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Abstract

Background: With demographic shifts toward older populations, the number of people with dementia is steadily

increasing. Alzheimer’s disease (AD) is the most common cause of dementia, and no curative treatment is available.

The current best strategy is to delay disease progression and to practice early intervention to reduce the number of

patients that ultimately develop AD. Therefore, promising novel biomarkers for early diagnosis are urgently required.

Methods: To identify blood-based biomarkers for early diagnosis of AD, we performed RNA sequencing (RNA-seq)

analysis of 610 blood samples, representing 271 patients with AD, 91 cognitively normal (CN) adults, and 248

subjects with mild cognitive impairment (MCI). We first estimated cell-type proportions among AD, MCI, and CN

samples from the bulk RNA-seq data using CIBERSORT and then examined the differentially expressed genes (DEGs)

between AD and CN samples. To gain further insight into the biological functions of the DEGs, we performed gene

set enrichment analysis (GSEA) and network-based meta-analysis.

Results: In the cell-type distribution analysis, we found a significant association between the proportion of

neutrophils and AD prognosis at a false discovery rate (FDR) < 0.05. Furthermore, a similar trend emerged in the

results of routine blood tests from a large number of samples (n = 3,099: AD, 1,605; MCI, 994; CN, 500). In addition,

GSEA and network-based meta-analysis based on DEGs between AD and CN samples revealed functional modules

and important hub genes associated with the pathogenesis of AD. The risk prediction model constructed by using

the proportion of neutrophils and the most important hub genes (EEF2 and RPL7) achieved a high AUC of 0.878 in

a validation cohort; when further applied to a prospective cohort, the model achieved a high accuracy of 0.727.

Conclusions: Our model was demonstrated to be effective in prospective AD risk prediction. These findings

indicate the discovery of potential biomarkers for early diagnosis of AD, and their further improvement may lead to

future practical clinical use.
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Background
With demographic shifts toward older populations, the

number of people with dementia is steadily increasing.

The total number of people with dementia worldwide

has been estimated to be 75 million by 2030 and 135

million by 2050 [1]. Since there is no treatment or pre-

vention for AD, the current best strategy is to delay dis-

ease progression and to practice early intervention to

reduce the number of patients that ultimately develop

AD [2]. Therefore, promising novel biomarkers for early

diagnosis are urgently required [3, 4].

Alzheimer’s disease (AD) is the most common cause

of dementia, accounting for 60 to 80% of dementia cases

[5]. Genome-wide association studies (GWAS) have

identified several genetic factors that contribute to AD

risk [6–8]. However, the cause of the disease still re-

mains to be elucidated. The current AD diagnosis is

generally based on assessing patients’ cognitive function.

These examinations are not performed routinely, be-

cause they are time-consuming and the results largely

depend on the physician’s experience [9, 10]. Alterna-

tively, cerebrospinal fluid (CSF) biomarkers, including

amyloid-beta 1–42 (Aβ1-42), total tau (T-tau), and phos-

phorylated tau 181 (P-tau181) [11, 12], and positron

emission tomography (PET) imaging scans [13–15] are

effective for AD diagnosis, but because of the highly in-

vasive nature of CSF collection and high cost of PET,

using these biomarkers as part of a general physical

examination to facilitate early diagnosis and therapeutic

intervention remains challenging.

Compared with CSF biomarkers and PET imaging

scans, blood-based biomarkers are attractive as afford-

able alternatives for the diagnosis of AD. Mattsson et al.

recently reported that plasma neurofilament light level

(NfL) has the potential to be a noninvasive biomarker to

monitor neurodegeneration in AD [16]. Janelidze et al.

reported that plasma P-tau181 is a noninvasive diagnostic

and prognostic biomarker of AD [17]. One of the most

powerful tools for detecting those biomarkers, whole

RNA sequencing (RNA-seq) of human peripheral blood

mononuclear cells (PBMCs) by using a next-generation

sequencer, is widely applied and supports comprehensive

analysis of the entire transcriptome [18–20]. The most

important application of the RNA-seq data analysis is

the identification of differentially expressed genes

(DEGs) [21–23]. Systems biology analyses using DEGs

reveal key functional modules and important hub genes

associated with the pathogenesis of diseases (e.g., Gene

Ontology [GO] [24, 25], Kyoto Encyclopedia of Genes

and Genomes [KEGG] biological pathways [26, 27]).

