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Abstract. Pancreatic duct adenocarcinoma (PDAC) is a highly 

malignant type of cancer with a low five‑year survival rate. 
Gene alterations are crucial to the molecular pathogenesis of 

PDAC. Therefore, the present study analyzed gene expres-

sion profiles to reveal genes involved in the tumorigenesis of 
PDAC. A total of eight gene expression profiles (GSE15471, 
GSE16515, GSE41368, GSE62165, GSE62452, GSE71729, 

GSE71989 and GSE91035) and a PDAC dataset were acquired 

from the Gene Expression Omnibus and The Cancer Genome 
Atlas (TCGA) database, respectively. Differentially expressed 
genes (DEGs) were screened using functional annotation, 

Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway analysis and 

protein‑protein interaction (PPI) network construction. A 
Cox proportional hazards model was then constructed and 
used to analyze the data. A total of 136 DEGs (67 up‑ and 69 
downregulated genes) were identified between PDAC tissues 
and normal tissues. The ‘extracellular matrix‑related’ genes 
were the most enriched in the GO term analysis. ‘Pancreatic 
secretion’, ‘phosphoinositide‑3‑kinase–protein kinase B/Akt 
(PI3K‑Akt) signaling pathway’, ‘protein digestion and absorp-

tion’ and ‘ECM‑receptor interaction’ were the most enriched 
categories in KEGG pathway analysis. Following PPI network 
construction, the 10 most significant genes [albumin, epidermal 
growth factor, matrix metalloproteinase (MMP) 9, epidermal 
growth factor receptor, fibronectin 1, MMP1, plasminogen 
activator inhibitor‑1, tissue inhibitor of metalloproteinase 1, 

plasminogen activator urokinase (PLAU) and PLAU receptor) 
exhibiting a high degree of connectivity, were identified as 
the hub genes likely to be associated with the pathogenesis of 
PDAC. In addition, a prognostic predictive system for PDAC, 
composed of five genes (laminin subunit γ 2, laminin subunit 
β 3, serpin family B member 5, amphiregulin and secreted 
frizzled related protein 4), was constructed. This was vali-
dated in the GSE62452 dataset (using 66 PDAC samples with 

outcome data) and TCGA PDAC dataset (using 146 PDAC 

samples with outcome data). In conclusion, the present study 
revealed potential hub genes involved in PDAC progression, 
providing directive significance for individualized clinical 
decision-making and molecular-targeting therapy in patients 

with PDAC.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly complex 
and malignant type of cancer in humans. It is the seventh leading 
cause of cancer‑associated mortality, and is expected to rise to 
the third due to its increasing incidence and poor prognosis (1). 
Despite considerable improvements in surgical, radiation and 
chemotherapeutic treatments, 80% of patients with PDAC 

miss the optimal period for effective systemic therapy due to 
a lack of symptoms, anesis or disease regression at the time 

of diagnosis (2). Hence, the five‑year overall survival rate for 
PDAC remains at 3‑5%. There is thus an urgent need to identify 
new biomarkers to improve the understanding of the molecular 
mechanisms involved in PDAC pathogenesis (3). Potential 
prognostic biomarkers and novel therapeutic targets may help to 
improve current poor treatment outcomes.

Microarrays have been widely used to identify more sensi-
tive and effective biomarkers for PDAC. Shen et al (4) reported 

that ribosomal protein genes nucleoporin 170, nucleoporin 
160 and heterogeneous nuclear ribonucleoprotein U may be 
useful as molecular markers for early diagnosis of the disease. 
Ger et al (5) reported that the fms related tyrosine kinase 3 

and poly(rC) binding protein 3 could potentially be used as 
prognostic biomarkers for pancreatic cancer. Another analysis 
considered dickkopf WNT signaling pathway inhibitor 1 and 
high mobility group AT‑hook 2 to be hub genes that are strongly 
associated with Wnt family member 3A and tumor protein 

Identification of potential hub genes associated with the 
pathogenesis and prognosis of pancreatic duct adenocarcinoma 
using bioinformatics meta‑analysis of multi‑platform datasets

YUFAN MA*,  YINQUAN PU*,  LI PENG,  XUJUAN LUO,  JIN XU,  YAN PENG  and  XIAOWEI TANG

Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 
Luzhou, Sichuan 646099, P.R. China

Received April 1, 2019;  Accepted September 27, 2019

DOI:  10.3892/ol.2019.11042

Correspondence to: Dr Yan Peng or Dr Xiaowei Tang, Department 

of Gastroenterology, The Affiliated Hospital of Southwest Medical 
University, 25 Taiping Street, Jiangyang, Luzhou, Sichuan 646099, 
P.R. China
E‑mail: 1806857826@qq.com
E‑mail: solitude5834@hotmail.com
*Contributed equally

