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Abstract

The Ovum Pick Up-In vitro Production (OPU-IVP) of embryos is an advanced reproductive

technology used in cattle production but the complex biological mechanisms behind IVP out-

comes are not fully understood. In this study we sequenced RNA of granulosa cells col-

lected from Holstein cows at oocyte aspiration prior to IVP, to identify candidate genes and

biological mechanisms for favourable IVP-related traits in donor cows where IVP was per-

formed separately for each animal. We identified 56 genes significantly associated with IVP

scores (BL rate, kinetic and morphology). Among these, BEX2, HEY2, RGN, TNFAIP6 and

TXNDC11 were negatively associated whileMx1 and STC1 were positively associated with

all IVP scores. Functional analysis highlighted a wide range of biological mechanisms

including apoptosis, cell development and proliferation and four key upstream regulators

(COX2, IL1, PRL, TRIM24) involved in these mechanisms. We found a range of evidence

that good IVP outcome is positively correlated with early follicular atresia. Furthermore we

showed that high genetic index bulls can be used in breeding without reducing the IVP per-

formances. These findings can contribute to the development of biomarkers from follicular

fluid content and to improving Genomic Selection (GS) methods that utilize functional infor-

mation in cattle breeding, allowing a widespread large scale application of GS-IVP.

Introduction

The need for increased efficiency of food production calls for more widespread implementa-

tion of novel precision breeding strategies. In this context, Genomic Selection (GS), which is

based on estimating breeding values using genome-wide markers identified using high-density

SNP chips, can have a huge impact, as reviewed in [1, 2]. This technology enables rapid genetic

improvement via a significant reduction in generation interval, increased accuracy of estimated
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breeding values and high intensity of selection. GS has made a substantial economic impact

due to reduction in the cost of traditional progeny and performance tests in livestock [1, 2].

The combination of GS with artificial reproductive techniques such as ultrasound-guided

ovum pick up (OPU) and subsequent In vitro Production (IVP) of embryos can further accel-

erate and increase genetic improvements. The combined use of GS, OPU and IVP (GS-O-

PU-IVP) offers several advantages: selected oocyte donor animals can produce many calves,

GS on embryo biopsies can increase efficiency in breeding and shorten the generation interval

significantly; an effect that can be further substantiated by the effect of harvesting oocytes from

even prepubertal heifers.

Unfortunately, despite huge effort, the IVP procedures are not fully optimized and their

efficiency is still relatively low. In cattle, maturation, fertilization and culture in vitro of cumu-

lus-oocyte complexes (COCs) of good morphology result in only 35–45% developing to the

blastocyst (BL) stage [3, 4]. These drawbacks have a major impact on the implementation of

the technology.

The outcome of IVP measured in terms of embryo quality and pregnancy rate has been

attributed mainly to the oocyte [3, 5, 6], but other studies showed that the sperm also plays a

role from the first days of embryo development [7–9]. Effects of the sperm on the timing of

first cleavage, the BL morphology and the pregnancy rate have been noted [7]. In the context of

IVP combined with GS, the possibility of using sperm from bulls of high genetic merit without

compromising the IVP outcome is of fundamental importance, but has not been examined.

The poor IVP efficiency has been mainly attributed to the lower competence of the oocytes,

which are aspirated from growing antral follicles and forces to mature in vitro over a 24 hour

period as compared with the superior in vivo development in the dominant follicle culminat-

ing in oocytes maturation and ovulation [10, 11]. Developmental competence is defined as the

ability of the oocytes to develop into BLs that are suitable for transfer [3, 11, 12]. Huge efforts

have been invested in the identification of biomarkers of oocyte competence in different

domestic species as well as in humans. Oocyte competence is probably related to the synthesis

and storage of transcripts and proteins during oocyte growth (for a review, see [13]). These

molecules are of fundamental importance, because they support development through oocyte

maturation and fertilization to the activation of the embryonic genome [5, 6], which occurs at

the 8-cell stage in cattle [14].

Transcriptomics can help in identifying biomarkers of oocyte and embryo competence [15].

In cattle, many studies have exploited the power of Next-Generation Sequencing (NGS) tech-

nologies to identify biomarkers in the follicular compartments and small tissue biopsies [16].

Cumulus and granulosa cells are intimately coupled to the oocyte through paracrine and inter-

cellular communication systems and play major roles in oocyte competence [17]. Moreover,

these cellular compartments reflect the characteristics of the oocytes and represent assessable

targets for analyses, as they are aspirated together with the COCs. The cumulus cells attached to

the oocyte play a fundamental role during in vitro oocyte maturation and also have effects dur-

ing in vitro fertilization [18, 19]. For these reasons, removal of cumulus cells from the COCs

before in vitro fertilization can negatively affect the IVP outcome. On the other hand, collection

of granulosa cells and cumulus cells found in the follicular fluid is a less invasive method, as

these cells are a by-product of COC aspiration. Many studies have focused on identification of

biomarkers of oocyte competence in the follicular fluid. A complex picture of a variety of mole-

cules from different families and their biochemical pathways associated with oocyte competence

is now emerging [20]. Midkines showed a positive effect exerted through granulosa and cumu-

lus cells on bovine oocyte competence during in vitromaturation [21]. A similar effect on the

oocyte competence exerted through granulosa cells has been identified for proline when added

to the media during maturation [22]. The expression levels for five genes (FDX1, CYP19A1,
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CDC42, SERPINE2, 3bHSD1) have been positively associated with oocyte competence in analys-

ing human granulosa cells from aspirated fluid [23]. In a study based on rat granulosa cells, the

expression level of 13 genes correlated with oocyte developmental competence. Among these,

12 genes were overexpressed in normal developmental competence group versus poor develop-

mental competence group. The genes were primarily involved in: copper ion binding (Lox),

apoptosis induction (Ngfrap1) while the underexpressed gene was involved in regulation of

extracellular matrix (ECM) organization (Ggbt2)[24]. The expression of 40 transcripts (18 over-

expressed and 22 underexpressed) has been associated with developmental competence in

oocytes from follicles aspirated before the luteinizing hormone (LH) surge that precedes the

ovulation phase. The pre-LH surge phase was defined as the best period for studying biomark-

ers of oocyte competence in granulosa cells [25]. Follicle-stimulating hormone (FSH) with-

drawal after super stimulation, defined as FSH coasting, was analysed to see the effect on the

gene expression in granulosa cells. FSH coasting is particularly interesting, because it has a posi-

tive effect on oocyte competence in bovines [26]. A positive association with the FSH coasting

has been confirmed with real-time PCR for 11 genes (KCNJ8,NRP1, IGF2,GFPT2, TF, RELN,

ANKRD1,ANXA1,BMPR1B, TFPI2, VNN1) [27]. An increase in the expression of gene for the

luteinizing hormone receptor (LHCGR) has also been associated with oocyte competence [28].

Many studies have focused on understanding how the granulosa cell profile varies between folli-

cles with different characteristics, for example follicles at different developmental stages [29]

and follicles of different sizes [30], and between healthy and atretic follicles [31].

None of the previous studies focus on the single animal level. Usually the oocytes and the

RNA samples are pooled together within the experimental condition; otherwise, analyses are

conducted performing case and control studies to test the effect of the substances or hormones

of interest on gene expression.

Earlier studies have, through repeated OPU sessions, demonstrated that certain donor cows

are superior for OPU-IVP [32]. Thus, the possibility of identifying biomarkers in follicular

cells at the single animal level is of extreme interest in order to improve GS-OPU-IVP and

enable more widespread application. This would enable selection of the best oocyte donor

cows based on biomarker levels. Furthermore, eQTL studies can identify genetic variants con-

trolling for the expression of these biomarkers and this new information can be included in

GS exploiting the medium to high heritability of IVP-related traits in cows [33].