However, to our knowledge, no previous studies have in-

volved comprehensive RNA-seq analysis of a large num-

ber of AD samples and applied an mRNA-based risk

prediction model to a prospective cohort.

Here, we performed large-scale RNA-seq transcriptome

analyses on a large number of AD samples to detect poten-

tial blood-based biomarkers for earlier diagnosis of AD. To

this end, we used the RNA-seq data to evaluate cell-type

composition among samples from subjects with AD, mild

cognitive impairment (MCI), and normal cognitive function

(CN) and to compare DEGs between AD and CN samples.

Subsequent gene set enrichment analyses (GSEA) and

network-based meta-analysis using the DEGs revealed new

potential biomarkers for AD diagnosis. The risk prediction

model using those potential biomarkers achieved a high

AUC in a validation cohort and effectively determined AD

risk in a prospective cohort. We believe that, once opti-

mized, these new potential biomarkers will be of practical

clinical use in the early diagnosis of AD.

Methods
Sample collection

All of the 610 subjects whose blood samples were evalu-

ated for mRNA expression and their associated clinical

data were obtained from the National Center for Geriat-

rics and Gerontology (NCGG) Biobank, which collects

human biomaterials and data for geriatrics research. Of

them, 271 subjects were AD patients, 91 subjects were

elderly CN controls, and 248 patients had mild cognitive

impairment (MCI). All of the subjects were 60 years or

older (Supplementary Table S1). The AD and MCI sub-

jects were diagnosed with probable or possible AD ac-

cording to the criteria of the National Institute on Aging

Alzheimer’s Association workgroups [9, 10]. Patients

with probable AD were used as AD subjects in this

study. The CN subjects had subjective cognitive abnor-

malities but normal cognition on a neuropsychological

assessment, which included a comprehensive neuro-

psychological test, Mini-Mental State Examination

(MMSE) score > 27. All of the 3,099 subjects (1,605

ADs, 994 MCIs, and 500 CNs) with the proportion of

neutrophils measured in routine blood tests were also

obtained from the NCGG Biobank. All of these subjects

were also ≥ 60 years in age (Supplementary Table S2).

cDNA library preparation and RNA sequencing

Buffy coat samples were isolated from the whole blood

according to the standard operating procedure of NCGG

Biobank [28]. Buffy coat fractions containing leukocytes

were separated by centrifugation (3,500 rpm, 5 min, RT)

and were frozen for further use. Total RNAs in buffy

coat samples were isolated using the miRNeasy Mini Kit

(Qiagen, Hilden, Germany) according to the manufac-

turer’s instructions with slight modification. TRIzol LS

reagent (1 mL) (Thermo Fisher Scientific, MA, USA)

and 1-bromo-3-chloropropane (100 μL) (Tokyo Chem-

ical Industry, Tokyo, Japan) were added to each sample.

Samples were mixed thoroughly by shaking for more
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than 30 s and incubated at room temperature for 3 min.

Phase separation was performed by centrifugation at 15,

000g at 4 °C for 15 min. The upper aqueous phase was

collected and loaded into the miRNeasy mini-column.

After washing, total RNAs were extracted by RNase free

water (50 μL). Only high-quality samples with an RNA

integrity number (RIN) value ≥ 6.0 were used to con-

struct the sequencing library (Supplementary Table S1).

Sequencing libraries were prepared by using 500 μg of

total RNA for each sample with Illumina TruSeq

Stranded Total RNA with Ribo-Zero Globin and IDT for

Illumina-TruSeq UD Indexes according to the manufac-

turer’s instructions (Illumina, San Diego, CA). The li-

braries were subsequently sequenced by using Illumina

NovaSeq6000 platform with paired-end reads of 151 bp

according to the manufacturer’s instructions.

