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Abstract—Attention Deficiency Hyperactivity Disorder
(ADHD) as a disruptive behavior disorder is receiving lots of
attention because of its complexity and need for early detection.
This paper presents a study on identification of potential
biomarkers in the diagnosis of ADHD based on the structural-
MRI of the brain obtained through ADHD-200 competition data
set. The region of the brain considered here is “hippocampus”.
The grey matter probability of the T1 images is segmented
followed by tissue alignment and inter subject normalization.
Then, the voxels of the hippocampus are segregated using a
region-of-interest mask, and the grey matter tissue probability
values are obtained. These values are then used as features to
classify ADHD patients against typically developing controls
using a projection based learning algorithm for a meta-cognitive
radial basis function network (PBL-McRBFN) and compared
the results with that of support vector machines. Initially we
take all the voxels of hippocampus for our study and then we
have selected the most relevant voxels as a biomarker using
Chi-square approach and developed a classifier to diagnosis
ADHD. The results clearly highlight that use of hippocampus
from the structural-MRI is sufficient to diagnosis ADHD to
certain degree of confidence.

Index Terms—Attention Deficient Hyperactivity Disorder, Hip-
pocampus, Meta-cognitive Radial Basis Function Network, Pro-
jection Based Learning, Region of Interest, classification.

I. INTRODUCTION

Attention Deficiency Hyperactivity Disorder (ADHD) [15]

is a disruptive behavior disorder [7] that is comorbid with other

neurological disorders [22], [30]. Nearly 5% of school-going

children worldwide are affected by ADHD [26]. The recent

criteria laid by the Diagnostic and Statistical Manual of Mental

disorders, V edition (DSM-V) [31] defines ADHD as a pattern

of hyperactivity and/or inattention which runs irrespective of

age and gender. The complete cause of ADHD is still unknown

due to various reasons like comorbidity of other neurological

disorders, age-wise in-congeniality, genetics, environment, and

gender [6].

There are several regions of the brain that get affected

when a person is diagnosed with ADHD. Studies have been

conducted to understand the neurobiology of ADHD in chil-

dren [9]. One of the key regions is “hippocampus”. During

rational decision-making, studies show that people who have

ADHD, exhibit less activation in the hippocampus [12]. This

results in the abnormality of its volume [22]. ADHD patients

possess larger hippocampus when compared to that of typically

developing controls (TDC) [25]. Because of the importance of

hippocampus in decision-making and its relation with ADHD

(as explained above), we have considered “hippocampus” as a

region-of-interest in this study.

Researchers are motivated to understand the patho-

physiology of ADHD using structural Magnetic Resonance

Imaging (MRI) for many years. Recent works in [11] show that

the abnormalities in brain volumes can be a measure to the di-

agnosis of ADHD. Among various regions, the hippocampus is

shown to have a larger role in the diagnosis of ADHD. Children

with ADHD have shown to have a large hippocampus when

compared to that of adults [32]. However, these findings are

based on different data sets, using different tools for analysis.

Although different regions are being studied, understanding

the onset and development of ADHD is limited by the lack

of studies that analyze the contribution of individual regions

using a single data set.

We present a region-of-interest (ROI) based feature ex-

traction technique for structural-MRI to identify the potential

biomarkers in the diagnosis of ADHD. In this study, we tried to

understand the variations in the hippocampus region of ADHD-

200 competition dataset [20]. Researchers have analyzed the

ADHD using functional-MRI due to its complexity [23]. Only

a few of them have conducted their studies using structural-

MRI [24], [18], [33].

In this study, we examine the voxels of the hippocampus

that are extracted from only the structural-MRI of the ADHD-

200 data set and classify them as either TDC or ADHD.

The voxels are obtained by extracting the ROI that is defined

using the Wake Forest University Pick-atlas [16], [19]. Then

the voxels are classified using the Projection Based Learning

algorithm of a Metacognitive Radial Basis Function Network

Classifier (PBL-McRBFN) [5], [2] as either TDC or ADHD.

We further employ the Chi2 algorithm based feature selection

[17] to identify bio-markers within hippocampus. Chi2 is based

on χ2 (Chi-Square) statistic which measures the dependence



between stochastic variables by calculating the highest sig-

nificance level for all the attributes. Then for every pair of

attributes, ChiMerge (a part of Chi2) automatically increments

the χ2 threshold which results in ranking the most relevant

features. Once we have the reduced feature set, we study

the behavior of the features using PBL-McRBFN classifier

and compare the results with that of support vector machines

(SVM) [8].