The main objectives of this study were i) to investigate the possible effect of using bulls with

high versus low breeding values (Nordic Total Merit (NTM)) on IVP outcome, and ii) to

investigate the effect of the individual cow granulosa cell transcriptomic profiles on IVP out-

come. In order to achieve these objectives, we performed RNA sequencing of granulosa cells

isolated from follicular fluid to identify genes correlated with IVP outcome measured as BL

rate, morphology and kinetics.

To the best of our knowledge, this is the first study to analyse the effect of the genetic merit

of bulls on IVP outcome and to focus on transcriptomic profiles of pools of follicular cells at

the single animal level. The results have provided proof that high NTM bulls do not have infe-

rior IVP performance and revealed which candidate genes might be used for further biomark-

ers discoveries for donor cow selection in this species.

Materials andmethods

Sample collection and IVP procedure

Ovaries from 67 Danish cows were collected immediately after slaughter from a local abattoir

(Mogens Nielsen Kreaturslagteri A/S; 55˚18’, 11˚44’). The sampling was performed in six

rounds collecting 10 to 12 cows per round.
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Each pair of ovaries was kept separate from the others and labelled with the cow’s Central

Husbandry Register (CHR) number, which is the national system for all registered cows in

Denmark. Immature COCs from each animal were retrieved from antral follicles using a vac-

uum pump. The COCs from each animal were collected and kept separately.

Denuded oocytes were discarded. The aspirated fluids containing only follicular cells were

collected in 15 ml TPP centrifuge tubes, one for each animal, and they immediately underwent

purification and freezing procedures. (see S1 Text).

The COCs were in vitromatured (IVM), inseminated (IVF) and cultured (IVC) until the

BL stage (day eight). Insemination was performed according to the experimental design: each

bull was used for insemination of oocytes from three cows, and for each experimental round,

oocytes from half of the cows were inseminated with bulls with high NTM [34] and half with

low-NTM bulls.

NTM is the Nordic Total genetic Merit index this is calculated by the NAV (Nordic Cattle

Genetic Evaluations) taking in consideration animal trait groups for production, functionality

and conformation weighted based on economic calculations [34].

The COC’s and blastocysts were made with media from IVF Bioscience, Falmouth, United

Kingdom, and the procedure according to their IVP protocol. A detailed description of the

IVP protocol can be found in S1 Text.

Measurement of IVP scores

On day eight, embryos from all the animals were scored with regard to three parameters:

BL rate was computed for each animal as the number of BLs over the total number of

inseminated COCs. Kinetic score was obtained by visual classification of each BL as non-

expanded, expanded or hatching/hatched. The three classes were scored respectively 1, 2 or 3,

and finally, for each animal we computed the average score. Morphology score was obtained

by visual classification of each BL as poor, good or excellent. Poor morphology is defined as

the presence of diffuse or absence of inner cell mass (ICM), degenerated trophoblast cells or

much fragmentation, or irregular or uneven trophoblast morphology. Good morphology was

assigned where there was presence of smaller or less distinct ICM, few degenerated trophoblast

cells, slight fragmentation, or slightly irregular or slightly uneven trophoblast morphology.

Excellent morphology is defined by the presence of compact, large and distinct ICM, or regular

and even trophoblast morphology. To each class respectively we assigned the scores 1, 2 or 3

and computed the average for each animal.

The animals were not synchronized before collecting COCs, therefore the number of COCs

can vary in relation to these effects. However, all the IVP outcomes or scores (such as BL rate,

morphology and kinetic) used in the analysis are independent of the total number of COCs for

each cow.

RNA extraction

RNA was isolated from the frozen samples using an RNeasy Plus Micro Kit (Qiagen, Hilden,

Germany), according to the manufacturer’s instructions. RNA samples were immediately fro-

zen and stored at -80˚C. All the RNA samples were tested and quantified with a NanoDrop

ND-1000 Spectrophotometer (SaveenWerner) and with an Agilent 2100 Bioanalyzer.

Sample selection

Information about the animals—breed, age at slaughter (days), calving number and herd of

production—was retrieved from the SEGES Dairy & Beef Research Centre database using the

CHR identification number. Only Holstein cows were used in the rest of the analysis.

Identification of potential IVP biomarkers for donor cows
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We ended up with a total of 34 Holstein samples, from 14 different herds, with an average

age at slaughter of 1,594 days (SD = 401.36, min = 928, max = 2,930). Their oocytes were

inseminated with semen from 16 bulls, seven with low and nine with high NTM index. Oocyte

pools of twenty cows were fertilized with high-NTM bulls and oocyte pools of 14 cows were

fertilized with low-NTM bulls. Only RNA samples from first- or multiple-lactation Holstein

cows were used and samples with an RNA Integrity Number (RIN) lower than 5.8 were

excluded in order to select the top 24 samples. The RNA samples selected had an average RIN

value of 7.21 (min = 5.8 and max = 8.6), all derived from granulosa cells (mural granulosa and

granulosa from the cumulus) collected from multiparous Holstein cows (from 1 to 6 calvings)

all at the luteal phase of the oestrous cycle (day 3 to day 17). The average age at slaughter was

1638 days (SD = 417, min = 928, max = 2,930). Data represented 10 herds and six different

experimental dates.

RNA sequencing

The selected samples were paired-end sequenced with the Illumina HiSeq 2500 platform with

a read length of 100 nt, obtaining an average of 84,481,280 reads per sample

(min = 71,735,902, max = 98,870,402). The libraries for the sequencing were generated with an

Illumina TruSeq-stranded totalRNA RiboZero Gold Sample Prep Kit.

All RNA-Seq data have been deposited in NCBI’s Gene Expression Omnibus and are acces-

sible through GEO accession number GSE94541. (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE94541).

Real-time PCR

Validation of RNA-Seq data was performed by real-time PCR on 4 of the top 7 candidate

genes (BEX2,Mx1, STC1 and TXNDC11) and using GAPDH as a reference gene.

The genes were tested on 21 samples out of the original 23 samples, which have been sub-

jected to RNA sequencing. Two samples could not be included because all the RNA collected

was used for the RNA sequencing experiment. The primers for BEX2,Mx1, STC1, TXNDC11

and GAPDH were designed using the version UMD3.1 of Bos taurus assembly and the Primer3

program as a primer design tool. Primer sequences and transcript accession numbers are pro-

vided in Table A in S1 File.

Briefly, for each sample 200 ng of total RNA was reverse transcribed to cDNA using Rever-

tAid First Strand cDNA Synthesis Kit (Thermo Scientific) following manufacturer’s recom-

mendations and using both oligo-dT and random primers. Real-time PCR was performed

using LightCycler 480 and SYBR Green I Master (Roche) following manufacturer’s instruc-

tion. The PCR conditions used for all genes were as follows: 5 min preincubation at 95˚C fol-

lowed by 45 PCR cycles (denaturation 95˚C for 10 s; annealing 60˚ for 10 s; extension 72˚C for

20 s), a melting curve (95˚C for 5 s, 65˚C for 1 min, from 65˚C up to 97˚C at 0.11˚C/s), and a

final cooling step at 40˚C.

Real-time PCR reactions for the same genes were run all in one plate. We checked for across

plate variation including a calibrator that consisted of a pool of equal concentrations of cDNA

from all the samples. Each sample including the calibrator was run in triplicate.

Real-time PCR data analysis. The average crossing point-PCR-cycle (Cp) for each reac-

tion was computed with LightCycler1 480 Software version 1.5.1) using the second-derivative

maximummethod.

No relevant variation was observed across plates. In order to validate the RNA-Seq data we

computed the Pearson correlation between target gene and GAPDH ratios from RNA-Seq raw

counts vs. the qPCR average Cp.
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Bioinformatic analysis

RNA-Seq preprocessing, alignment and gene expression quantification. All the steps

from the raw reads to the gene expression quantification were performed on our group’s high-

performance computing platforms (Operative system: openSUSE 13.1 Bottle (x86_64), Linux

version: 3.11.10-7-desktop, RAM: 504 GB, #CPUs: 64).