RNA sequencing data analysis

The quality of the read sequences (fastq files) was

assessed by using FastQC (version 0.11.7). The low-

quality reads (< Q20) and trimmed reads with adaptor

sequences (shorter than 50 bp) were discarded by using

Cutadapt (version 1.16). The remaining clean sequenced

reads were mapped to the human reference genome

(GRCh37) by using STAR [29] (2-pass option, version

2.5.2b). By using the featureCounts program [30] from

the subread package (version 1.6.6), read counts for each

gene were calculated to generate expression levels. Out-

lier read counts (i.e., the top and bottom 5% of read

counts for each gene) were replaced as the maximum

and minimum of the remaining effectives, respectively.

The read counts from each sample were then combined

into a count file, on which differential expression ana-

lysis was performed by using edgeR [31] (version 3.18.1).

Genes with a threshold CPM (counts per million reads

mapped) > 1 in more than onefourth of all sequenced

samples were used for further analysis. The caclNorm-

Factorsfunction in edgeR [31] was used to obtain a

trimmed mean of M value normalization factors to ac-

count for library sizes. Dispersion was calculated by

using the estimateCommonDisp and estimateTagwise-

Disp functions in edgeR [31]. The exactTest function in

edgeR [31] was applied to obtain DEGs between AD and

CN samples.

Proportions of immune cell types according to bulk RNA

sequencing data

After RNA-seq reads were aligned to the human refer-

ence genome by using STAR [29], RSEM [32] (version

1.3.0) was used to quantify transcripts per million

(TPM), which were suitable for use with CIBERSORT

[33] (version 1.0.1). While CIBERSORT estimated the

proportions of 22 immune cell types, we recategorized

these 22 cell types into 12 major cell types by summing

the proportions as appropriate. The 12 cell types we

evaluated were (1) B cells (naive and memory), (2)

plasma cells, (3) CD8+ T cells, (4) CD4+ T cells (CD4+ T

cells naive, memory resting, and memory activated; T

cells follicular helper; and T cells regulatory), (5) γδ T

cells, (6) NK cells (resting and activated), (7) monocytes,

(8) macrophages (M0, M1, and M2), (9) dendritic cells

(resting and activated), (10) mast cells (resting and acti-

vated), (11) eosinophils, and (12) neutrophils.

In silico biological and functional analysis

Gene Ontology (GO) [24, 25] classification, which is

comprised of three major categories—biological process,

cellular component, and molecular function—is useful

for uncovering the functions of genes of interest. The

DAVID [25, 34] (version 6.8) gene functional classifica-

tion tool (https://david.ncifcrf.gov) was used to generate

annotations. DAVID was applied to a list of differentially

expressed genes with FDR < 0.05 and fold change > 1.2,

and statistically significant GO terms and KEGG bio-

logical pathways were identified. Statistically significant

GO terms were further expressed as a z-score (the num-

ber of upregulated genes minus the number of downreg-

ulated genes divided by the square root of the count)

and presented in a circular visualization by using the

GOplot package (version 1.0.2) in R [35].

Network-based meta-analysis

Network-based analysis was performed by using Networ-

kAnalyst [36] with the STRING Interactome database [37],

which provides comprehensive information regarding inter-

actions between proteins, including prediction and experi-

mental interaction data. The confidence cutoff score was

set to 700. The protein–protein interaction (PPI) network

was constructed by using zero-order interaction network

analysis (direct interaction only) and graphically generated

by using Cytoscape v3.7.1 (http://www.cytoscape.org/) [38].

