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Abstract: Bacterial enteric infections resulting in diarrhea, dysentery, or enteric fever constitute 

a huge public health problem, with more than a billion episodes of disease annually in developing 

and developed countries. In this study, the deadly agent of hemorrhagic diarrhea and hemolytic 

uremic syndrome, Escherichia coli O157:H7 was investigated with extensive computational 

approaches aimed at identifying novel and broad-spectrum antibiotic targets. A systematic in 

silico workflow consisting of comparative genomics, metabolic pathways analysis, and addi-

tional drug prioritizing parameters was used to identify novel drug targets that were essential for 

the pathogen’s survival but absent in its human host. Comparative genomic analysis of Kyoto 

Encyclopedia of Genes and Genomes annotated metabolic pathways identified 350 putative 

target proteins in E. coli O157:H7 which showed no similarity to human proteins. Further bio-

informatic approaches including prediction of subcellular localization, calculation of molecular 

weight, and web-based investigation of 3D structural characteristics greatly aided in filtering the 

potential drug targets from 350 to 120. Ultimately, 44 non-homologous essential proteins of E. 

coli O157:H7 were prioritized and proved to have the eligibility to become novel broad-spectrum 

antibiotic targets and DNA polymerase III alpha (dnaE) was the top-ranked among these targets. 

Moreover, druggability of each of the identified drug targets was evaluated by the DrugBank 

database. In addition, 3D structure of the dnaE was modeled and explored further for in silico 

docking with ligands having potential druggability. Finally, we confirmed that the compounds 

N-coeleneterazine and N-(1,4-dihydro-5H-tetrazol-5-ylidene)-9-oxo-9H-xanthene-2-sulfon-

amide were the most suitable ligands of dnaE and hence proposed as the potential inhibitors of 

this target protein. The results of this study could facilitate the discovery and release of new and 

effective drugs against E. coli O157:H7 and other deadly human bacterial pathogens.

Keywords: E. coli O157:H7, KEGG metabolic pathways, novel and broad-spectrum antibiotic 

targets, DNA polymerase III alpha, homology modeling

Introduction
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli (EHEC) infections 

in humans are a major source of morbidity and mortality in both developing and 

developed countries.1 Among various pathogenic E. coli strains that cause intestinal 

or extra-intestinal diseases in humans, the most devastating are shiga toxins produc-

ing EHEC strains, because they cause not only diarrhea and hemorrhagic colitis but 

also life-threatening hemolytic uremic syndrome and encephalopathy.2 Over 100 

serotypes of shiga toxin-producing E. coli have been associated with human infec-

tions and the most common serotype is E. coli O157:H7. Several deadly outbreaks of 

E. coli O157:H7 were reported in Canada, United States, Great Britain, and Japan.3–5 
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However, the massive outbreak in Sakai city, Japan, in 1996 

is of great concern as a number of deaths from the infection 

were reported.6

The genome of EHEC O157:H7 Sakai strain was 

sequenced in 2001.7 The sequence analysis revealed that this 

strain contains 18 prophages (Sp1 to Sp18), six prophage-like 

elements (SpLE1 to SpLE6), and two plasmids (pO157 and 

pOSAKl). To know the mechanism underlying pathogenicity 

of this bacterium, a substantial number of virulence-related 

genes or functions associated with various stages of infection 

have been identified.7 However, lack of details of functional 

annotations often limit the possibility to use them as targets 

for designing new drugs against this pathogen.

The treatment of E. coli O157:H7 mostly relies on con-

ventional antibiotic therapy although some studies have high-

lighted that there is no evidence that this improves the course 

of disease and antibiotic treatment of patients with E. coli 

O157:H7 infection increases the risk of hemolytic–uremic 

syndrome.8,9 Moreover, an increase of antibiotic resistance has 

been reported in E. coli O157:H7 over the last 30 years which 

is also alarming.10–14 The accumulated results strongly suggest 

that there is an urgent and continuing need to find new drug 

and vaccine candidates to tackle this deadly pathogen.

Drug target identification is the first step in the drug 

discovery process.15 However, traditional drug discovery 

methods are time-consuming, expensive, and often yield 

few drug targets. In contrast, advances in complete genome 

sequencing, bioinformatics, and cheminformatics represent 

an attractive alternative approach to identify drug targets 

worthy of experimental follow-up. Because of the availability 

of both pathogen and host–genome sequences, it has become 

easier to identify drug targets at the genomic level for any 

given pathogen.16,17 In recent years, computational methods 

have been used widely for the identification of potential 

drug and vaccine targets in different pathogenic microorgan-

isms.18–21 Subtractive and comparative genomics approach 

combined with metabolic pathway analysis was found to be 

an efficient way to identify the protein-set essential for the 

pathogen’s survival but absent in the host.22 Subtraction of 

the host genome from essential genes of pathogens helps in 

searching for non-human homologous targets which ensures 

no interaction of drugs with human targets. On the other hand, 

comparative genomics method emphasizes the selection of 

conserved proteins amongst several species as most favorable 

targets.23–26 The use of advanced bioinformatics tools with 

integrated genomics, proteomics, and metabolomics may 

ensure the discovery of potential drug targets for most of the 

infectious diseases. Once the target(s) have been identified, 

the in silico virtual screening of different chemical databases 

could provide unprecedented opportunity to select and design 

the best possible inhibitor(s).27

In this study, we took an in-depth in silico approach to 

identify novel therapeutic targets in E. coli O157:H7 Sakai 

strain by combining analysis of metabolomics and genomics 

data. Instead of analysis of whole genome, we particularly 

considered the key essential or survival proteins of the patho-

gen which are non-homologous to the host. We elucidated a 

good number of novel targets in E. coli O157:H7 to design 

effective drugs against broad-spectrum pathogenic bacteria. 