The quality of the reads was checked with FastQC (v. 0.11.2) [35] for both forward and

reverse reads before proceeding with the pre-mapping quality control of the reads. Adapters

were removed using cutadapt (v. 1.6) [36].

Raw reads were filtered and trimmed by quality using PRINSEQ (v. 0.20.4) [37] to compute

the: (1) trimming of the 3’-end with a quality threshold of 20, (2) filtering of the sequence with

an average quality lower than 20, (3) filtering reads with a final length of less than 25 nucleo-

tides. The remaining reads were mapped to the bovine reference genome (Bos taurus

UMD3.1) [38] with STAR aligner (v. 2.3.0) [39], using the two-pass method and including the

gene annotation file. We allowed for a maximum of five mismatches, while setting the other

parameters to STAR default values. Splice junction files obtained from the first step were fil-

tered. We excluded previously annotated junctions, junctions identified in the mitochondrial

genome and not significant junctions [39].

Read counts were estimated at gene level using HTSeq-count (v. 0.6.0) [40], setting the

model of intersection as “intersection-nonempty”, library type as “reverse” and using the same

annotation file (Ensemble Bos taurus 10.2.83).Further quality controls on count data were per-

formed with Noiseq (v.2.14.0) [41] in order to identify the presence of transcript length bias or

GC content biases.

PCA and hierarchical clustering were then applied on normalized data, to identify if the

main variation could be explained by one or more potential confounders and to check for

outliers.

Filtering low-count genes and normalization. We filtered all the genes with less than

1 count per million (cpm) in more than 90% of the samples using the function cpm from edgeR

v. 3.10.5. Length and GC biases identified with NOISeq were reduced using the conditional

quantile normalization methods cqn function from cqn (R package v.1.14.0) [42].

The library size factors were computed with function size factors of DESeq2 v.1.8.2 [43].

The length of each gene was computed as the median of the lengths of its transcript. Lengths

and GC percentages were retrieved from Ensemble Bos taurus 10.2.83 using Biomart [44]

Analysis of the sperm effect. A simple linear model was fitted to test the effect of the

genetic merit index of the bulls’ sperm on the IVP outcome. The basic linear model is:

yi ¼ b
0
þ bage agei þ

XZ�1

z¼1
bdate;zdatei;z þ bNTMNTMi þ xi ð1Þ

where yi is the IVP score (BL rate or morphology or kinetic scores) for the ith animal, β0 is a
fixed intercept term, NTM was fitted as a dummy variable distinguishing between two classes

of high and low NTM index, and βNTM is the corresponding regression coefficient.

Age at slaughter (age) was included as an explanatory variable and fitted as a covariate,

whereas sampling date (date) was fitted as a fixed effect with classes in the model where date

i(z,. . .Z-1) is a set of (Z-1) dummy variables representing the sampling date for the ith animal,

and βdate,z and βage are the solutions for date classes and regression coefficients, respectively.

In total, we fitted three univariate linear models, one for each IVP outcome variable that we

tested (BL rate, morphology and kinetic) on the complete data set (34 Holstein cows). All the

models were fitted using the lm function (R package v. 3.2.2).
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Residuals computation. In order to avoid biases due to sperm quality effect on the IVP,

we adjusted the phenotype data (IVP outcome) for the sperm effect and used the “adjusted

phenotype” for our differential gene expression analyses.

The effect of the bulls’ sperm on the IVP phenotype was first estimated by using the simple

linear model:

yi ¼ b
0
þ
XK�1

k¼1
bbull;k bullik þ xi ð2Þ

where yi is the IVP score for the ith animal, β0 is a fixed intercept term, bull(k. . .K-1) is a set of

(K-1) dummy variables distinguishing between the bulls used during the IVF step, and βbull,k is
the corresponding regression coefficient.

The adjusted phenotype was then defined as residuals that correspond to the IVP outcome

after correcting for estimated mean and sperm effects from (Eq 2):

êi ¼ yi � ðb̂
0
þ
XK�1

k¼1
b̂bull;k bulli;kÞ ð3Þ

where b̂
0
and b̂bull;ðk; ...; K�1Þ are the least squares estimates obtained using the lm function from

stats (R package v. 3.2.2) and eij are the residuals computed with the function residuals (R pack-

age v. 3.2.2).

The adjusted phenotype (the residuals in (Eq 3)) represents part of the IVP scores that can-

not be explained by the effect of sperm.

Gene expression analysis for all the IVP scores was performed using the adjusted phenotype

computed in (Eq 3) instead of the raw IVP scores.

Gene expression analysis. The genes whose expressions were associated with the IVP out-

come were identified with DESeq2 v. 3.2.2. DESeq2 performs a logistic regression of the gene

counts (modelled by a negative binomial distribution) with the IVP scores. The statistical sig-

nificance of the regression model was evaluated by Wald test statistics [43].

We included in the model the following: age at slaughter and the RIN values as continuous

variables and the sampling date as a set of dummy variables in order to adjust the expression

data for these explanatory variables. The RIN values observed are probably due mainly to tech-

nical issues (processing time of the samples) occurred during the samples collection.

Considering that our main objective is to find candidate genes for IVP traits, the RIN was

included in the model to account for these biases. During the independent filtering step, 545

and 3267 other genes were filtered out for the analysis of the BL rate and morphology, respec-

tively. Significantly associated genes were called at a FDR of 5%.

Comparison with gene expression profiles related to follicle size and atresia. We com-

pared our patterns of gene expression to previous analyses that reported direction or FCs of

differential gene expression for healthy versus early antral atretic follicles by (Hatzirodos et al.

(b)) [31] as well as for small (3–5 mm) versus medium and large follicles (> 9 mm) by (Hatzir-

odos et al.(a)) [30].

We considered all the significant genes identified in (Hatzirodos et al.(a, b)) [30, 31] for

comparison with expression profiling results from our analyses. A gene was considered to

have the same trend when it showed the same direction of change. We performed the same

comparison selecting only the genes with log2 FCs for BL rate with an absolute value higher

than 0.10, resulting in the top 25%. This comparison ensured that the most significant results

from our study conformed to those reported in (Hatzirodos et al.(a,b)) [30, 31].

Enrichment analysis. We performed gene set enrichment analysis using the GseaPrer-

anked tool from GSEA v2.2.2 (Broad Institute) [45] based on gene sets fromMolecular Signa-

tures Database (MSigDB Collections) v5.1. GSEA was able to map 9831 genes. We considered
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an FDR threshold of 5% as significant and an FDR of 25% as suggestive, as recommended by

the GSEA manual [46].

We performed a second functional analysis using QIAGEN’s Ingenuity1 Pathway Analysis

(IPA1, QIAGEN Redwood City,www.qiagen.com/ingenuity). The analysis was performed

using all the genes with a 10% FDR. In total, 8911 genes were mapped (Tables B, C and D in

S1 File).

Results

RNA-Seq statistics and preliminary analysis

From the alignment, we obtained on average of 79.36% of uniquely mapped reads per sample,

which corresponds to an average of 33,448,723 uniquely mapped read pairs. The alignment

files were analysed with Qualimap (v.2.0.2) [47] to count the number of reads mapping in

exonic, intronic and intergenic regions. Among the uniquely mapped read pairs, on average

43.80% mapped to exonic, 16.63% to intergenic and 18.93% to intronic regions (Fig A in

S2 File). Sample 8 showed a very low fraction of uniquely mapped read pairs compared to the

other samples (50.78% of uniquely mapped reads, with only 27.73% mapped to exonic

regions).