In the literature of human psychology, it has been suggested

that metacognition empowers the learner with a self-regulated

learning mechanism. Metacognition provides a means to ac-

curately assess ones current knowledge, identify when a new

knowledge is needed, as well as provide strategies to acquire

that new knowledge [39], [14]. The meta-cognitive learning

algorithm has been implemented in neuro-fuzzy systems [36],

[34], [35], in complex-valued networks [28], [27], in neural

networks [2] and in optimization [37]. The McRBFN classifier

reproduces the Nelson and Narens model (Refer figure 1)

of human meta-cognition [21]. The self regulatory learning

Fig. 1. Nelson and Narens Model Of Metacognition

mechanism of McRBFN uses the best human learning strategy,

namely, what-to-learn, when-to-learn and how-to-learn in a

meta-cognitive framework. Among various implementations,

PBL-McRBFN [3], [4] is computationally efficient and pro-

vides better generalization performance.

Projection based learning algorithm of the PBL-McRBFN

consists of a radial basis function network. The hidden layer

has a Gaussian activation function which is the cognitive

component of McRBFN. PBL-McRBFN also consists of a

self-regulatory learning mechanism which is its meta-cognitive

component. Comparing the performance of PBL-McRBFN and

SVM proves that PBL-McRBFN has a better generalization in

diagnosing ADHD by using the voxels of hippocampus and

shows improved classification performance in higher dimen-

sional data.

The paper is organized as follows: In Section II, the ADHD-

200 data set is described, followed by the feature extraction

technique and the description of the PBL-McRBFN classifier.

Sections III-A and III-B present the results of study of TDC Vs

ADHD using PBL-McRBFN and SVM, initially with all the

voxels and then with the reduced set of voxels (Chi2 based).

Finally, Section V presents the conclusions from the study.

Fig. 2. Proposed automatic ADHD diagnostic mechanism using structural-
MRI.

II. METHODS AND MATERIALS

In this section, we present the complete details of the

ADHD-200 data set, the ROI based feature extraction, the

PBL-McRBFN classifier and proposed ADHD diagnosis using

PBL-McRBFN. Fig. 2 presents the pictorial representation of

the proposed automatic ADHD diagnostic mechanism using

structural-MRI. The proposed approach takes the images (from

MRI) of the subjects as input. The images are then processed

for feature extraction. Here, the MNI template of hippocampus

is used to extract its voxels, which are then sent to the classifier.

Here we study the voxels using PBL-McRBFN and SVM as

explained below.

• Initially, all the voxels (X̄) of the hippocampus are

classified as either ADHD or TDC.

• Then, few important voxels (X̄s) is selected (using Chi2

based feature selection) and classified as either ADHD or

TDC.

In the following subsections, the subcomponents of proposed

automatic ADHD diagnostic mechanism is described in detail.

A. Data set

We use the ADHD-200 competition data set [20] in our

study. This data set is a collection of brain MR images of 941

subjects from 8 participating members of the consortium.The

subjects include 581 TDC and 360 ADHD as classes. Out of

the 941 subjects, 770 subjects are provided as training data

and 171 subjects are provided as testing data.

B. Data Preprocessing and ROI based feature extraction

All MRI data were processed with the Diffeomorphic

Anatomical Registration Through Exponentiated Lie Algebra

(DARTEL) [1] based on the Statistical Parametric Mapping

(SPM) [13] software package in the Burner pipeline from

the ADHD-200 consortium. The Burner pipeline includes

normalized grey matter maps generated using SPM. There are

three steps in Burner pipeline. Firstly, T1 images are segmented

into grey matter and white matter probability maps using SPM.

Images are then iteratively registered to the group average

which is updated iteratively. Lastly, the registration parameters

are applied to each image to transform each image into the



space of population average. Modulation is applied to conserve

the global tissue volumes after normalization.

In this paper, region-of-interest (ROI) based feature extrac-

tion mechanism have been employed. Traditionally, the ROI

based feature extraction is used to calculate the anatomical

volumes and also to investigate abnormal tissue structures.

The functional significance of hippocampus includes formation

of new memories, detection of novel events, factual memory

and navigational presence. The ROI based feature extraction

process is shown in Fig. 2. From the figure, it can be seen that

the probability of grey matter tissue is extracted as features

from all the modulated and normalized grey matter images,

using the generated ROI masks. These ROIs are defined using

the Wake Forest University Pickatlas [16], [19].