Moreover, we provided a modeled 3D structure of DNA 

polymerase III alpha (dnaE) which was selected as the best 

possible target for inhibition and designing potential drugs. 

To the best of our knowledge this was the first in silico iden-

tification of drug targets in E. coli O157:H7.

Materials and methods
Pathway analysis and protein retrieval
Figure 1 showed the strategies for identification of suitable 

drug targets and prediction of inhibitor used. The Kyoto Ency-

clopedia of Genes and Genomes (KEGG) database28,29 was 

searched for metabolic pathways for both human genomes 

and E. coli O157:H7 Sakai strain. The identification numbers 

of all pathways from both organisms were listed. A manual 

comparison was made, and pathways that did not appear in the 

human genomes but were present in the pathogen, according 

to the KEGG database annotations, were selected as unique 

to E. coli O157:H7, while the remaining pathways were listed 

as common. Amino acid sequences of proteins from common 

and unique pathways were obtained from UniprotKB.30

Identification of essential proteins and 
non-homologous proteins in humans
Database of Essential Genes (DEG)31 was used to identify 

the essential proteins involved in host-pathogen pathways. 

The DEG 6.8 database was retrieved from http://www.tubic.

tju.edu.cn/deg/. The BioEdit Sequence Alignment Editor 

(version 7.1.3) was used for Protein Basic Local Alignment 

Search Tool (BLASTP) search to screen for and eliminate the 

probable essential proteins of the organism setting e-value 

cut off 10−4, sequence identity .35%, bit score .100 and 

others as default.

All human protein sequences were retrieved from Refseq 

database ftp site (ftp://ftp.ncbi.nlm.nih.gov/genomes/H_

sapiens/protein/) and essential proteins were subjected to 

BLASTP search against the human proteins with BioEdit. 

Only the non-hit proteins at e-value cut off 10−10, were 
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Identification of pathogen unique pathways and host-pathogen common pathways

Retrieval of all pathway protein sequences from Uniprot
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DiscardedBLASTP with Refseq human proteome e-value 10–10

BLASTP with Database of Essential Genes (DEG): e-value 10–4;
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structure validation

Search proteins in pathogen
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Search for expression

evidence

Present in databases

Localization unknownCytoplasmic proteins

Drug target database search (TTD,

DrugBank) for novel targets

Figure 1 A schematic representation of the workflow of computational drug target identification and prediction of putative inhibitors of the selected target.
Abbreviations: BLASTP, Protein Basic Local Alignment Search Tool; TTD, Therapeutic Target Database.
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selected as non-homologous proteins to avoid any functional 

similarity with host proteome.

Subcellular localization prediction  
and targets’ prioritization
Subcellular localization prediction of the essential non-human 

proteins was done by PSORTb version 3.0.2,32 which predicts 

three types of localization such as: cytoplasmic, membrane, 

and extracellular proteins for Gram-negative bacteria. The 

potential drug targets were evaluated by several molecular 

and structural criteria33 for prioritizing suitable drug targets. 

Drug targets’ prioritization involved calculation of molecular 

weight (MW) using computational tools and drug targets 

associated literature available at Swiss-Prot database. Protein 

Data Bank and ModBase (http://www.salilab.org/modbase) 

databases were searched for identifying experimentally and 

computationally solved 3D structures respectively.34 The 

selected protein was searched for any structural identity with 
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the 3D ligand binding site of any human protein structure 

on the web server SMAP-WS at a cut off value of 30% 

sequence identity.35

Moreover, druggability is another important prioritization 

criterion for therapeutic targets; that is defined as the likelihood 

of being able to modulate the activity of the therapeutic target 

protein with a small-molecule drug.36,37 The druggability of iden-

tified drug targets was measured by mining DrugBank  contents. 

BLASTP with default parameters was performed against the list 

of targets of compounds found within DrugBank to align the 

potential drug targets from E. coli O157:H7. Alignments with 

e-values less significant than 10−25 were removed as described 

previously as selection criteria for filtering BLAST results in 

identifying drug targets of bacterial genomes.38

Identification of novel targets  
and searching for common proteins
To identify novel targets among the potential targets, 

databases DrugBank, SuperTarget, and Therapeutic Target 

Database, were searched for similarity with the cytoplasmic 

proteins.39–41 Parameters were set as e-value ,10−5, sequence 

identity .35%, and bit score .100. The non-hit proteins at 

the threshold value were selected as novel drug targets. To 

search for the common proteins amongst pathogenic bacteria, 

all protein sequences of 73 different strains of pathogenic 

bacteria were retrieved from PATRIC database.42 The novel 

targets were subjected to BLASTP against these proteomes at 

e-value cut off 10−5, sequence identity .35%, bit score .100 

with BioEdit software. The proteins that were found to be 

common in at least 40 pathogenic strain proteomes were 

listed as broad-spectrum targets. Different bacterial species 

were used as references.