The hierarchical clustering and the Principal Component Analysis (PCA) plots confirmed

that Sample 8 was an outlier. Thus, it was excluded from the rest of the analysis. We filtered

genes with low counts in the remaining 23 samples; we ended up with an expression count

matrix for 10,891 genes (10,617 coding genes, 206 non-coding genes, 68 pseudogenes).

We inspected the PCA plot to determine whether some of the main variation in the data set

could be explained by one or more of these potential confounders. The variation captured by

the first component correlated with the RNA Integrity Number (RIN) values (Figs B and C in

S2 File). RIN was included in the model for gene expression analysis as a confounding effect.

Evaluation of theca cell contamination

We checked for the presence of theca contamination by looking at the expression of the gene

CYP17A1. CYP17A1 is synthesized in theca cells and only at low level in granulosa cells [48].

By checking the level of expression of CYP17A1we can identify the presence of theca cell con-

tamination [31]. In our samples, CYP17A1 is mildly expressed and it was filtered out during

the filtering step. We can conclude that the concentration of theca cells is not sufficient to sig-

nificantly alter the gene expression profiles. We expect that the RNA samples that we analysed

belonged mainly to mural granulosa cells and partially to granulosa cells of the cumulus

oophorus.

IVP outcome

The results of the IVP procedures are summarized in Table 1. The average number of COCs

that underwent IVP from each animal was 11.60 and the average BL rate obtained was 37%,

which was consistent with results from previous studies. The 23 RNA samples chosen for

sequencing showed statistics similar to the complete data set, and this subset of animals is rep-

resentative of the entire set. All the IVP scores that we computed showed positive pairwise

Pearson Correlation Coefficients (PCC). Morphology and kinetic showed the strongest corre-

lation (PCC = 0.79). BL rate showed a better correlation with kinetic (PCC = 0.73) than with

morphology (PCC = 0.55).

The correlations computed pairwise among the IVP scores for the 23 animals after remov-

ing the effect of the bulls (using the residuals) increased for all scores. The correlation between
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kinetic and BL rate increased (PCC = 0.79). The same occurred for morphology and kinetic

(PCC = 0.92), while PCC between morphology and BL rate increased to 0.60.

Genetic merit index effect

The phenotypic means of BL rate and morphology tended to be lower when sperm from low-

NTM bulls was used for IVP; in other words, high-NTM bulls tended to have more favourable

IVP outcomes (Fig 1). However, when we fitted the linear models to formally test the effect of

the bull genetic index while taking into consideration possible confounding effects, no statisti-

cally significant effect could be observed at a P value of 0.05.

For the morphology score (β = -0.31, P value = 0.20) we obtained a 10.33% decrease on the

entire scale, followed by a BL rate (β = -0.31, P value = 0.59) that showed a 3.8% decrease using

low-NTM index bull sperm. Conversely, we obtained a 3% increase of the kinetic score (β =

0.09, P value = 0.58).

Genes related to IVP outcome

We identified 45 genes significantly related to the BL rate (False Discovery Rate (FDR)< 5%)

of which 10 showed a positive correlation (their expressions were increased in cows with

higher BL rates). For the kinetic score we identified 30 genes (11 positively correlated and 19

negatively correlated). Ten genes were significantly related to morphology, including three

that were positively correlated (Table E, F and G in S1 File). Seven genes resulted in being

common among all the IVP scores: BEX2,HEY2,Mx1, RGN, STC1, TNFAIP6 and TXNDC11,

and two of these (Mx1, STC1) were positively correlated (Table 2). The scatterplots for these 7

genes are shown in Fig D in S2 File.

Profile comparisons

We compared our gene expression pattern with direction or FCs of a published entire set of

differentially expressed genes between healthy and early antral atretic follicles by (Hatzirodos

et al.(b)) [31] regardless the statistical significance. In total, 423 out of 648 genes (65.28%)

included in the comparison showed the same trend in our study and (Hatzirodos et al.(b))

[31]. In other words, we observed that 423 genes had increased (or decreased) expression pro-

files between healthy and atretic follicles corresponding to increased (or decreased) expression

in cows with good IVP outcome demonstrating a positive relationship between early atresia

and good IVP outcome. When selecting the subset of our gene list (only the top 25% of our

Table 1. Summary of the IVP scores for the sample sets.

Average SD Min Max

COCs (34 animals) 11.60 7.38 3.00 30.00

COCs (23 animals) 11.13 7.88 3.00 30.00

BL rate (34 animals) 37% 18% 0% 71%

BL rate (23 animals) 37% 19% 0% 71%

Kinetic (34 animals) 1.40 0.42 0.00 1.88

Kinetic (23 animals) 1.31 0.48 0.00 1.88

Morphology (34 animals) 2.17 0.73 0.00 3.00

Morphology (23 animals) 2.11 0.85 0.00 3.00

The table shows the statistics computed for the set of 34 Holstein cows used to estimate the sperm effect and for the 23 Holstein cows included in the RNA

analysis for the identification of biomarkers. SD = standard deviation,Min = minimum value,Max = maximum value.

https://doi.org/10.1371/journal.pone.0175464.t001
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gene list), we observed that 151 out of 168 genes show very high similarity in expression pat-

terns or trend (89.88%) (Fig 2a, 2b and 2c).

When we compared our gene expression patterns for cows with good IVP outcome with

the gene expression profiles of small versus medium large follicles as reported by (Hatzirodos

et al.(a)) [30], 324 out of 388 genes (83.51%) showed the opposite trend, as explained in the

Table 2. Summary of the Fold Change (FC) and the corresponding FDR for the genes in common among all the IVP scores.

Gene Name BL rate Kinetic Morphology

FC FDR FC FDR FC FDR

BEX2 -0.18 6.96E-04 -0.25 3.17E-02 -0.18 4.50E-02

HEY2 -0.17 1.44E-02 -0.30 1.67E-02 -0.22 4.40E-02

Mx1 +0.16 4.65E-02 +0.55 1.90E-04 +0.26 4.40E-02

RGN -0.17 1.74E-03 -0.26 2.18E-02 -0.18 4.50E-02

STC1 +0.15 4.65E-02 +0.57 5.63E-05 +0.27 2.47E-02

TNFAIP6 -0.15 4.03E-06 -0.20 2.80E-03 -0.12 4.50E-02

TXNDC11 -0.16 5.91E-03 -0.29 1.81E-02 -0.20 4.50E-02

FC = change in gene expression for a 1 unit change in kinetic and morphology, while for BL rate it represents the amount of change in gene expression for

each 20% increase in BL rate. The plus sign (+) indicates the presence of a positive correlation, while minus (–) indicates a negative correlation, FDR =

Benjamini-Hochberg (B-H) adjustment for multiple testing. Genes are listed in alphabetical order.

https://doi.org/10.1371/journal.pone.0175464.t002

Fig 1. Box plots representing the differences in the distribution of IVP scores between samples inseminated with high-
NTM and low-NTM index bulls. The thick line represents the median values. The box represents the lower and upper quartiles.
The thin lines are the maximum and minimum values excluding outliers. Outliers are represented by empty circles.

https://doi.org/10.1371/journal.pone.0175464.g001
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Fig 2. Comparison of expression pattern with previous studies by (Hatzirodos et al.(a, b)) [30, 31]. (a) Description of our analysis with respect to
the differential expression analyses in (Hatzirodos et al.(a, b)) [30, 31]. The comparison from (Hatzirodos et al.(a)) [30] is inverted in this picture in order
to show the similarity of the patterns that we observed. (b) Explanation of the comparisons. A gene is considered to have the same trend when its
expression decreases or increases in both the studies for each comparison. (c) Number of genes observed with similar trend during the comparisons.
The numbers refer to the genes with a similar trend with respect to the order described in Fig 2a and 2b.

https://doi.org/10.1371/journal.pone.0175464.g002

Table 3. Comparison of FCs of significant associated genes with expression changes identified between healthy and small atretic follicles.