C. Projection Based Learning Algorithm for a Meta-cognitive

Radial Basis Function Network

In this paper, we use the projection based learning algorithm

for a meta-cognitive radial basis function network [2] classifier

to distinguish the ADHD patients from TDC. In this section,

we explain the learning algorithm of the classifier in detail.

Given the training data set with N samples,

(x1, c1), · · · , (xt, ct), · · · , (xN , cN ), where xt =
[xt1, · · · , x

t
m]T ∈ ℜm is the m-dimensional input of the

tth sample, and ct is its class label, the coded class labels(
yt =

[
yt1, · · · , y

t
j , · · · , y

t
n

]T)
∈ ℜn are obtained as:

ytj =

{
1 if ct = j
−1 otherwise

j = 1, · · ·n; t = 1, · · ·N (1)

where n is the total number of classes. Approximating the

decision function that maps xt ∈ ℜm → yt ∈ ℜn is the

main objective of McRBFN. The classifier iterates the samples

starting with zero hidden neurons and applies suitable strategy

for the chosen sample. The learning algorithm and architecture

of PBL-McRBFN are as follows:

1) McRBFN Architecture: There are two components of

McRBFN; cognitive and meta-cognitive component. Fig. 3

shows the schematic diagram of the McRBFN classifier. The

cognitive component possesses a feed-forward three-layered

RBF network while the meta-cognitive component possesses a

self-regulating model of the cognitive component. The relative

knowledge is calculated by the meta-cognitive component

whenever a new training sample is presented. Learning is

controlled by choosing suitable strategies that addresses

what-to-learn, when-to-learn and how-to-learn for the current

sample based on this judgement of knowledge. We further

explain two components of McRBFN in the following sections:

Cognitive component of McRBFN: The cognitive

component of McRBFN is a feed-forward three-layered

radial basis function network with linear input and output

layers. It employs the gaussian activation function in its

hidden layers.

The McRBFN employs K gaussian neurons from t − 1
training samples. The input sample is given by xt and predicted

output of the jth output neuron (ŷtj) of McRBFN is

ŷtj =

K∑

k=1

wkjh
t
k, j = 1, 2, · · · , n (2)

where wkj is the weight connecting the kth hidden neuron to

the jth output neuron and htk is the response of the kth hidden

neuron to the input xt is given by

htk = exp

(
−
‖xt − µ

l
k‖

2

(σl
k)

2

)
(3)

where µ
l
k ∈ ℜm is the center and σl

k ∈ ℜ+ is the width of

the kth hidden neuron. The class to which the neuron k is

represented by the superscript l.
During learning, a projection based learning (PBL)

algorithm is used by the cognitive component. The following

section describes the PBL algorithm in detail:

Projection based learning algorithm: The projection

based learning algorithm calculates the network output

parameters by minimizing the energy function.

For t training samples, the overall energy function is given

by

J(W) =
1

2

t∑

i=1

n∑

j=1

(
yij −

K∑

k=1

wkjh
i
k

)2

(4)

where hik is the response of the kth hidden neuron for ith

training sample.

The optimal output weights (W∗ ∈ ℜK×n) are estimated

such that the total energy reaches its minimum.

W∗ := arg min
W∈ℜK×n

J(W) (5)

Let W∗ ∈ ℜK×n, then W∗ is the optimal output weight

corresponding to the minimum of the energy function if

J(W∗) ≤ J(W) ∀ W ∈ ℜK×n. The solution for the system

of equations in Eq. (4) and (5) can be reduced in the form as

follows:

W∗ = A−1B (6)

where A is the projection matrix and B is the output matrix.

Please refer to [2] for complete details of the initialization

and thresholds of meta-cognition.

Meta-cognitive component of McRBFN: The meta-

cognitive component uses several measures of knowledge in

the new training sample and uses the knowledge to control

the cognitive component. It includes estimated class label

(ĉt), maximum hinge error (Et) and spherical potential. These

measures are further explained below: Estimated Class label

(ĉt): Using the predicted output (ŷt), the estimated class label

(ĉt) can be obtained as

ĉt = arg max
j∈1,2,··· ,n

ŷtj (7)
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Fig. 3. Schematic diagram of McRBFN Classifier.

A class specific spherical potential is used to measure signifi-

cance of sample, which is given in Eqn. (8),

ψ ≈ −
2

K

K∑

k=1

h
(
xt,µl

k

)
(8)

2) Learning Strategies: The meta-cognitive component cre-

ates various strategies for learning based on the measures

explained above. It supports the fundamental nature of self-

regulated human-like learning (i.e., what-to-learn, when-to-

learn and how-to-learn). The learning process in the cognitive

component is controlled by the meta-cognitive component. The

meta-cognitive component selects one of the following four

learning strategies for every new training sample.