Homology modeling
As no exact protein data bank (PDB) structure was available 

for dnaE in PDB, it was subjected to BLAST search against 

PDB structures using 0.001 e-value cut off. The template for 

homology modeling was chosen considering X-ray diffrac-

tion resolution and highest sequence similarity. Homology 

modeling was done on ESyPred3D server.43

Structure validation and active site 
prediction
The modeled structure was assessed through SWISS-

MODEL structure assessment tool44 and ANOLEA (atomic 

non-local environment assessment)45 assessing the packing 

quality of the models. PROCHECK suite of programs46 

checked the stereochemical quality of protein structures. 

Energy minimization was carried out by GROMOS96 with 

default parameters implemented in Swiss PDB Viewer 

(version 4.0.4).47 Active site of the modeled structure was 

determined by CASTp server.48

Virtual screening, drug likeliness,  
and toxicity analysis
For visual analysis and comparison of the active site interaction 

with the ligands, 24 ligand molecules of E. coli K-12 dnaE 

subunit were extracted from BindingDB database and docked 

with the subject receptor.49 Virtual screening was done with a 

total 6,460 molecules, 5,040 experimental and 1,447 approved 

molecules deposited in DrugBank, based on selected active 

sites into the dnaE. Virtual screening was performed on Linux 

(Ubuntu 10.04) based cluster with 32 core systems. The top 

100 molecules were selected based on lowest binding energy 

after being docked several times. The selected molecules were 

analyzed by Lipinski’s rule of five. The ligand interaction 

analysis and visualization was done with the help of Pymol 

and Discovery Studio (Accelrys, San Diego, CA, USA). 

Absorption, distribution, metabolism, excretion, and toxicity 

(ADMET) prediction was carried out with PreADMET server. 

PreADMET predicts mutagenicity and carcinogenicity of a 

compound and helps to avoid toxic compound. Oral bioavail-

ability was predicted with FAF-Drugs2 program of Mobyle@

RPBS server.50

Results and discussion
Identification of pathogen-specific 
pathways
Here we report the first computational comparative and sub-

tractive genomics analysis of different metabolic pathways 

from E. coli O157:H7, for the identification of potential drug 

targets. A systematic workflow was defined involving several 

bioinformatics tools, databases, and drug target prioritization 

parameters (Figure 1), with the goal of obtaining informa-

tion about proteins that were involved in various metabolic 

pathways of E. coli O157:H7, but absent in its host, therefore 

avoiding any potential side effects. When we searched the 

KEGG database for pathogen metabolic pathways, a total of 

105 different pathways appeared. In order to identify drug 

targets involved in pathogen-specific metabolic pathways, 

comparative analysis of the metabolic pathways of the host 

and pathogen was performed. Detailed pathways analyses 

revealed that a total of 35 pathways were present only in the 

pathogen and termed as pathogen-specific pathways, and the 

remaining 70 pathogen pathways were defined as common 

host-pathogen pathways as listed in Table 1.
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Table 1 Host–pathogen common and pathogen-specific pathways from KEGG database

Pathway IDs Pathway names Pathway IDs Pathway names

Host–pathogen common pathway

ecs00010 Glycolysis/Gluconeogenesis ecs00860 Porphyrin and chlorophyll metabolism
ecs00020 Citrate cycle (TCA cycle) ecs00900 Terpenoid backbone biosynthesis
ecs00030 Pentose phosphate pathway ecs00920 Sulfur metabolism
ecs00040 Pentose and glucuronate interconversions ecs00970 Aminoacyl-tRNA biosynthesis
ecs00051 Fructose and mannose metabolism ecs01040 Biosynthesis of unsaturated fatty acids

ecs00052 Galactose metabolism ecs02010 ABC transporters

ecs00053 Ascorbate and aldarate metabolism ecs03010 Ribosome
ecs00061 Fatty acid biosynthesis ecs03018 RNA degradation
ecs00071 Fatty acid metabolism ecs03020 RNA polymerase

ecs00130 Ubiquinone and other terpenoid-quinone biosynthesis ecs03030 DNA replication
ecs00190 Oxidative phosphorylation ecs03060 Protein export
ecs00230 Purine metabolism ecs03410 Base excision repair

ecs00240 Pyrimidine metabolism ecs03420 Nucleotide excision repair

ecs00250 Alanine, aspartate and glutamate metabolism ecs03430 Mismatch repair

ecs00260 Glycine, serine and threonine metabolism ecs03440 Homologous recombination
ecs00270 Cysteine and methionine metabolism ecs04122 Sulfur relay system