Gene Name FC in atretic follicles BL rate (FC) Kinetic (FC) Morphology (FC) Trend

MEX3C -5 -0.12 -0.18 -0.10 Same

GPRC5B +3.3 +0.14 +0.39 +0.24 Same

ODF2L +5.8 +0.24 +0.33 +0.16 Same

PRSS23 +10.9 -0.11 -0.19 -0.12 Opposite

DUSP7 +3.6 -0.16 -0.21 -0.12 Opposite

TNFAIP6 +7.1 -0.15 -0.20 -0.12 Opposite

Gene Name = name of the gene, FC = fold change identified in [31], a positive change corresponds to upregulation in small atretic follicles, while negative

values correspond to downregulation. FC (BL rate, Kinetic, Morphology) = FC obtained in our study for the corresponding IVP score, Trend = results of

the comparison, same trend indicates that the gene follows the same trend as that described in (Hatzirodos et al.(b)) [31] (genes with the same trend

resemble the presence of atretic follicles in cows with better IVP performance).

https://doi.org/10.1371/journal.pone.0175464.t003
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methods and in the illustration below (Fig 2a, 2b and 2c). When considering 25% of our gene

list, the percentage of genes with the opposite trend increased to 91.96% (103 out of 112 genes)

(Tables H and I in S1 File).

In our experimental design, we compare IVP outcome from bad to good, whereas in the

study by (Hatzirodos et al.(b)) [31], they compare profile changes from healthy versus atretic

follicles. The relationship between these two studies is that IVP outcome is expected to be bet-

ter for cows with a higher number of early atretic follicles. Based on this, Table 3 shows the

candidate genes that can be used as potential biomarkers, as they have the same expression pat-

terns with respect to good IVP outcome. In particular, when we looked into the significant

lists of genes, three followed the same trend described in [31], while three showed opposite

results (Table 3).

Contrarily, the comparison between our study and the gene expression analysis between

small and medium or large follicles (Hatzirodos et al.(a)) [30] showed that most of the genes

had the opposite trend. The relationship between these studies is that IVP outcome is expected

to be better for cows with a higher number of small follicles. Table 4 shows the candidate genes

that can be used as potential biomarkers, as they have opposite expression patterns with

respect to good IVP outcome. Among the significant genes, 12 were associated with the follicle

size (Table 4), including 11 that followed the opposite trend and one that showed the same

trend.

Significantly enriched gene sets

Gene set enrichment analysis (GSEA) was performed to extract biological insight of the IVP

process from the gene expression profiles. The top pathways (FDR<5%) are shown in

(Table 5). As per the GSEA method recommendation, we also conducted the pathway analyses

with the use of 25% FDR to reveal interesting biological mechanisms. The entire list of path-

ways with suggestive FDR<25% is reported in Tables J-M in S1 File.

For all the IVP scores, the analysis revealed positively enriched pathways involved in: DNA

replication, cytokine-cytokine receptor interaction, pathways associated with the response to

Table 4. Comparison of FCs of significant genes with expression changes identified between small andmedium or large antral follicles.

Gene Name FC in large follicles BL rate (FC) Kinetic (FC) Morphology (FC) Trend

RGN +9.8 -0.17 -0.26 -0.18 Opposite

TNFAIP6 +279.6 -0.15 -0.20 -0.12 Opposite

SLMAP +5.1 -0.15 -0.25 -0.18 Opposite

BTBD7 +4.3 -0.16 -0.24 -0.15 Opposite

BEX2 +9 -0.18 -0.25 -0.18 Opposite

SLC25A28 +5.8 -0.15 -0.26 -0.18 Opposite

CHCHD10 +3.3 -0.15 -0.28 -0.19 Opposite

PRSS23 +48.5 -0.11 -0.19 -0.12 Opposite

MAOA +3.1 -0.14 -0.24 -0.15 Opposite

ITGB5 +11.4 -0.15 -0.25 -0.16 Opposite

ARHGAP18 +20.5 -0.16 -0.24 -0.15 Opposite

ODF2L +4.4 +0.24 +0.33 +0.16 Same

Gene Name = name of the gene, FC = fold change identified in [30], a positive change corresponds to upregulation in medium and large follicles, while

negative values correspond to downregulation. FC (BL rate, Kinetic, Morphology) = FC obtained in our study for the corresponding IVP score, Trend =

result of the comparison, same trend indicates that the gene follows the same trend as that described in (Hatzirodos et al.(a)) [30] (all the genes that show

opposite behaviour resemble the expression profile of small follicles in cows with better IVP performance).

https://doi.org/10.1371/journal.pone.0175464.t004
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bacteria (pathogenic Escherichia coli, Toll-like receptor signalling pathway, antigen processing

and presentation) and involvement of the immune system (natural killer cell-mediated cyto-

toxicity, leukocyte migration).

In terms of biological interpretation of the results, the following pathways (FDR<25%) are

interesting: cell adhesion molecules (CAMs), gap junctions, fatty acid metabolism and p53 sig-

nalling. Furthermore, for BL rate we obtained the positive top-hit ribosome formation.

We obtained a set of pathways with negatively enriched score for BL rate involved in oocyte

competence: progesterone mediated oocyte maturation and oocyte meiosis as well as pathways

involved in cell cycle control, glycan biosynthesis and glycolysis, gluconeogenesis and sugar

metabolism.

Gene Ontology (GO) term enrichment analysis confirmed the biological functions identi-

fied with the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

Table 5. Significant enriched KEGG pathways (FDR <5%) identified fromGSEA for all the IVP scores analysed.

IVP score KEGG Pathway Size ES NES FDR q-val

BL rate Progesterone-mediated oocyte maturation 61 -0.48 -1.82 4.73E-02

Ribosome 45 0.62 2.34 0

Pathogenic Escherichia coli infection 39 0.56 2.01 4.76E-03

Kinetic Pathogenic Escherichia coli infection 39 0.65 2.38 0

Cytokine-cytokine receptor interaction 54 0.51 2.02 7.60E-03

Systemic lupus erythematosus 40 0.52 1.95 8.24E-03

Spliceosome 110 0.43 1.95 9.33E-03

Cell adhesion molecules (CAMs) 37 0.54 1.97 1.00E-02

DNA replication 32 0.55 1.92 1.13E-02

RIG-I-like receptor signalling pathway 41 0.49 1.80 1.96E-02

Haematopoietic cell lineage 20 0.59 1.81 1.97E-02

Viral myocarditis 22 0.58 1.81 2.25E-02

Cytosolic DNA-sensing pathway 29 0.52 1.76 2.67E-02

Complement and coagulation cascades 20 0.57 1.76 2.78E-02

Antigen processing and presentation 30 0.50 1.70 4.11E-02

Leukocyte transendothelial migration 53 0.43 1.71 4.14E-02

Natural killer cell-mediated cytotoxicity 43 0.45 1.67 4.71E-02

Morphology DNA replication 32 0.68 2.39 0

Pathogenic Escherichia coli infection 39 0.63 2.27 0

Cytokine-cytokine receptor interaction 54 0.52 2.12 2.08E-03

Antigen processing and presentation 30 0.60 2.05 3.12E-03

Haematopoietic cell lineage 20 0.62 1.96 4.79E-03

Systemic lupus erythematosus 40 0.54 1.98 5.43E-03

Natural killer cell-mediated cytotoxicity 43 0.51 1.93 8.36E-03

Cysteine and methionine metabolism 27 0.57 1.90 9.31E-03

RIG-I-like receptor signalling pathway 41 0.50 1.88 9.69E-03

Cell adhesion molecules (CAMs) 37 0.50 1.85 1.16E-02

Spliceosome 110 0.40 1.84 1.18E-02

Leukocyte transendothelial migration 53 0.44 1.76 2.69E-02

Cytosolic DNA-sensing pathway 29 0.50 1.72 3.80E-02

Toll-like receptor signalling pathway 56 0.43 1.69 4.36E-02

IVP score: is the IVP score for which the pathway has been found enriched, KEGG Pathway: name of the KEGG gene set enriched, Size: total number of

genes in the gene set, ES: Enrichment Score, NES: Normalized Enrichment Score, FDR q-val: False Discovery Rate associated with the entry.

https://doi.org/10.1371/journal.pone.0175464.t005

Identification of potential IVP biomarkers for donor cows

PLOSONE | https://doi.org/10.1371/journal.pone.0175464 April 12, 2017 13 / 27

https://doi.org/10.1371/journal.pone.0175464.t005
https://doi.org/10.1371/journal.pone.0175464


The lists of significant GO terms (FDR<25%) identified with the enrichment analysis for

the GO terms are presented in Tables N-Q in S1 File.