Key words: pancreatic duct adenocarcinoma, Gene Expression 
Omnibus, The Cancer Genome Atlas, bioinformatics, meta‑analysis



MA et al:  IDENTIFICATION OF POTENTIAL HUB GENES IN PANCREATIC DUCT ADENOCARCINOMA6742

p53, respectively (6). In addition, KRAS, TP53, CDKN2A, 
SMAD4, RNF43, ARID1A, TGFbR2, GNAS, RREB1 and 
PBRM1 were identified as driver genes in PDAC (7). Variation 
in the significantly expressed genes associated with PDAC 
pathogenesis between different studies may be due to small 
sample sizes, the use of different microarray platforms and 
different statistical methods. To overcome these limitations, 
integrative meta‑analysis using different microarray platforms 
with larger sample sizes may prove to be a powerful bioin-

formatics tool, improving the accuracy and reliability of data 
analysis.

In the present study, multiple Gene Expression Omnibus 
(GEO) datasets containing a large number of samples were 
acquired from two different microarray platforms (Affymetrix 
and Agilent). The RobustRankAggreg (RRA) 1.1 package (8) 
in R is based on a statistical model that allows for the evalu-

ation of the significance of results. It can be used to identify 
differentially expressed genes (DEGs) across multiple datasets 
from different microarray platforms. By defining the rank 
vector for each gene, based only on the datasets where it is 
present, the results include DEGs that are not present in every 
dataset (9). Hence, the gene expression module was investi-
gated to reveal the genes influencing PDAC tumorigenesis.

Materials and methods

Selection and retrieval of microarray datasets. A total of 8 

gene expression profiles [GSE15471 (10), GSE16515 (11), 
GSE41368 (12),  GSE62165 (13),  GSE62452 (14), 

GSE71729 (15), GSE71989 (16) and GSE91035 (17)] from two 

platforms (Affymetrix and Agilent) were retrieved from the 
GEO (http://www.ncbi.nlm.nih.gov/geo/) database, using the 
keywords ‘pancreatic ductal adenocarcinoma’, ‘Homo sapiens’ 
and ‘microarray’. The selected microarray datasets met the 
following inclusion criteria: i) Expression profiling by array; 
ii) samples included human PDAC and corresponding adjacent 

or normal pancreatic tissue; iii) n>10; and iv) the gene expres-

sion profile is complete. A total of 8 microarray datasets were 
retrieved from two different microarray platforms. The data 
included 452 PDAC samples and 204 normal pancreatic tissue 

samples (Table I). For further validation, normalized datasets 
(fragments per kilobase of transcript per million mapped reads 
upper quartile) of 146 PDAC samples (with complete expres-

sion profiles and clinical prognoses) were retrieved from The 
Cancer Genome Atlas (TCGA) database (7).

Data pre‑processing and DEG analysis. Initially, log2 conversion 
and quantile normalization was performed on each individual 
GEO dataset. DEGs of each dataset were then screened using 
the limma package (http://bioinf.wehi.edu.au/limma) with 
R/Bioconductor 3.9 software (http://www.bioconductor.org/). 
The RRA package was used for gene integration analysis of the 

DEGs in the eight datasets. P<0.05 was considered to indicate 
a statistically significant result and a fold‑change (log‑scaled) 
of mean + 2SD was set as the threshold in the limma package. 
In the RRA package, an adjusted P<0.05 was considered to 
indicate a statistically significant difference.

Functional enrichment analysis. The functions of common 

DEGs were further analyzed using the clusterProfiler package 

(https://guangchuangyu.github.io/software/clusterProfiler) 
with R/Bioconductor software for functional enrichment 
analysis. This included the following gene ontology (GO) 
categories: Molecular function (MF), biological process (BP) 
and cellular component (CC), as well as enrichment analysis 

of the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways. P<0.05 was set as the threshold value for MF, BP 
and CC; and P<0.01 was set as the threshold value for KEGG 
analysis.

Protein‑protein interaction (PPI) network construction. In the 

present study, the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING; string‑db.org) database was used 
to construct the PPI network of common DEGs, which was 

then visualized using Cytoscape (3.7.1) software (18). The 
Cytoscape MCODE plug‑in was used to search for clustered 
sub‑networks, and the default parameters were as follows: 
Degree cutoff, ≥2; node score cutoff, ≥0.2; K‑core, ≥2; max 
depth, 100.