• Sample Delete Strategy: Delete strategy is used to check

if the knowledge of the new sample is similar to the one

that is present in the cognitive component. This strategy

deletes the redundant sample.

• Neuron Growth Strategy: Neuron growth strategy is used

to add a hidden neuron in the cognitive component.

• Parameter Update Strategy: Parameter update strategy

updates the parameters whenever a new training sample

is chosen.

• Sample Reserve Strategy: Finally, the sample reserve

strategy is used to save some samples depending on

the credibility of the information. If it contains some

insignificant information, it can better be used at a later

stage for fine tuning the parameters.

It must be noted that while the sample delete strategy addresses

what-to-learn, the neuron addition and the parameter update

strategies address how-to-learn components of self-regulation.

For complete details of the initialization of the various thresh-

olds of meta-cognition, one must refer to [2].

In the next section, we present the performance results of

the automatic diagnosis of ADHD Vs TDC,

III. EXPERIMENTAL RESULTS

In this section, we study the performance of the PBL-

McRBFN classifier in distinguishing ADHD patients from

typically developing controls. According to the ADHD-200

competition data set, 770 samples are chosen to train the

classifier, and 171 samples are used in testing. Now, we

evaluate the performance of PBL-McRBFN classifier using the

overall efficiency and F1 score:

Overall classification efficiency: The overall classification

efficiency (ηo) is given as

ηo =

∑n

l=1
qll

N
× 100% (9)

where qll is the total number of correctly classified samples in

the training/testing data set.

F1 Score: The F1 score [10] is given as

F1 = 2 ∗ (precision ∗ recall)/(precision+ recall). (10)

A. Results using complete features

In this section, we present the diagnostic results of PBL-

McRBFN classifier compared with SVM for all the voxels

in classifying the subjects as TDC or ADHD patients. The

number of voxels in each of the selected regions obtained

by ROI selection, the number of neurons, the training overall

efficiency and F1 score, are tabulated in Table I. From the

table, it can be observed that the overall efficiency of PBL-

McRBFN is 67.84% in the testing set which is around 13%

larger than that of SVM. Also, it can be observed that PBL-

McRBFN uses smaller number of neurons while training.

TABLE I
PERFORMANCE OF PBL-MCRBFN VS SVM CONSIDERING ALL THE

VOXELS OF HIPPOCAMPUS.

Classifier Voxels K Train Test

ηo % F1 ηo % F1

McRBFN 6072 351 91.56 0.93 67.84 0.72

SVM 6072 632 83.09 0.82 54.38 0.53

The number of voxels in hippocampus region is 6072. Not

all of them would contribute towards the diagnosis of ADHD.

There is a need to select a subset of voxels as biomarkers.

To achieve this, we have conducted a similar experiment with

reduced set of features in the following section.

B. Identifying biomarkers in hippocampus

In this section, we identify the image biomarkers within

hippocampus for classification. All the voxels within the se-

lected regions of the brain may not contribute to the onset and

development of ADHD. Here, we employ Chi2 based feature

selection method to select few relevant voxels (as biomarkers).

Then we use PBL-McRBFN and SVM to classify the selected

voxels. Table II presents the results from this study. It can

be observed from the table that the Chi2 method identified

only 648 among 6042 voxels in the hippocampus region. The

overall efficiency of PBL-McRBFN is 70.18% and is around

18% more than that of SVM. Also, it can be observed that

PBL-McRBFN uses smaller number of neurons while training.

It can be observed from the tables (I and II) that the

F1 score of PBL-McRFBN classifier is 19% more using all

the voxels (6072) and 26% more using the reduced set of

voxels (648) which explains that PBL-McRBFN has better

retrieval when compared to SVM. This proves the better



TABLE II
PERFORMANCE OF PBL-MCRBFN VS SVM CONSIDERING THE VOXELS

CHOSEN USING CHI2.

Classifier Voxels K Train Test

ηo % F1 ηo % F1

McRBFN 648 347 88.70 0.90 70.18 0.72

SVM 648 649 80.23 0.78 52.04 0.46

generalization capability of PBL-McRBFN in classifying the

voxels of hippocampus. The testing efficiency of 70.18% with

an F1 score of 0.72 (Refer table II) shows a way that ADHD

can be diagnosed using a subset of voxels of the hippocampus

region.