Ingenuity® Pathway Analysis (IPA®) results

Upstream regulators. Among the top upstream regulators for BL rate, we identified

many cytokines together with transcription regulators. The top five upstream regulators iden-

tified are: IFNA2, IFN Beta, thiocoraline, MAML1 and IL1RN (P value< 3.36E-4). ACOX1 is

one of the top 10 identified upstream regulators predicted as significantly inhibited (Z-score =

-2.00 and P value = 6.84 E-4).

The top upstream regulators identified for kinetic are involved in different functions (PRL,

IRF7, TRIM24, UBA7 and ACKR2). The first two, PRL (Z-score = 2.45, P value = 7.57E-6) and

IRF7 (Z-score = -2.18, P value = 8.86 E-6), were significantly predicted as activated, while

IL1RN was predicted as inhibited (Z-score = -2.00, P value = 7.05 E-5).

The upstream regulators identified for morphology are mainly involved in interferon regu-

lation: IL17D, IFNK, IFNL1, IRF7 and IFNG (P value<1.62 E-4). The relevant upstream regu-

lators are presented in Fig 3a and 3b.

Molecular and cellular function. The top five over-represented molecular and cellular

functions identified for each IVP score together with the relatively enriched specific functions

are represented in Table 6. When considering the most enriched functions that belong to these

categories, we found: cell proliferation, cell development and homeostasis, necrosis, cell death

and apoptosis. Only cell death identified for morphology showed a significant activation score

(Z-score>2). Interestingly, inflammation of the body region (P value = 6.55 E-2, z-

score = 2.21) and synthesis of reactive oxygen species (P value = 8.85E-2, z-score = -2.19), both

involved in immune response, were predicted as being significantly inactivated. The complete

list of the results from the enrichment analysis of molecular and cellular functions is shown in

Tables R, S and T in S1 File.

Networks. IPA1 generated interesting networks associated with different physiological

and biological functions. We focused our analysis on a network involved in the control of the

oestrous cycle and follicle development. We chose a network generated from the genes related

to the BL rate with the highest number of genes, the highest score (Focus molecules = 19,

score = 43) and in which both FSH and LH were included as nodes (Fig 4).

Real-time PCR data validation

Real time PCR confirmed the RNA-Seq counts for the four genes tested. We obtained signifi-

cant negative correlation (P value< 0.05) between Real-time PCR and RNA-Seq data for all

the tests, indicating the concordance between the two methods in expressions patterns. The

correlations between Real-time PCR and RNA-Seq data are presented in Fig 5.

Discussion

In this study, we investigated the relationship between the individual cow granulosa cell tran-

scriptomic profiles and IVP outcome as well as the possible effect of using semen from bulls

with high versus low breeding values (NTM) on IVP outcome. Our study involved paired end

RNA sequencing of granulosa cells isolated from follicular fluid and measuring the IVP scores

or outcomes such as BL rate, morphology and kinetics. Then we used advanced statistical and

bioinformatics methods to identify genes encoding potential biomarkers associated with IVP

scores.
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Sperm effect

The model that we fit to test for the sperm effect did not show statistically significant effects of

using sperm from bulls with high or low NTM index on the IVP performances. Hence, the use

of high-NTM index bulls in IVP procedures does not have any negative effects and in fact

showed a tendency for better IVP outcome. Further studies with a bigger population size and

with reduced noise (for example with oestrous cycle synchronization) should preferably be

performed in order to get enough statistical power to confirm and define a potential NTM

effect of the sperm on IVP outcomes.

Candidate genes

We found several candidate genes associated with IVP outcomes using the granulosa tran-

scriptomic profiling and analyses. In order to interpret our results correctly we need to bear in

Fig 3. Upstream regulators with corresponding activation or inhibition predicted by IPA®.Upstream
regulators and their targets displayed as a network of interactions with their respective expression trends.
Node shapes represent functional classes; vertically rectangle for G-protein coupled receptor, squares for
cytokines, vertically diamonds for enzymes, horizontally diamonds for peptidase, and circles for other. (a) PRL
(predicted as activated), (b) ACOX1 (predicted as inhibited).

https://doi.org/10.1371/journal.pone.0175464.g003
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mind that the RNA samples were derived from a heterogeneous pool of follicles. As a conse-

quence, the most important candidate genes for follicle developmental stages like FSH receptor

and P450 aromatase were expressed on average constantly across all the animals. LH receptor

was excluded from the analysis during the filtering procedures, because lowly expressed (too

low counts across samples). With respect to the multiple waves of follicular growth we expect

to find a heterogeneous composition of our samples, including antral follicles of different

Table 6. Molecular and cellular functions enriched in IPA®.

IVP score Main category (-specific function) Functional category Z-score B-H p-value

BL rate Cellular Growth and Proliferation 4.52E-02-1.06E-01

- proliferation of cells proliferation -1.23 4.52E-02

- proliferation of muscle cells proliferation -1.11 4.52E-02

Cellular Development 4.52E-02-1.14E-01

- differentiation of cells differentiation 0.02 5.69E-02

- proliferation of muscle cells proliferation -1.11 4.52E-02

Amino Acid Metabolism 4.52E-02-8.21E-02

Gene Expression 4.52E-02-1.06E-01

Cell Death and Survival 4.52E-02-1.14E-01

- necrosis of epithelial tissue necrosis 0 4.52E-02

- necrosis necrosis 0.8 6.62E-02

- apoptosis apoptosis 0.94 5.49E-02

- cell death of tumour cells cell death 0.82 6.37E-02

- cell death of epithelial cells cell death 0 6.73E-02

- cell death of cancer cells cell death 0.45 7.58E-02

- cell death cell death 1.45 7.58E-02

Kinetic Cellular Development 2.62E-02-1.02E-01

- differentiation of cells differentiation 0.65 5.02E-02

- differentiation of connective tissue differentiation 0.58 7.21–02

- differentiation of leukocytes differentiation 7.64E-02

Cellular Function and Maintenance 2.62E-02-8.96E-02

- cellular homeostasis homeostasis -0.16 5.88E-02

Cellular Growth and Proliferation 2.62E-02-1.02E-01

- proliferation of cells proliferation -0.32 8.96E-02

Gene Expression 2.62E-02-9.82E-02

Carbohydrate Metabolism 2.62E-02-1.02E-01

Morphology Cell Development 6.2E-03-7.33E-02

Cellular Growth and Proliferation 6.2E-03-7.33E-02

- cellular growth and proliferation proliferation -0.90 4.71–02

Cell Signalling 6.2E-03-6.7E-02

Carbohydrate Metabolism 6.2E-03-7.28E-02

Cell Death and Survival 6.2E-03-4.76E-02

- cell death and survival cell death 2.32 3.39E-02

- cell death and survival apoptosis 1.68 4.44E-02

The table shows the top five main categories of molecular and cellular functions obtained in IPA® for the BL rate, kinetic and morphology, together with

significant specific function annotations (showing B-H P value <10% and including at least 5 genes).Main category = general functional class, Specific

function = specific biological function, Functional category = general description of the function for the entry, Z-score = predicted level of activity (positive

scores correspond to increased activity while negative scores correspond to decreased activity in relation to the increase in IVP performances), B-H P

value = B-H adjusted p values for multiple testing.