Risk prediction model construction

RNA-seq data were split: two-thirds were used for a

training data set and one-third for a test data set. Using

the training data, we constructed risk prediction models

based on clinical information (age, sex, and APOE ε4 ge-

notypes), the proportion of neutrophils, and the top-

ranked p hub genes using a random forest classifier. The

top-ranked p hub genes were then selected stepwise

(p = 1, 2, … 10). The optimal hyper-parameters in the

training data were determined by using 10-fold cross-

validation. The adjusted model was then evaluated on

the test data, which were completely independent of the

training data, by using AUC as the discriminative accur-

acy of the risk prediction model. The method used in

this study was implemented through the caret package

(version 6.0.76) in R (https://www.r-project.org/).
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qRT-PCR validation of gene expression

cDNA was synthesized by using a PrimeScriptII 1st Strand

cDNA Synthesis Kit (Takara Bio, Shiga, Japan). Quantitative

RT-PCR (qRT-PCR) analysis was performed by using custom-

ized TaqMan gene expression assays (Applied Biosystems,

Waltham, MA) and the Quantstudio7 Flex Real-Time PCR

System (Thermo Fisher, Waltham, MA). The following com-

mercially available TaqMan gene expression assays were used:

EEF2 (Hs00157330_m1), RPL7 (Hs02596927_g1), LDHB

(Hs00929956_m1), NR1D2 (Hs00233309_m1), PDK4

(Hs01037712_m1), TRIOBP (Hs00980819_m1), TAS2R39

(Hs00603443_s1), BASP1 (Hs00932356_s1), and ACTB

(Hs01060665_g1). The qRT-PCR conditions were as follows:

one cycle of 50 °C for 2min and 95 °C for 20 s followed by 40

cycles of 95 °C for 1 s, 60 °C for 20 s, and 72 °C for 30 s. Each

gene was assayed in duplicate. ACTB was pre-selected as a ref-

erence gene for normalization of target gene expression levels.

Gene expression levels from qRT-PCR were calculated relative

to the reference gene ACTB using the semi-quantitative

method [39]. The gene expressions were obtained for 10AD

and 10 CN randomly selected samples. The log2 fold change

(logFC) was obtained from the average values of the gene

expressions.

Results
RNA sequencing data

A total of 610 samples, comprising 271 AD, 248 MCI,

and 91 CN samples, were enrolled in this study (Table 1).

Using a high-throughput next-generation system to per-

form RNA sequencing (RNA-seq) analysis, we obtained

an average of 44.3, 47.3, and 43.9 million raw read

sequences from the AD, MCI, and CN samples, respect-

ively, of which 99.6%, 99.5%, and 99.6% were high-

quality (i.e., > Q20) read sequences. After low-quality

read sequences were discarded and reads with adaptor

sequences were trimmed, 43.8, 47.3, and 43.2 million

reads of cleaned data remained for the AD, MCI, and

CN samples, respectively, of which 82.7%, 82.1%, and

82.1% uniquely mapped to the human reference genome

(GRCh37) (Supplementary Table S3).

Comparison of cell-type distribution among AD, MCI, and

CN samples

To detect blood-based biomarkers, we first used the bulk

RNA-seq data to compare cell-type distribution among

AD, MCI, and CN samples. Specifically, CIBERSORT

[33] estimated the relative proportions (as transcripts

per million [TPM]) of 12 major types of immune cells

(i.e., B cells, plasma cells, CD8+ T cells, CD4+ T cells, γδ

T cells, NK cells, monocytes, macrophages, dendritic

cells, mast cells, eosinophils, and neutrophils) in each

sample. We used the Jonckheere–Terpstra trend test to

identify a statistically significant increase or decrease in

cell-type proportion among AD, MCI, and CN samples.

Accordingly, the proportion of neutrophils was signifi-

cantly increased in AD prognosis at an FDR < 0.05 (neu-

trophils, 0.007; Fig. 1a and Supplementary Table S1).

The proportions of B cells and γδ T cells also showed

significant differences in AD prognosis at an FDR < 0.05

(B cells, 0.019; γδ T cells, 0.007; Fig. 1a and Supplemen-

tary Table S1), but these proportions were very low in

all samples and too difficult to determine if they were

truly associated with the AD prognosis.