ecs00280 Valine, leucine and isoleucine degradation ecs00561 Glycerolipid metabolism
ecs00290 Valine, leucine and isoleucine biosynthesis ecs00562 Inositol phosphate metabolism
ecs00300 Lysine biosynthesis ecs00564 Glycerophospholipid metabolism
ecs00310 Lysine degradation ecs00590 Arachidonic acid metabolism
ecs00330 Arginine and proline metabolism ecs00592 alpha-Linolenic acid metabolism
ecs00340 Histidine metabolism ecs00600 Sphingolipid metabolism
ecs00350 Tyrosine metabolism ecs00620 Pyruvate metabolism
ecs00360 Phenylalanine metabolism ecs00630 Glyoxylate and dicarboxylate metabolism
ecs00380 Tryptophan metabolism ecs00640 Propanoate metabolism
ecs00400 Phenylalanine, tyrosine and tryptophan biosynthesis ecs00650 Butanoate metabolism
ecs00410 beta-Alanine metabolism ecs00670 One carbon pool by folate
ecs00430 Taurine and hypotaurine metabolism ecs00730 Thiamine metabolism
ecs00450 Selenocompound metabolism ecs00740 Riboflavin metabolism
ecs00460 Cyanoamino acid metabolism ecs00750 Vitamin B6 metabolism
ecs00471 d-Glutamine and d-glutamate metabolism ecs00760 Nicotinate and nicotinamide metabolism
ecs00480 Glutathione metabolism ecs00770 Pantothenate and CoA biosynthesis
ecs00500 Starch and sucrose metabolism ecs00780 Biotin metabolism
ecs00511 Other glycan degradation ecs00785 Lipoic acid metabolism
ecs00520 Amino sugar and nucleotide sugar metabolism ecs00790 Folate biosynthesis
Pathogen-specific pathway
ecs00281 Geraniol degradation ecs00627 Aminobenzoate degradation
ecs00361 Chlorocyclohexane and chlorobenzene degradation ecs00633 Nitrotoluene degradation
ecs00362 Benzoate degradation ecs00642 Ethylbenzene degradation
ecs00363 Bisphenol degradation ecs00660 C5-Branched dibasic acid metabolism
ecs00364 Fluorobenzoate degradation ecs00680 Methane metabolism
ecs00401 Novobiocin biosynthesis ecs00903 Limonene and pinene degradation
ecs00440 Phosphonate and phosphinate metabolism ecs00910 Nitrogen metabolism
ecs00473 d-Alanine metabolism ecs00930 Caprolactam degradation
ecs00521 Streptomycin biosynthesis ecs01053 Biosynthesis of siderophore group  

non-ribosomal peptides
ecs00523 Polyketide sugar unit biosynthesis ecs01110 Biosynthesis of secondary metabolites
ecs00540 Lipopolysaccharide biosynthesis ecs01120 Microbial metabolism in diverse environments
ecs00550 Peptidoglycan  biosynthesis ecs02020 Two-component system
ecs00621 Dioxin degradation ecs02030 Bacterial chemotaxis

ecs00622 Xylene degradation ecs02040 Flagellar assembly
ecs00623 Toluene degradation ecs02060 Phosphotransferase system
ecs00624 Polycyclic aromatic hydrocarbon degradation ecs03070 Bacterial secretion system

ecs00625 Chloroalkane and chloroalkene degradation ecs05130 Pathogenic Escherichia coli infection

ecs00626 Naphthalene degradation

Abbreviation: KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Identification of non-homologous 
essential proteins
To be an effective drug target, the protein should be crucial for 

the survival of pathogen in the host body but non- homologous 

to human proteins and this criterion is a prerequisite for 

avoiding cross binding of drugs with human proteins, and 

drug side effect probability.51 Unique pathways are those that 

are specific to the pathogen but absent in its host. Proteins 

in these pathways can also be considered as unique to the 

pathogen and might serve as potential drug and vaccine 

targets.34 Moreover, several unique proteins are known to be 

present in common pathways as identified during our analysis 

of E. coli O157:H7 (data not shown) and in several previous 

studies on other bacteria.19,20,52

Additionally, we also identified that a single unique pro-

tein can also take part in multiple pathways. Proteins that are 

involved in more than one pathway could be more effective 

drug targets when, in addition, they are non-homologous 

 proteins. Nevertheless, being unique or non-human and 

involved in metabolic pathways are not the sole criteria for 

selecting favorable drug targets. It is possible that a bacterial 

protein showing no similarity to host proteins might be involved 

in multiple metabolic pathways, but its disruption might be 

of no therapeutic benefit. The reasons may include presence 

of paralogs, isoenzymes, and most importantly, being non-

essential for the pathogen’s survival. Again, not all essential 

proteins are non-homologous in nature. Therefore, pathogen 

proteins that fulfill the criteria of being unique and essential at 

the same time represent more attractive drug targets.34

Based on the criteria discussed above, we identified 

780 probable essential proteins from host–pathogen com-

mon pathways, and 234 from pathogen unique pathways 

(Supplementary materials). These proteins showed good 

similarity with the experimentally proven essential proteins 

recorded in DEG database. BLASTP search against human 

proteome narrowed down the target proteome to only 220 and 

130 proteins from common pathways and unique pathways 

respectively resulting in 350 proteins which were essential 

for the pathogen’s survival and non-homologous to the host 

(Supplementary materials).

Subcellular localization and prediction  
of drug target prioritization
Localization of the proteins in the cell is an important fac-

tor for identification of suitable and effective drug targets. 

Membrane localized proteins are difficult to purify and assay53 

and therefore, cytoplasmic proteins are more favorable as 

drug targets. Other major factors are: accessibility value of 

a target protein; preferably low MW (,100 kDa); whether a 

potential drug is a transmembrane protein; and availability of 

3D structural information.20 Based on these essential features, 

the identified non-homologous essential proteins of E. coli 

O157:H7 were further characterized. Most of the proteins had 

MW less than 100 kDa indicating the possibility to experi-

mentally study these proteins for drug development.

From the common pathways, 152 proteins were found 

to be cytoplasmic, 54 proteins to be membrane localized, 

and the other 14 proteins to be of unknown localization. 

From pathogen unique pathways, 70, 52, and eight pro-

teins were found to be cytoplasmic, membrane localized, 

and of unknown localization respectively (Supplementary 

 materials). Based on these results, 152 and 70 cytoplasmic 

proteins from common pathways and unique pathways 

respectively were considered for further analysis to identify 

suitable drug targets (Figure 2).