https://doi.org/10.1371/journal.pone.0175464.t006

Identification of potential IVP biomarkers for donor cows

PLOSONE | https://doi.org/10.1371/journal.pone.0175464 April 12, 2017 16 / 27

https://doi.org/10.1371/journal.pone.0175464.t006
https://doi.org/10.1371/journal.pone.0175464


Fig 4. Network of interaction generated by IPA® from the list of genes correlated with BL rate,
organized by hierarchical structure.Node shapes represent functional classes; concentric circles for
groups or complexes, vertically diamonds for enzymes, horizontally diamonds for peptidase, horizontally
ellipses for transcriptional regulators or modulators, vertically ellipses for transmembrane receptor, inverted
triangles for kinase and circles for other.

https://doi.org/10.1371/journal.pone.0175464.g004
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dimensions as well as dominant and subordinate follicles at different developmental stages and

in different stages of growth and atresia [49]. Thus, the genes that under these circumstances

are correlated with IVP scores are good candidate genes, because their over- or underexpres-

sion profiles correlate with either a positive or negative outcome of the IVP procedure, despite

the heterogeneity of the follicles. The IVP scores that we measured were scored independently

of each other. For these reasons, we think that genes significantly correlated with all the scores

are the most interesting genes to be tested as encoding potential biomarkers for selecting

donor cows. Among the seven genes identified for all three scores,Mx1 and STC1were posi-

tively correlated, while BEX2,HEY2, RGN, TNFAIP6 and TXNDC11were negatively correlated

to the IVP outcome. The expression patterns of four of these genes (BEX2,Mx1, STC1,

TXNDC11)were validated with Real-time PCR. Most of these genes have previously been

found to be involved in the control of follicle development and oocyte developmental poten-

tial.Mx1 is involved in interferon signalling together with IRF and IFNAR (Interferon α/β

Fig 5. Scatter plots of the Real-time PCR data vs. RNA-Seq counts for the genes tested and Pearson Correlation Coefficient (PCC). The
horizontal axis represents the ratio between the average Cp of the target gene and the average Cp of the reference (GAPDH) for all the samples. The
vertical axis is the ratio between the RNA-Seq counts of the target gene and the reference gene for all the samples. PCC is the Pearson Correlation
Coefficient between the Real time PCR data and the RNA-Seq data.

https://doi.org/10.1371/journal.pone.0175464.g005
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receptor 1), which were both identified as being correlated only to BL rate. Prolactin response

that involves interferon signaling has been related to optimal developmental competence of

oocytes in cattle after 22 h- and 44 h of FSH coasting [27]. Interferon has been associated with

developmental competence of oocytes in other species and in humans [50]. Correct concentra-

tions of interferon and interleukins in human follicular fluid resulted were correlated to opti-

mal oocyte developmental capacity. In mice, interferon-alpha (IFN-α) was upregulated in LH-

treated preovulatory granulosa cells [51].

The protein product of STC1 is secreted from the cells and has been found to control, in a

paracrine way, the development of granulosa cells [52]. Furthermore, STC1 is highly expressed

in both in vivo and in vitromatured oocytes [53]. STC1 probably plays an important role in a

possible feedback loop between oocytes and granulosa cells.

BEX2 has previously been found upregulated in large follicles rather than small ones [30].

BEX2 acts as a negative regulator of apoptosis in the mitochondria and controls the G1 phase

of the cell cycle [54].

HEY2 encodes a transcriptional repressor, which is a downstream target of the Notch cell

signaling system. The expression trend ofHEY2 is positively correlated to the expression of

NOTCH2 that was, in turn, negatively associated with BL rate (log2FC = -0.16, FDR = 0.05). In

mice, Notch signaling has been shown to be extremely important to follicle and oocyte devel-

opment and to exert a positive control of granulosa cell proliferation and a negative control of

apoptosis [55]. Hence, as apoptosis can be expected during early atresia, the described relation-

ship points towards a positive relationship between early atresia and good IVP outcome.

Finally, RGN has previously been found upregulated in large follicles rather than small ones

[30] and has been described as being involved in the onset of follicular dominance and

enhanced granulosa cell survival [56].

Transcript abundance of TNFAIP6 has been associated with oocyte competence in cow

granulosa cells after ovarian stimulation protocol with FSH whereTNFAIP6 resulted to be less

transcribed in the competent group. In particular, TNFAIP6 was found to be expressed more

in granulosa cells of the incompetent group of associated oocytes [25]. TNFAIP6 is an impor-

tant component of the ECM as it has a hyaluronal-binding LINK domain [57].The ECM has a

fundamental role during the follicle development [58]. ECM promotes cell survival and prolif-

eration of granulosa cells in cattle [59]. Furthermore, N-glycan biosynthesis, one of the path-

ways identified with GSEA, is involved in ECM formation. The inhibitions of N-glycan

biosynthesis has negative consequences on follicle development [60]. Hence, the described

relationship again points towards a positive relationship between early atresia and good IVP

outcome.

TXNDC11encodes a protein with the thioredoxin domain that might act as a redox regula-

tor. TXNDC11has never been associated to oocyte competence in granulosa cells, although

other thioredoxin proteins have been associated with the control of ovarian follicular atresia

through scavenging action on reactive oxygen species [61].

Among the groups of gene significantly associated with only some of the IVP parameters,

two genes, OAT negatively associated with BL rate and OAS1 positively associated with kinetic

score, deserve to be mentioned, because previously associated either with oocytes competence

or follicle condition. OAT has been patented as a mammalian ovarian negative biomarker of

oocyte competence [62] and the OAS1 gene in oocytes has been associated with reduced fertil-

ity [63].

An important consideration during the selection of candidate genes encoding potential bio-

markers is the subcellular localization of their protein products. Genes whose protein products

are secreted in the extracellular space (including the follicular fluid and eventually blood

plasma) can potentially be measured from the follicular fluid or even blood plasma during
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oocyte collection and used as biomarkers of IVP traits (Tables E, F and G in S1 File). Among

the candidate genes described above, STC1 is the only one whose protein product is secreted.

However, further studies are needed to test the correlation between the transcripts and the

proteins that they encode for.

Follicle size and follicle atresia hypothesis

The functional analysis of the seven candidate genes highlighted their potential involvement in

the processes of atresia and follicular development. Similar evidences were obtained from the

comparison of the expression pattern of our samples with the gene expression trend of healthy

vs. early antral atretic follicles studied by Hatzirodos et al.(b) [31] and with the gene expression

trend of small vs. medium and large follicles reported by Hatzirodos et al.(a) [30].

The comparison revealed that 65.28% of the genes identified as differentially expressed in

early atretic follicles by Hatzirodos et al.(b) [31] showed the same trend in our study and this

percentage increases to 89.88% considering the top 25% of the genes associated to BL rate.

Similarly, 83.51% of the genes identified by Hatzirodos et al.(a) [30] in the comparison

between small vs. medium and large follicles, showed opposite trend in our study, we observed

that this percentage increases to 91.96% when we considered the top 25% genes related to BL

rate.

In other words, in data good IVP outcome was positively correlated with early atresia and

negatively correlated with follicle. Hence, very interestingly small early atretic follicles are

most likely to result in good IVP outcome.

The evidence for this relationship is further sustained by the fact that several functional

classes, biological pathways and regulator genes that are positively correlated with good IVP

outcome also are associated with atresia: control of cell proliferation and development, cell

death process, TP53 pathway and its regulator TRIM24, IFN-U and PRL.