To further investigate the association between an in-

creased neutrophil count and AD prognosis, we used a

larger number of samples (n = 3,099: AD, 1,605; MCI,

994; and CN, 500) to examine the neutrophil population

determined through routine blood tests. Interestingly,

these data sets obtained by using routine blood tests re-

vealed the same increase in the neutrophil proportion as

the RNA-seq data (P = 0.002, Jonckheere–Terpstra trend

test; Fig. 1b and Supplementary Table S2). Therefore,

these results provided strong evidence that an increased

neutrophil proportion might be useful as a blood-based

biomarker for the diagnosis of AD. The proportion of

neutrophils estimated from RNA-seq data was positively

correlated with that calculated through routine blood

tests (254 ADs, 232 MCIs, and 85 CNs; Pearson r = 0.56,

P < 0.01, Fig. 1c). We also performed a principal compo-

nent analysis with RNA-seq data of the three groups,

but we could not observe the significant difference

among the three (Fig. 1d).

Table 1 Summary of characteristics for AD, MCI, and CN samples

Characteristic AD MCI CN

Sample number 271 248 91

Male:female 1:2.15 1:1.30 1:0.82

Age (mean ± 1
S.D.)

79.55 ± 5.83 77.37 ± 6.12 71.29 ± 5.07

MMSE (mean ±
S.D.)

18.09 ± 4.49 24.54 ± 2.98 29.32 ± 0.94

APOE

genotypes
E2/2 = 2, E3/2 = 14, E3/3 = 148, E4/2 = 3, E4/3 =
88, E4/4 = 16

E2/2 = 1, E3/2 = 11, E3/3 = 163, E4/2 = 1, E4/3 =
60, E4/4 = 12

E3/2 = 5, E3/3 = 73, E4/3 = 12,
E4/4 = 1

MMSE Mini-Mental State Examination (a comprehensive neuropsychological test)
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Fig. 1 Proportions of the 12 major immune cell types among samples from patients with AD, MCI, and CN. a Comparison of cell types among

AD, MCI, and CN samples (*FDR < 0.05, Jonckheere–Terpstra trend test). b Proportion of neutrophils in AD, MCI, and CN samples according to

routine blood tests. c Correlation between the proportions of neutrophils estimated from RNA-seq data and that from routine blood tests. d PCA

using RNA-seq data

Fig. 2 Distribution of differentially expressed genes (DEGs). a Each point represents a gene. Green and red dots represent downregulated and

upregulated DEGs, respectively. b Hieratical clustering of DEGs and samples by using the trimmed mean of M-values normalization factors. The

horizontal and vertical axes represent the samples (AD, black; CN, gray) and DEGs (red, upregulated; green, downregulated), respectively
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Detection of DEGs

Focusing on the 19,699 genes with a threshold of > 1

CPM (counts per million reads mapped) in more than

one-fourth of all sequenced samples, we next examined

the DEGs in AD and CN samples. A total of 846 statisti-

cally significant DEGs (i.e., FDR < 0.05 and fold change

> 1.2) with Entrez gene IDs were identified, of which 480

genes were upregulated and 366 were downregulated in

the AD samples (Fig. 2a and Supplementary Table S4).

In addition, a heatmap of DEGs using the trimmed mean

of M value normalization factors showed that the ex-

pression profiles of the AD and CN samples clustered

separately (Fig. 2b).

Biological and functional analysis

To gain further insight into the biological functions of

the DEGs, we performed a gene set enrichment analysis

(GSEA) using the DAVID (version 6.8) gene functional

classification tool (https://david.ncifcrf.gov) [25, 34]. As

a result, the DEGs were enriched in 11 GO terms (6 bio-

logical processes, 4 cellular components, and 1 molecu-

lar function) and one KEGG biological pathway

(hsa03010: ribosome), with a significance level set at

FDR < 0.05. The enrichment levels of those GO terms

are presented in circular visualization (Fig. 3). The GO

terms were enriched in many downregulated genes

(Fig. 3), and most of them involved ribosomal subunits:

19 RPL genes (RPL3, RPL5, RPL6, RPL7, RPL9, RPL10A,

RPL11, RPL18, RPL19, RPL21, RPL22, RPL23, RPL23A,

RPL26, RPL27, RPL29, RPL32, RPL35, and RPL36AL), 12

RPS genes (RPS3, RPS3A, RPS4Y1, RPS5, RPS6, RPS8,

RPS11, RPS12, RPS14, RPS18, RPS24, and RPS29), and 3

MRP genes (MRPS5, MRPL16, and MRPL47).