The DrugBank is a unique bioinformatics and chemin-

formatics resource which combines detailed drug data with 

comprehensive information about drug targets. By utilizing 

the DrugBank database, druggability of non-homologous 

essential proteins of E. coli O157:H7 was measured by 

sequence similarity to the targets of small-molecule drugs and 

BLASTP search was performed to align the non-homologous 

essential proteins to the list of drug-targeted proteins from 

DrugBank. A total of 129 proteins of E. coli O157:H7 showed 

high similarities with the binding partners of US Food and 

Drug Administration (FDA)-approved drugs, experimental 

small-molecule compounds, or nutraceutical compounds 

supporting the potential of comparative genomics in drug 

discovery. Among these, 80 proteins and 49 proteins were 

from common and unique pathways respectively (Supple-

mentary materials).

By this comparison with drug-targeted proteins addition-

ally a list of approved drug and drug-like compounds was 

identified that bind to proteins with similar sequences to 

those of E. coli O157:H7. It is reasonable that careful  filtering 
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of this set could reveal a number of potential compounds 

that were primed for optimization and derivatization using 

traditional medicinal chemistry although protein sequence 

similarity does not guarantee identical structures or binding 

pockets.38 We searched the presence of 3D structures of the 

non-host essential proteins of E. coli O157:H7. Such infor-

mation could greatly facilitate a structure-based drug design, 

including homology modeling, docking, virtual screening or 

pharmacophore-based screening.54 The PDB and ModBase 

were used as sources for the 3D structural information. Out 

of 350 non-host essential proteins, ten proteins were identi-

fied as having experimentally determined 3D structures in 

PDB and 312 were found to have 3D models in ModBase 

(Supplementary materials).

Novel targets’ identification
Proteins which showed significant similarity with the data-

bases were discarded and the remaining protein sequences 

were taken as novel targets. Forty-four proteins from 

pathogen unique pathways and 76 proteins from common 

pathways totaling 120 proteins were defined as novel proteins 

(Supplementary materials). Metabolic pathway analysis indi-

cated that these 120 proteins were involved in 12 biological 

processes unique to pathogens and 49 biological processes 

that were common in both host and pathogen. Moreover, 

all of these 61 biological processes were classified into 12 

classes: amino acid metabolism, carbohydrate metabolism, 

energy metabolism, glycan biosynthesis and metabolism, 

lipid metabolism, metabolism of cofactors and vitamins, 

metabolism of other amino acids, nucleotide metabolism, 

genetic information processing, environmental information 

processing, cellular processes, and others (Supplementary 

materials). Figure 3 showed the percentage distribution of 

novel drug targets involved in different biological process.

Novel targets in pathogens’ unique 
pathways
Our study revealed that 44 proteins were uniquely involved 

in pathogen-specific 12 unique pathways and these were 

lipopolysaccharide (LPS) biosynthesis, peptidoglycan bio-

synthesis, methane metabolism, C5-branched dibasic acid 

metabolism, nitrogen metabolism, phosphonate and phos-

phinate metabolism, bacterial secretion system, phospho-

transferase system (PTS), flagellar assembly, two-component 

system, biosynthesis of siderophore group non-ribosomal 

peptides, and bacterial chemotaxis.

Three enzymes of LPS core biosynthesis and three 

enzymes of lipid A pathway were found uniquely present 

in LPS biosynthesis pathway (KEGG Pathway: map00540). 

In LPS of the Enterobacteriaceae, the core oligosaccharide 

is responsible for many of the biological properties of the 

antigenic O-polysaccharide.55 On the other hand, enzymes 

of lipid A pathway required for bacterial growth could be 

excellent targets for the development of new antibiotics.56 

Moreover, murF; EC 6.3.2.10 was the only enzyme present 

in peptidoglycan biosynthesis (KEGG Pathway: map00550). 

In Gram-positive bacteria, the cell wall composed of pep-

tidoglycan macromolecules and many surface proteins of 

Gram-positive bacteria is thought to be important for survival 

within an infected host.57
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In methane metabolism (KEGG Pathway: map00680), 

AckA; EC 2.7.2.1 was found to be uniquely present. 

Methanotrophs involved in the global methane cycle consume 

methane as their sole source of carbon and energy for grow-

ing58 whereas methanogens can obtain energy for growth by 

converting a limited number of substrates to methane.59 The 

protein ilvH, acetolactate synthase III small subunit, is a 

unique protein present in C5-branched dibasic acid metabo-

lism (KEGG Pathway: map00660) which provides alternative 

sources of carbon and energy.60

There was a unique presence of four proteins in nitrogen 

metabolism (KEEG Pathway: map00910). In the nitrogen 

cycle, different reductive or oxidative reactions are utilized 

by prokaryotes for energy conservation.61 In case of oxygen 

deprived growth conditions for E. coli, anaerobic respira-

tion nitrate is the preferred electron acceptor.62 The putative 

resistance protein was identified as unique protein present in 

phosphonate and phosphinate metabolism (KEGG Pathway: 

map00440). Natural products containing carbon- phosphorous 

bonds, so-called C-P compounds have been found in many 

organisms, but only protists and bacteria, mostly acti-

nobacteria, have biosynthetic capacity. Moreover, the secB; 