We extend our analysis by studying a subset of the best

ranked voxels using Chi2 based feature selection. Chi2 algo-

rithm ranks the features based on the stochastic relevance of

the pairs of attributes. We ranked the voxels of hippocampus

and classified them further using PBL-McRBFN. Figure 4

shows the performance study of PBL-McRBFN along with

the number of voxels ranging from 10 to 80 chosen based on

the Chi2 algorithm. The x-axis depicts the number of features

chosen, while the left y-axis shows the percentage of testing

average and the right y-axis shows the F1 score. It can be

observed that choosing the best 60 voxels of hippocampus

gives an efficiency of around 72.5%. These 60 voxels of

hippocampus could be considered as potential biomarkers in

classifying ADHD. It can also be observed that the efficiency

increases as the number of features increases from 10 to 60

and then it saturates. But, there is a steady increase in the F1

score as the number of features increases. This again proves a

better generalization and retrieval of PBL-McRBFN.

Fig. 4. Performance of PBL-McRBFN considering a subset of the best ranked
voxels using Chi2.

IV. DISCUSSION

Efficient analysis of ADHD requires representative

biomarkers (features) as well as a classifier which can learn

to approximate the decision surface from the given features.

Identification of biomarkers has been studied for many years

in the medical literature with the focus on neurological and

psychological disorders including ADHD [38], [29]. Recently,

the radiological society of North America has published an

article on “MRI Technique May Help Prevent ADHD Mis-

diagnosis” which stresses the fact the diagnosis of ADHD

requires the identification of potential biomarkers in MRI.

In this study, we focus on the identification of potential

biomarkers for the diagnosis of ADHD using hippocampus

as the region of interest. The identification of biomarkers

is carried out using Chi2 based feature selection technique.

We have obtained an overall testing accuracy of 70.18%

choosing 648 voxels (features) from hippocampus. In addition

to an efficient feature representation technique, a good learning

mechanism to learn the decision surface separating the ADHD

from TDC is mandatory. In literature, support vector machine

(SVM) based approaches have been widely used for solving

problems in the domain of medical analytics. However, the

recent literature on soft computing approaches has shown that

PBL-McRBFN based classification technique can achieve the

better generalization ability in comparison to SVM. Further,

PBL algorithm solves a system of linear equations where

as SVM solves a quadratic optimization. This results in the

reduction of computational cost when compared to that of

SVM. PBL-McRBFN can estimate posterior probabilities more

accurately than hinge-loss error or mean-squared error based

loss functions. SVM uses all the samples for learning which

results in over-fitting. PBL-McRBFN with its ability to self-

regulate helps the networks build an efficient classifier. The

above facts have motivated us to employ such a learning

mechanism to efficiently diagnose ADHD based on Chi2

based features. In this study, we have used the state-of-the-

art machine learning technique (PBL-McRBFN) to classify

the test samples (from ADHD-200 competition data set) and

compare the result with the a well-known classifier in literature

(SVM in this case). The extended analysis is made to show that

choosing a subset of voxels as biomarkers (from 10 to 80 in

this case) help to better understand the classification accuracy

of PBL-McRBFN. We would like to take this study forward

by taking other regions individually and combined together to

understand the diagnosis of ADHD as a whole.

V. CONCLUSION

This study proposes an identification of potential biomark-

ers in the diagnosis of Attention Deficiency Hyperactivity

Disorder based on the structural-MRI of the brain obtained

through the ADHD-200 competition data set. The hippocam-

pus, which plays a key role in the formation of new neurons

in the brain and due to its complexity in its volume is taken

as the region-of-interest. The probability values of the grey

matter, tissues of the hippocampus are segmented from the

MR images. These values are then used as the features to

classify ADHD patients against typically developing controls

using PBL-McRBFN and SVM. Initially, all the 6072 voxels

from hippocampus are considered. Then, using Chi2 based

feature selection method, we studied the 648 voxels. We further

extended the analysis by creating a subset of the best ranked

voxels ranging from 10 to 80 and compared its performance

using PBL-McRBFN. In the analysis, we found that ADHD

can be diagnosed using a subset of voxels selected from the

hippocampus region taken only from the structural-MRI. The

performance of PBL-McRBFN is better in generalization and



in classification efficiency for reduced number of hippocam-

pus voxels than that of SVM. It is observed in our study

that considering only 60 voxels of hippocampus as potential

biomarkers, we could able to classify ADHD against TDC with

an F1 score of 0.74 and an efficiency close to 72.5%. We would

like to extend this study further to classify the ADHD-200 data

using structural-MRI for all the other regions.
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