Network-based meta-analysis

In addition to GSEA, we performed a protein–protein

interaction (PPI) network analysis based on the DEGs by

using NetworkAnalyst [36] (http://www.networkanalyst.

ca) with the STRING Interactome database [37]. As a re-

sult, we obtained a PPI network comprising 4,164 nodes

and 11,886 edges. To prune the network to a more man-

ageable size, we conducted a zero-order interaction net-

work analysis and detected a network containing 161

nodes and 700 edges (Fig. 4). The most highly ranked

hub genes were recognized in terms of network topology

measures of degree (DC) and betweenness of centrality

(BC). The top-ranked 10 hub genes were EEF2

(eukaryotic elongation factor 2, DC = 38, BC = 883.9,

FC = 1.22, FDR = 0.048) and 9 ribosomal proteins: 3 RPL

genes (RPL5, RPL7, and RPL23A) and 6 RPS genes

(RPS3, RPS3A, RPS5, RPS6, RPS12, and RPS24) (Table 2).

Many of the identified genes were common to those ob-

tained through GSEA.

Validation of potential biomarkers of AD in blood

We examined whether many of the top-ranked hub

genes could be potential blood biomarkers for AD. For

this purpose, two-thirds of all samples were used as a

training data set (240 samples: 180 ADs and 60 CNs),

and the remaining one-third was used as a test data set

(122 samples: 91 ADs and 31 CNs). The top-ranked p

hub genes were selected stepwise. A risk prediction

model was constructed by using clinical information

(age, sex, and APOE ε4 genotypes), the proportion of

neutrophils, and the top-ranked p hub genes with a ran-

dom forest classifier using the training data. The ad-

justed model was then evaluated on the independent test

Fig. 3 Gene set enrichment analysis using DEGs. Statistically significant Gene Ontology terms with a false discovery rate < 0.05
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data by using the area under the receiver operating char-

acteristic curve (AUC). The best model achieved an

AUC of 0.878 (95% CI 0.801–0.955, sensitivity = 0.945,

specificity = 0.710, Supplementary Fig. S1a) in the test

data when two top-ranked hub genes (EEF2 and RPL7,

Fig. 5a) were used. The highest variable importance was

age (MeanDecreaseGini = 30.97; RPL7, 20.63; Neut,

14.23; EEF2, 14.20; APOE ε4 genotypes, 5.05; sex, 3.15).

The best model had a superior AUC to the model using

only clinical information (Fig. 5a). Furthermore, the

expression of two hub genes, EEF2 and RPL7, were asso-

ciated with a significant decrease and increase in AD

prognosis, respectively (P = 0.015 in EEF2, P = 0.032 in

RPL7, Jonckheere–Terpstra trend test, Fig. 5b and Sup-

plementary Table S5). These results suggested that these

two hub genes could serve as potential diagnostic blood

biomarkers of AD. In a similar way, risk prediction models

were constructed by using clinical features (age, sex, and

APOE ε4 genotypes), the proportion of neutrophils, and the

top-ranked two hub genes with a random forest classifier

using the training data. The adjusted models were then

evaluated on the independent test data for a MCI and CN

set and a MCI and AD set. The best models achieved an

AUC of 0.683 (95% CI = 0.559–0.807, sensitivity = 0.744,

specificity = 0.633, Supplementary Fig. S1b) and an AUC of

0.645 (95% CI 0.562–0.728, sensitivity = 0.622, specificity =

0.671, Supplementary Fig. S1c) for the MCI and CN set

and the MCI and AD set in the test data, respectively.

Validation in a prospective cohort

We measured mRNA expression in 248 MCI samples.