protein-export protein secB and etpN; type 4 prepilin-like 

proteins leader peptide-processing enzyme, that are the parts 

of bacterial secretion system (KEGG Pathway: map03070), 

were found as unique. Many proteins implicated in efflux 

of different toxins and drugs; virulence and biogenesis of 

different organelles (pili and flagella) are secreted.63 The 

secB is involved in efficient export of proteins across the 

cytoplasmic membrane in E. coli.64 In PTS (KEGG Pathway: 

map02060), n9 proteins were found to be uniquely present. It 

has been known that PTS is involved in transportation of more 

than 20 carbohydrates in bacteria and plays a major role in 

phosphorylation and uptake of carbohydrates and controlling 

their metabolism.65,66 Flagellar FliJ protein which is part of 

flagellar assembly (KEGG Pathway: map02040) as well as 

a putative general chaperone and cytoplasmic protein67 was 

identified as unique in the pathogen. The bacterial flagellum 

extending from the cytoplasm to the cell exterior serves as 

both a motor organelle and a protein export/assembly appa-

ratus.68 A total of 19 proteins were identified as unique in 

the pathogen-specific pathway in a two-component system 

(KEGG Pathway: map02020). Bacterial two-component 

system is required for adaptation to external stimuli and 

can affect changes in cellular physiology.69 A single protein 

was identified to be involved in biosynthesis of siderophore 

group non-ribosomal peptides pathway. Polyketide synthases 

and non-ribosomal polypeptide synthetases are known to be 

responsible for the biosynthesis of several siderophores such 

as enterobactin in E. coli.70 Two proteins were detected in case 

of bacterial chemotaxis. In chemotaxis, bacteria sense chemi-

cal gradients in the environment and move toward favorable 

conditions. The pathway is arguably best characterized in 

the case of E. coli.71

Novel targets in common host-pathogen 
pathways
We also identified 76 proteins in 49 host–pathogen com-

mon metabolic pathways as novel targets. The pathways 

were grouped as metabolism of amino acid, carbohydrate, 

energy, lipid, other amino acids, nucleotide, cofactors and 

vitamins, and genetic information processing, environmen-

tal information processing, cellular processes, and others 

(Supplementary materials).

Identification of broad-spectrum targets
Common proteins among several species would be well 

broad-spectrum antibiotic targets.72 We used 73 species 

as reference and proteins which were common in at least 

40 different species were listed as broad-spectrum targets 

(Supplementary materials). Forty-four proteins were identi-

fied as broad-spectrum targets (Supplementary materials). 

In addition, broad-spectrum proteins involved in multiple 

pathways would be better targets as their inhibition of activity 

will hamper more than one system in the pathogen.73 dnaE 

subunit and AckA were involved in a maximum number of 

pathways. AckA catalyzes the reversible reaction of forma-

tion of acetyl phosphate from acetate and ATP. Whereas dnaE 

participates in some critical pathways of the pathogen like 

purine metabolism, pyrimidine metabolism, DNA replication, 

mismatch repair, and homologous recombination. There is 

no resolved X-ray crystallography structure for both dnaE 

(E. coli O157:H7 Sakai strand) and AckA (E. coli O157:H7 

Sakai strand) as we intended to do homology modeling. 

However, dnaE subunit (Uniprot ID: Q8X8X5) was preferred 

over AckA (Uniprot ID: P0A6A5) based on suitability of 

homology modeling and docking studies. During the BLAST 

search against PDB structures (threshold e-value ,0.001), 

dnaE subunit showed 98% sequence identity with E. coli 

replicative dnaE subunit (PDB ID: 2HNH), whereas 94% for 

AckA with Salmonella enterica subspecies enterica serovar 

Typhimurium AckA (PDB ID: 3SK3 and 3SLC) (data not 

shown). Furthermore, an inter-domain motion during ligand 

binding as well as a ligand binding pocket located at the 
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dimeric interface of form-II AckA has been reported74 that 

is very hard to address through in silico docking software. 

In case of dnaE subunit, literature searching helped us to 

identify the pocket for ligand binding as well as important 

and conserved residues within the pocket that are important 

for catalytic activity.75

Moreover, we conducted BLAST searching for dnaE 

(Uniprot ID: Q8X8X5) with e-value cut off of 0.001 against 

UniprotKB. We selected the organisms whose proteins 

showed at least 75% sequence identity with dnaE. The organ-

isms were searched in PATRIC database to check their host 

and pathogenicity. Only the human hosts were considered and 

predicted to be pathogenic if involved in disease(s) according 

to PATRIC database.42 We found that all the organisms are 

pathogenic except Lelliottia, Kluyvera, Hafnia, Ewingella, 

Cedecea, and Yokenella. However, literature searching helped 

us to conclude that Kluyvera, Yokenella, Ewingella, Hafnia, 

and Cedecea are also involved in diseases.76–81 We did not 

find sufficient information about Lelliottia. Thus it is clearly 

demonstrated that E. coli O157:H7 dnaE does not share any 

sequence similarity with non-pathological bacterial dnaE. 

Therefore, due to the above advantages, dnaE was selected 

for homology modeling and subsequent structure-based 

drug designing.

Homology modeling
DNA polymerase III holo-enzyme has ten different peptides 

arranged in an asymmetric dimer and contains a 3′-5′ exo-

nuclease activity. The alpha subunit is at the core enzyme 

and mainly functions in the polymerase activity. The best 

hit of similarity search identified the crystal structure of the 

catalytic alpha subunit of E. coli replicative dnaE DNA poly-

merase III (PDB ID: 2HNH).82 It showed 99.98% sequence 

similarity with our target sequence and was used as the 

template for homology modeling. The modeled structure 

was shown in Figure 4.