In details, we identified the pathway involved in control of cell proliferation for a set of

genes negatively associated with IVP parameters. Interestingly, the biological function cell

death was predicted as activated in cows with higher morphology score.

One of the most interesting pathways was that related to TP53. The TP53 pathway was

enriched for genes positively associated with kinetic and morphology. TP53 induces apoptosis

[64]. Interestingly, TP53 has been identified as being activated in when growing follicles enter

the plateau phase and initiate atresia [27]. TRIM24 was identified as upstream regulator and it

is involved in a key part of the TP53 mechanisms. TRIM24 promotes the degradation of TP53

and is primarily involved in TP53-induced apoptosis.

Many of the top upstream regulators identified for the blastocyst morphology score are

related to the interferon pathway. Among these, IFN-U has been found to enhance the apopto-

tic process in human, where the presence of IFN-U has been observed specifically in atretic fol-

licles [65, 66]. In the ovary, IFN-U seems to be synthesized only by immune cells and not by

granulosa cells [66]. This is in accordance with our results where IFN-γ was predicted as being

activated, but its expression was not observed in our granulosa cell samples.

In our analysis, PRL is an upstream regulator of the genes that we identified associated to

our IVP parameters. PRL was predicted as being activated in cows with good IVP outcome

(Fig 3a). The PRL pathway is strictly associated with interferon signalling and its positive effect

on oocyte competence has been widely studied [27].

It has earlier been noted that higher concentration of PRL in follicular fluid is positively

correlated with early atresia. Lower concentration of PRL was associated with presence of

pyknotic nuclei in granulosa cells which is an indicator of a late stage of cell death and follicu-

lar atresia [22, 67].
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Treatments of PRL in rats in vivo resulted in an increased number of atretic follicles [68].

Furthermore, addition of PRL to in vitromaturation (IVM) media in co-culture with granu-

losa cells leads to an increase of embryos developed to the morula and blastocyst stages [69].

The relationships described above again indicate that a positive correlation exists between

IVP outcome and early atresia.

Furthermore, we found that immune system was negatively correlated with IVP perfor-

mances. We speculate that immune system activation is related to late atresia whereas the early

atresia has not yet activated this type of a response. Again, this speculation supports the notion

that early atresia, but not late atresia, is positively correlated with good IVP outcome. This the-

ory is also sustained by observations reported earlier [70–73]. Hence, the percentage of

embryos generated has earlier been positively correlated with early atresia whereas late atresia

resulted in poor embryo yields[71]. This correlation has been attributed to differences in the

development competence of the respective COCs. The developmental potential of the oocytes

has earlier been reported as being positively correlated with granulosa cell apoptosis, follicle

size and cumulus expansion as well as with the amount of follicular fluid granulosa cell apopto-

sis [70]. Granulosa cell apoptosis has been widely used to identify atretic follicles, but it has not

yet been validated as a biomarker of oocyte competence [22].

Finally, previous studies also point to potential underlying cell biological mechanistic expla-

nations of the positive correlation between good IVP outcome and early atresia. Hence, studies

of the ultrastructure of COCs from dominant follicles approaching ovulation has clearly dem-

onstrated that initial cumulus cell expansion and gradual retraction of the cumulus cell pro-

cesses attached to the oocyte through the zona pellucida occur even prior to the LH peak [74].

These processes are associated with changes in the oocyte nucleus, i.e. the germinal vesicle,

which develops undulations of the nuclear envelope likewise prior to the LH peak. After the

LH peak these processes culminate in the resumption of meiosis and progress of cytoplasmic

oocyte maturation over a 24 h period leading to ovulation. The same authors interestingly

demonstrated that the above described sequence of processes can also be observed in COCs in

the subordinate follicles of the follicular wave, i.e. follicles representing early atresia. Hence, in

early atretic follicles, the COCs undergoes processes that mimic those seen in the dominant

follicle approaching ovulation. Seen in this light, it is not surprising that COCs harvested from

early atretic follicles may be better qualified for entering final maturation in vitro as they may

be “primed” for the process. Interestingly, oocyte recovery post-FSH withdrawal period

(“coasting”) has been demonstrated to increase IVP embryo yield [27]; an effect that is likely

also to be based upon initiation of early atresia in the follicular pool.

It is important to keep in mind that even though all the animals were in the luteal phase of

the estrous cycle, they were not synchronized. Hence, oocytes were collected at any given time

point of the luteal phase and originated from a combination of growing and regressing follicu-

lar waves with the atretic follicles typically representing the subordinate follicular pool. The

mechanistic hypothesis on the positive correlation between IVP outcome and early atresia

needs further confirmation at single follicle level.

Other biological mechanisms

The complexity of the IVP-related traits is represented in the numerous biological mechanisms

that we found to be involved in the process. Together with the pathways involved in atresia we

found many secondary pathways. The gene sets for the KEGG pathways, oocyte meiosis, pro-

gesterone-mediated oocyte maturation were enriched for genes negatively associated with BL

rate that is in line with an early atresia condition while cytokine-cytokine receptor interaction

pathway was enriched of genes positively correlated with good IVP outcome, which is not
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surprising as they represent key processes leading to oocyte competence [75]. We identified

two cytokines: IL17D and IL1 (Fig 4) that are upstream regulators of the group of genes corre-

lated respectively with morphology and BL rate. Interestingly, the expression of IL17D in gran-

ulosa cells as well as the presence of its encoded product in the follicular fluid has already been

patented as a biomarker of oocyte competence in mammals [76]. Our data also showed a posi-

tive correlation between good IVP outcome and upregulation in the granulosa cells of the

pathways gene expression, spliceosome and transcript maturation, as well as by the activation

of the ribosome pathway indicating granulosa cell activity and function to be of significance

for oocyte competence.

Upregulation of the pathogenic Escherichia coli pathway or Lipopolysaccharides effect like-

wise implies that activation of many subpathways important for the physiological function of

the granulosa cells (e.g. gap junction, tight junction, adherent junction, axon guidance and reg-

ulation of actin cytoskeleton) are positively correlated with good IVP outcome.

In our study, the pathways for glycolysis and gluconeogenesis as well as galactose, mannose,

fructose and fatty acid metabolism pathways were enriched by genes negatively associated

with BL rate. The involvement of these pathways in oocyte development is supported by previ-

ous studies. It is known that granulosa cells provide the oocytes with glycolytic products and

with energy production in order to support its correct development [77–80]. The pathway for

fatty acid metabolism is also recognized as an important source of energy during oocytes mat-

uration [81]. The protein ACOX1 was identified in our study to be an upstream regulator for a

set of genes associated with BL rate. ACOX1 is involved in β-oxidation of fatty acids [82, 83].

In our dataset, ACOX1 was also predicted as being inhibited in the BL rate from IPA1 (Fig

3b). The importance of beta oxidation and in particular of ACOX1 for fertility has been previ-

ously observed in a knockout study in mice [81, 84].

Conclusions

In summary, to the best of our knowledge, this is the first study to have identified candidate

genes encoding potential biomarkers of oocyte developmental competence in IVP using gran-

ulosa cells collected from pools of follicles at the individual cow level and implementing RNA--

Seq technologies. In particular, we found evidence that good IVP outcome is positively

correlated with early atresia. Our results provided stronger evidence of the involvement of our

candidate genes in the IVP-related processes. Thus, we expect that the significant genes identi-

fied are good candidate genes for developing biomarkers for donor cow selection. Further-

more, we reported the most significant molecular pathways through which these candidate

genes exert their effects on IVP outcomes. However, these candidate genes should be validated

on a larger scale using OPU and IVP.

Future perspectives include the identification of eQTL for the candidate genes reported

here and subsequent use in augmented GS procedures that utilize functional information, for

example BLUP|GA (BLUP based on the genetic architecture) and sgBLUP (systems genomic

BLUP) [1].
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