Of them, 55 MCI samples were obtained from the pro-

spective data; 17 patients who contributed samples pro-

gressed to AD, whereas 38 of the patients corresponding

to these samples have not yet been diagnosed with bona

fide AD after at least 1 year. Our risk prediction model

based on clinical information (age, sex, and APOE ε4 ge-

notypes) and three potential biomarkers we obtained

Fig. 4 Network-based meta-analysis using DEGs. A protein–protein interaction network detected in DEGs

Table 2 Top-ranked 10 hub genes detected in the network-

based meta-analysis using DEGs

Gene name DC BC FC FDR

EEF2 38 883.9 1.22 4.80 × 10−3

RPL7 36 350.3 1.51 1.75 × 10−5

RPL5 35 4567.0 1.23 2.07 × 10−5

RPS3 35 1599.7 1.38 1.89 × 10−4

RPS5 34 741.0 1.35 0.024

RPS12 34 427.3 1.44 5.20 × 10−4

RPS3A 34 23.1 1.31 1.10 × 10−3

RPS6 34 23.1 1.23 3.31 × 10−5

RPL23A 33 48.1 1.27 8.50 × 10−3

RPS24 33 22.0 1.23 8.00 × 10−4

The most highly ranked hub genes in terms of network topology measures of

degree (DC) and betweenness of centrality (BC)

FC fold change, FDR false discovery rate
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(i.e., the proportion of neutrophils, EEF2, and RPL7) was

applied to the prospective data. Because our prediction

model provides a probability of AD conversion for each

MCI sample, we set the MCIs at the probability of > 0.9

for conversion to AD. Survival probabilities were calcu-

lated by using the Kaplan–Meier method in the survival

package (version 2.41.3) for the statistical software R.

Our risk prediction model significantly classified the

MCI samples into two categories (high and low risk).

The Kaplan–Meier curves showed improved outcome

for AD conversion-free survival (Fig. 6, log rank trend

test = 0.039), which achieved a high accuracy of 0.727 on

the prospective cohort (sensitivity = 0.706, specificity =

0.737). Our present model predicted that 33 samples

would not covert to AD, of which 5 did convert (nega-

tive predictive value (NPV) = 0.848). Although this clear

classification of samples might be helpful for future

practical use in healthcare, we would have to follow

those samples to improve the further predictive value.

Verification of quantitative RT-PCR assay

To validate the RNA-seq results, we used quantitative

RT-PCR (qRT-PCR) analysis to evaluate the two most

significant hub genes (EEF2 and RPL7) as potential bio-

markers of AD for early diagnosis, three upregulated

DEGs (TRIOBP, TAS2R39, and BASP1), and three down-

regulated DEGs (LDHB, NR1D2, and PDK4). Figure 7

summarizes the RNA-seq and qRT-PCR results. Al-

though the 8 DEGs were not expressed at precisely the

same levels in both RNA-seq and qRT-PCR analyses, the

regulated trends of the 8 DEGs were entirely consistent

(Fig. 7). These results demonstrated our RNA-seq data

accurately estimates gene expression.

Discussion
Peripheral blood biomarkers for early diagnosis have been

examined in many diseases including AD [40–42]. In

addition, various blood biomarkers associated with neuro-

cognitive impairments have been reported, for example,

glucose [43–45] and atherogenic index of plasma (AIP)

[46]. However, no reliable and sensitive blood biomarkers

are routinely used in clinical practice yet. One powerful

and widely used approach to detect blood-based bio-

markers, next-generation RNA-seq in human PBMCs, al-

lows a comprehensive analysis of the entire transcriptome,

but many of the previous studies were conducted in a

small number of samples, particularly for AD.

Here, we performed comprehensive RNA-seq analysis

using a large number of samples, to detect potential

blood-based biomarkers associated with early diagnosis of

AD. First, we used the bulk RNA-seq data to evaluate the

difference in cell-type composition among AD, MCI, and

CN samples. Of the 12 major immune cell types (B cells,

plasma cells, CD8+ T cells, CD4+ T cells, γδ T cells, NK

cells, monocytes, macrophages, dendritic cells, mast cells,

eosinophils, and neutrophils), we found a statistically sig-

nificant difference in the proportion of neutrophils; that is,

an increase in the proportion of neutrophils was signifi-

cantly associated with AD prognosis. In addition, the asso-

ciation of this increase with prognosis was further

confirmed using a large number of additional samples ob-

tained from routine blood tests. Although a recent report

suggested that the neutrophil phenotype could be associ-

ated with the rate of cognitive decline and therefore might

be a prognostic blood biomarker in patients with AD [47],

the study involved only a few samples (n = 42). In contrast,

our current results were obtained from not only different

data sets (RNA-seq and routine blood tests) but also a far

Fig. 5 Potential biomarkers of AD in the blood by using the most important hub genes. a Identification of the most important hub genes by