Structure validation and energy 
minimization
Advancing toward the way of in silico drug design with 

protein models depends largely on the quality of the  models. 

Inspection of the Psi/Phi Ramachandran plot analysis showed 

that the model built by ESyPred3D has residues in most 

favored regions 92.4%, residues in additional allowed regions 

7.1%, and residues in generously allowed regions 0.3%. A 

good quality model would be expected to have over 90% in 

the most favored regions (Figure 5A).

This structure was also verified with ANOLEA. The y-axis 

of the plot represents the energy for each amino acid of the 

protein chain and it showed that maximum residues are in favor-

able energy environment (Figure 5B). As a result the structure 

modeled was considered as a good quality model for further 

analysis. To obtain a better refined model energy minimization 

was done using Swiss PDB viewer. It minimizes energy using 

GROMOS96. The force-field energies of the overall structure 

before and after minimization were -13,816.546 KJ/mol and 

-36,224.391 KJ/mol respectively.

Active site analysis
Active site is the region on the surface of an enzyme to which 

a specific substrate (ligand) or set of substrates (ligands) 

binds. The properties of the active site are determined by 

the sequences of amino acids and the 3D arrangement of the 

polypeptide chains of the enzyme. Identification of the active 

site of E. coli O157:H7 Sakai strain dnaE was done by CASTp 

server. This server calculates the surface area and volume of 

the pocket of the given structure. In addition, it also shows the 

active site residues. The active site residues with a volume of 

17,116 were shown in Figure 6. Literature searching helped 

us to identify the important residues within the pocket. The 

structure of catalytic alpha subunit of E. coli is known to 

have three conserved residues of aspartate (Asp 402, Asp 

404, and Asp 556 in our model, ensured by aligning with 

the reference structure, data not shown) and four conserved 
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Figure 5 Structure validation and energy minimization.
Notes: (A) Result of PROCHECK verification program, showing number and percentages of residues in most favored regions (red); additional allowed regions (yellow); 
generously allowed regions (creamy white); and in disallowed regions (white). Based on an analysis of 118 structures of resolution of at least 2.0 angstroms and R-factor no 
greater than 20%, a good quality model would be expected to have over 90% in the most favored regions. (B) Result of the 3D structure verification tool ANOLEA. This 
figure shows residues in favorable energy environment (green) and residues in unfavorable energy (red).
Abbreviation: ANOLEA, atomic non-local environment assessment.
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Figure 6 Active site residues (shown in green) of the Escherichia coli O157:H7 Sakai 

strand DNA polymerase III alpha.
Note: Figure prepared by CASTp server.

positive residues (Arg 391, Arg 397, Arg 710, and Arg 711) 

in this structure (Arg 390, Arg 396, Arg 709, and Arg 710 in 

the reference structure) that are important in catalysis83 and 

proposed to interact with the negatively charged triphosphate 

tail of the incoming nucleotide respectively. Moreover, two 

aromatic residues, Tyr 754 and Phe 756, that could potentially 

interact with the nascent base pair resembles Tyr 755 and Phe 

757 in our modeled structure. These residues were therefore 

considered as important in inhibition of DNA binding and 

catalysis of the dnaE subunit.

Virtual screening, drug likeliness,  
and toxicity analysis
Twenty-four ligand molecules of E. coli K-12 obtained from 

BindingDB database were docked on the receptor. Molecules 

showing lowest binding energy were listed in Table 2. The 

251D molecule is a potent inhibitor of the bacterial replicative 
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Table 2 Lowest docking energies and important residues of 
the binding site observed to be interactive with the ligands from 
BindingDB database

No Compounds  

from  

BindingDB

Important amino acid  

residues involved

Docking  

energy  

(Kcal/mol)

1 ZINC 5117079 SER365, PHE392, ARG391,  
ARG397, MET400, ASP402,  
ASP404, ARG711

-8.8

2 CID 9809878 SER365, ARG391, ARG711,  

PHE392, ASP402, ASP404,  
GLY364, MET400, ARG397,  

SER545, GLY56, VAL52,  

LYS30, LYS53, ALA57, TYR549

-8.7

3 ZINC 28356629 SER365, PHE392, ARG391,  
ARG397, MET400, ASP402,  
ASP404, ARG711, PHE757,  
ASN758, HIS761

-8.5

A 2-[(3,4-dichlorophenyl)methylamino]-3,7-

dihydropurin-6-one (ZINC: 5117079)

N-Coeleneterazine

(Drug Bank ID: DB04118)

251D

(PubChem ID: CID 9809878)

4-[2-[(3,4-dichlorophenyl)methylamino]-6-

hydroxy-purin-7-yl] butyl (ZINC: 28356629)

N-(1,4-Dihydro-5H-tetrazol-5-ylidene)-

9-oxo-9H-xanthene-2-sulfonamide

(Drug Bank ID: DB04698)

B

Figure 7 Three-dimensional representation.
Notes: Three-dimensional representation of the interactive residues on the binding site of the protein when it interacts with (A) active inhibitors (ligands) respectively with 
CID 9809878; ZINC 5117079 and ZINC 28356629 and (B) top binding affinity molecules DB04118 and DB04698. The color indicator on the left side shows the types of 
interaction of particular residues.

