resistant to
chemotherapeutic drugs such as mitoxantrone and doxo-
rubicin with ABCG2 as the substrate [15]. Meanwhile,
ABCG2 is identified as a physiological important uric acid
transporter, and its dysfunction can increase the risk of
gout and hyperuricemia [16]. ABCG2 is also expressed in
a variety of normal tissues (e.g., intestinal epithelium,
brush border membrane of proximal tubules of kidney,
and bile duct membrane of hepatocytes in the liver)
[17–19], and recent studies [19, 20] suggested that the
expression of ABCG2 in active UC is significantly reduced,
and it is negatively correlated with the expression of
microRNA (involved in posttranscriptional gene regulation
and playing a key regulatory function in the pathogenesis
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Figure 6: (a) The relative percentage of 22 immune cells in each sample of the discovery cohort. (b) The difference in immune infiltration
between the UC and normal control groups with red representing the UC group and blue representing the normal control group. (c) The
correlation heatmap between 22 immune cells with red representing positive correlation and blue representing negative correlation. The
darker the color, the stronger the correlation.
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Figure 7: Continued.
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Figure 7: (a) The correlation between ABCG2 and immune cells. (b) The correlation between HSPB3 and immune cells. (c) The correlation
between SLC6A14 and immune cells. (d) The correlation between VNN1 and immune cells.
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of inflammatory bowel disease), which may be because the
proinflammatory cytokines are involved in the regulation
of transporters. Small heat shock protein (sHSP) has a
variety of functions, including cell signaling, cell differenti-
ation and apoptosis, activating immune cells, and stimulat-
ing anti-inflammatory and antiplatelet reaction [21–23].
Heat shock protein 3(HSPB3) is the third member of
human sHSP family, which is mainly expressed in skeletal
muscles and smooth muscles [22, 23]. At present, the
function of HSPB3 in UC has not yet been reported, but
Kalioraki et al. [23] pointed out that the expression of
HSPB3 is downregulated in most colorectal malignancies.
UC has the potential risk of canceration, and HSPB3
may play an important role in this process [24]. The
expression of solute carrier family 6 member 14
(SLC6A14), also known as amino acid transporter B0,+, is
upregulated in active UC and colorectal cancer [25–27].
The mechanism of SLC6A14 in UC is currently unclear,
but as a high-capacity and condensed amino acid trans-
porter, it can ensure the amino acid nutrition of cells, acti-
vate mTOR signal pathway, prevent oxidative stress, and
make the cells proliferate rapidly, so it plays an important
role in the canceration of UC [27, 28]. In addition,
SLC6A14 is involved in the host’s antibacterial response
and affects the gut microbiota [29], and some studies
[30, 31] have pointed out that the use of intestinal
microorganism-based immunotherapy to carry out immu-
nity stimulation can improve the intestinal barrier func-
tion. Vanin-1 (VNN1) is a glycosyl-phosphatidyl-inositol
anchored pantothenase, which can catalyze the hydrolysis
of pantetheine to cysteamine and pantothenic acid, thereby
playing a significant role in oxidative stress, inflammation
and cell migration [32–34]. Most studies [25, 35] proposed
that the expression of VNN1 is upregulated in UC; in
addition, stimulating the expression of VNN1 will pro-
mote the occurrence of colorectal carcinoma. Therefore,
the four feature genes screened in this study are related
to cell signaling, inflammation, and immune response
and may be involved in the occurrence and progression
of UC.

Through CIBERSORT algorithm analysis, it was found
that UC was significantly different from the immune cellular
infiltration in the control group, and several immune cell
subtypes are closely related to the biological process of UC.
Recent studies also confirmed that immune cell infiltration
exerts an important role in the genesis and development of
UC: activated neutrophils will accumulate in the blood and
colon tissues of patients with active UC, and the expression
of costimulatory molecules will be enhanced in dendritic
cells of these patients [4, 36, 37]. The inflammatory environ-
ment of UC potentially improves the survival of neutrophilic
granulocytes through HIF-1 and hypoxia. This increased
survival rate will intensify inflammation and tissue injury
in a variety of ways, including the release of serine, matrix
metalloproteinases, reactive oxygen, and proinflammatory
cytokines [37]. The IgG1 antibodies in the blood of patients
with UC increase disproportionately; hence, B cells also play
a certain role in the pathogenesis of UC [37, 38]. Besides, the
imbalance of follicular helper T cells and follicular regula-

tory T cells is related to the disease activities of UC [39].
In our research, through correlation analysis, it can be seen
that the four feature genes screened out are all related to
the immune cell infiltration of UC, which is expected to
become the direction of future research.

In recent years, the combination of microarray technol-
ogy, bioinformatics analysis, and different machine learning
algorithms for biomarker screening, diagnostic prediction,
and prognosis assessment of complex diseases has become
a hot topic, and the method of computational biology can
also provide scope and basis for further basic experimental
design [9, 40]. In this study, the overlap of the LASSO model
and SVM-RFE algorithm was used to screen potential bio-
markers of UC, which was little reported in the past. How-
ever, due to the limited data in this study, more external
data should be used for verification, and it is also necessary
to evaluate the reliability of the results through clinical sam-
ple experiments. What is more, prospective clinical studies
will be designed in the future to evaluate the practical use
of these potential biomarkers.

5. Conclusion

In summary, through three GEO datasets and two machine
learning algorithms, ABCG2, HSPB3, SLC6A14, and
VNN1 were identified as potential biomarkers of UC. The
four biomarkers are involved with multiple biological pro-
cesses such as cell signal transduction and inflammation; at
the same time, they are related to immune cell infiltration,
which may become new treatment targets for UC in the
future.
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