using a random forest classifier. Neut, neutrophils. b Expression of two hub genes (EEF2 and RPL7) among AD, MCI and CN samples
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larger sample population (n = 3,099), providing stronger

evidence that the proportion of neutrophils has the poten-

tial to be a blood biomarker of AD.

We also examined the DEGs between AD and CN

samples. Of the 846 total statistically significant DEGs

identified, 480 genes were upregulated and 366 were

downregulated in AD. To gain further insight into the

biological functions of the identified DEGs, we per-

formed GSEA and PPI network analysis. Multiple statis-

tically significant GO terms, one KEGG biological

pathway, and several important hub genes were identi-

fied. A risk prediction model using the top two hub

genes (EEF2 and RPL7) and the proportion of neutro-

phils increased the model’s AUC, compared with that of

a model using clinical information only. Therefore, our

model provides an effective and precise prediction of

AD risk.

One of the potential biomarkers, EEF2, is a member of

the GTP-binding translation elongation factor family

and an essential factor for protein synthesis and cell sur-

vival. In recent studies, EEF2 kinase reduction alleviated

AD-associated defects in AD model mice [48]. In

addition, RPL7 is reported to be a tau-dependent T cell

intracellular antigen 1 (TIA1)-interacting protein [49,

50]. TIA1 co-localizes with neuropathology in brain tis-

sue of subjects with AD, frontotemporal lobar dementia,

and amyotrophic lateral sclerosis, as well as in animal

models of these diseases [51–53], all of which are associ-

ated with pathological tau misfolding and aggregation.

These results suggest that these two hub genes could

play a key role in the pathogenesis of AD.

We applied our risk prediction model—constructed by

using these three potential biomarkers (proportion of

neutrophils, EEF2, and RPL7) and three clinical features

(age, sex, and APOE ε4 genotypes)—to prospective co-

hort data. Although the highest variable importance was

age among the six features, the three potential bio-

markers interestingly showed a higher variable import-

ance than the other clinical features (age and APOE ε4
genotypes). In general, when a risk prediction model is

constructed by using AD and CN samples, it is difficult

to apply to MCI samples. However, because our predic-

tion model provides a probability of AD conversion for

each sample, we were able to make it applicable to MCI

samples simply by adjusting the cutoff probability for

conversion. Our risk prediction model significantly

Fig. 6 Validation of potential biomarkers by using a prospective cohort
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classified MCI samples into two categories (high and

low risks) and yielded a high NPV of 0.848. For clinical

use, this prospective prediction model must have high

NPV because it likely will be used at the first screening

for AD conversion. This risk prediction model requires

further refinement before its practical use in healthcare.

One improvement would be to consider genetic varia-

tions, such as single-nucleotide variants, short insertions

and deletions, and copy number variations, because

GWAS have revealed many types of genetic variation

that contribute to AD risk [6–8] In addition, the com-

bination of genetic variation and gene expression—ex-

pression quantitative trait loci (eQTLs) [54–56], which

are genetic variants that affect gene expression levels—

should be considered for the improvement of AD risk

prediction models. Integration of that genetic variation,

along with eQTL effects, likely will further improve the

prospective AD risk prediction model.

Conclusions
The current study identified potential biomarkers for

early diagnosis of AD from RNA sequencing data. The

risk prediction model constructed by using the bio-

markers achieved a high AUC for a validation cohort;

when further applied to a prospective cohort, the model

achieved high accuracy. Our model was demonstrated to

be effective in prospective AD risk prediction. These

findings indicate the discovery of potential biomarkers

for early diagnosis of AD, and their further improvement

may lead to future practical clinical use.
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