dnaE.84 Information on these molecules’ binding interaction 

was taken as reference to predict convenient inhibitors of 

dnaE of E. coli O157:H7 Sakai strand from the molecules 

of DrugBank (Figure 7A). The top 100 hits from DrugBank 

showing lower binding energies after being docked five 

times were filtered for Lipinski’s rule of five85 that reduced 

the compounds to 59. To avoid off target binding, the com-

pounds having human targets were excluded. The top two 

hits showed stable or nearly stable binding energy and good 

clustering performances from the docking results (Table 3) 

and structures are shown in Figure 8. Among the final high 

affinity binding molecules, DB04118 (N-coeleneterazine) 

and DB04698 (N-(1,4-dihydro-5H-tetrazol-5-ylidene)-9-

oxo-9H-xanthene-2-sulfonamide) were found to interact 

with important residues (Figure 7B) required for DNA 
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binding and catalysis. According to DrugBank  database, 

both molecules are experimental drugs. DB04118 has no 

specific target yet. However, 3-dehydroquinate dehydratase 

of Helicobacter pylori (American Type Culture Collection 

strain 700392/26695), that catalyzes a trans-dehydration via 

an enolate intermediate, is the target for DB04698. These 

molecules could be proposed as potential inhibitors of the 

E. coli O157:H7 Sakai strand dnaE. For the identification 

of potential drug candidates human intestinal absorption is 

imperative.86 By using PreADMET we found human intes-

tinal absorption was 95.36% and 88.10% for DB04118 and 

DB04698 respectively, indicating well-absorbed compounds 

(70%∼100% according to PreADMET) that is desirable for 

drug candidates. As only the unbound drug is necessary 

for diffusion or transport across the cell membranes and 

target-drug interaction, we predicted percent drug bound in 

plasma protein. Plasma protein binding prediction results 

showed 99.28% and 100.00% plasma protein binding for 

DB04118 and DB04698 respectively, indicating strongly 

bound chemicals which are not desirable. Caco-2 cell model 

serves as a reliable in vitro model for the prediction of oral 

drug  absorption. PreADMET predicted 17.45 (nm/second) 

and 0.36 (nm/second) Caco-2 cell permeability for DB04118 

and DB04698 respectively that are considered middle and 

low permeability respectively. Both drugs exhibit good oral 

bioavailability and mostly negative result in Ames test as 

predicted by FAF-Drugs2 and PreADMET toxicity prediction 

(data not shown) and no evidence of carcinogenic activity 

for only DB04698 as predicted by PreADMET rodent car-

cinogenicity prediction. We also analyzed other ADMET 

properties like blood–brain barrier penetration, skin perme-

ability, MDCK cell, and P-gp inhibition, and in all of these 

cases results are positive for our proposed compounds (data 

not shown).

Conclusion
The overall picture emerging from this study was the iden-

tification of broad-spectrum antibiotic target as well as 

prediction of potential inhibitors of DNA III alpha of deadly 

pathogen E.coli 0157:H7 using extensive in silico tools. 

Bacterial replicative dnaE is a member of C family of poly-

merases87,88 that are unique in terms of sequence. Bacterial 

replicative DNA polymerase III share no sequence similarity 

and is strikingly different from canonical DNA polymerases 

including those of eukaryotic replicative polymerases.89 It 

has been reported that DNA polymerases are responsible 

for pathogen survival and drug resistance so they have been 

considered to be a drug target in a broad group of Gram-

positive pathogens such as Staphylococcus, Streptococcus, 

Enterococcus, and  Mycoplasma.90 It has also been reported 

that DNA polymerase III inactivation would impede survival 

of Mycobacterium tuberculosis within the host.91

Since bacterial evolution aims to acquire resistance 

against single or multiple antibiotics to ensure their sur-

vival in the environment, the development, not only of new 

conventional antibiotics but also of novel compounds and 

alternative strategies for the battle against bacterial infections, 

is becoming a topical and widely recognized need. In this 

study, a number of criteria such as essentiality of proteins, 

dissimilarity with host, conservation among pathogens, 

Table 3 Lowest docking energies, important residues of the binding site observed to be interactive with the ligands from DrugBank, 
percentage of human intestinal absorption and plasma protein binding, Caco-2 cell permeability and carcinogenicity in rats

No DrugBank  

compounds

Important amino acid residues  

involved in interactions

Docking  

energy  

(Kcal/mol)

Human  

intestinal  

absorption %

Plasma  

protein  

binding %

Caco-2 cell  

permeability  

(nm/second)

Carcino-

genicity 

(Rats)

1 DB04118 LYS33, SER365, ARG391, ARG397, VAL398,  

ASP402, MET400, GLU548, TYR549, SER545
-9.8 95.36 99.28 17.4462 Negative

2 DB04698 SER365, PHE392, ARG391, ARG397, MET400,  
ASP402, GLU548, TYR549, LYS554, ARG711

-9.9 88.10 100.00 0.362186 Positive
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Figure 8 Structure of top hit compounds by in silico screening.
Notes: (A) DB04118 (N-Coeleneterazine), (B) DB04698 (N-(1,4-Dihydro-5H-
tetrazol-5-ylidene)-9-oxo-9H-xanthene-2-sulfonamide).
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availability in drug databases, virtual screening etc, were 

utilized to explore potential drug targets as well as to predict 

a drug that can block dnaE of deadly E coli O157:H7 strain. 

This in silico strategy can be used for screening novel and 

alternative targets in a way to design and develop new drugs 

against other emerging human pathogens.
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