Prediction system construction. As the GSE62452 dataset and 

TCGA data contain patient survival information, they can be 
used as training and validation datasets, respectively. Univariate 
Cox proportional hazard analysis was applied to identify the 
prognosis-associated genes in GEO datasets (training set), 

using survival analysis in R, with P<0.05 set as the signifi-

cance threshold. Multivariate Cox regression analysis was then 
applied to further screen for factors associated with patient 

survival. Subsequently, a prediction system was constructed 
consisting of five signature prognostic genes [laminin subunit 
γ 2 (LAMC2), laminin subunit β 3 (LAMB2), Serpin family B 
member 5 (SERPINB5), amphiregulin (AREG) and secreted 
frizzled related protein 4 (SFRP4)], and was used to construct 
a risk score formula. Each patient's risk score was calculated 
and the median risk score was regarded as the cutoff point. 
Patients were divided into a high‑ and a low‑risk group, in 
accordance with their prognostic risk scores. Kaplan‑Meier 
(KM) analysis [with log‑rank test (Mantel‑Cox)] was then 
performed to calculate and compare the survival time between 
the two groups, with P<0.05 selected to indicate a significant 
difference. KM curves were constructed using the R ‘survival’ 
package. Finally, receiver operating characteristic (ROC) 
analysis was conducted using the R ‘survivalROC’ package to 
identify the sensitivity and specificity of the prediction system. 
The five aforementioned prognostic signature genes were 
applied to TCGA dataset (validation set) to verify whether 
they could effectively predict the prognosis of PDAC (19).

Results

Identification of DEGs. A total of 136 DEGs (67 up- and 69 

downregulated genes) were identified between PDAC tissues 
and normal tissues by analyzing eight gene expression profiles 
retrieved from the GEO database. Volcano plots of the gene 
expression profile data, and a heat map and histogram of DEGs 
across the datasets are displayed in Figs. 1‑3.

Functional enrichment analysis. To elucidate the functions of 

common DEGs, GO and KEGG pathway enrichment analyses 

were performed. The GO results determined that, in the MF 
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category, the upregulated genes were predominantly enriched 

in ‘extracellular matrix constituent’ and ‘glycosaminoglycan 
binding’, whilst the downregulated genes were mainly enriched 

in ‘serine‑type endopeptidase activity’, ‘serine‑type peptidase 
activity’ and ‘serine hydrolase activity’. In the BP category, the 
upregulated genes were mainly enriched in ‘ECM organization’ 

Table I. Gene expression profile data characteristics.

Author, Year Dataset Count Tumor Normal Platform Region (Refs.)

Badea et al, 2009 GSE15471 78 39 39 GPL570 Romania 10

Pei et al, 2009 GSE16515 52 36 16 GPL570 USA 11
Frampton et al, 2012 GSE41368 12 6 6 GPL6244 Italy 12

Janky et al, 2014 GSE62165 131 118 13 GPL13667 Belgium 13
Yang et al, 2014 GSE62452 130 69 61 GPL6244 USA 14
Moffitt et al, 2015 GSE71729 191 145 46 GPL20769 USA 15
Schmittgen, 2015 GSE71989 22 14 8 GPL570 USA 16

Schmittgen, 2016 GSE91035 40 25 15 GPL22763 USA 17 

Figure 1. Volcano plots of genes that are significantly different between pancreatic tumor and adjacent non‑tumor tissues. (A) GSE15471; (B) GSE16515; 
(C) GSE41368; (D) GSE62165; (E) GSE62452; (F) GSE71729; (G) GSE71898; (H) GSE91035. The x‑axis indicates the fold‑change (log‑scaled); the y‑axis 
indicates the P‑values (log‑scaled). Each symbol represents a different gene, and the red and blue symbols indicate upregulated and downregulated genes, 
respectively. P<0.05 was considered to be statistically significant and a fold change (log‑scaled) of mean + 2SD was set as the threshold value.
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and ‘extracellular structure organization’, whilst the downregu-

lated genes were enriched in ‘antimicrobial humoral response’ 
and ‘digestion’. In the CC category, the upregulated genes were 
mainly enriched in ‘ECM’ and ‘collagen‑containing ECM’, 
whilst the downregulated genes were not enriched. ‘Pancreatic 
secretion’, ‘phosphoinositide‑3‑kinase‑protein kinase B/Akt 
(PI3K‑Akt) signaling pathway’, ‘protein digestion and absorp-

tion’ and ‘ECM‑receptor interaction’ were the most enriched 
pathways in the KEGG pathway analysis. The results of the 
functional enrichment analysis are exhibited in Figs. 4‑6 and 
support the results of previous studies (20,21).

Hub gene identification using PPI network construction 

and modular analysis. A PPI network based on the DEGs 

was constructed using Cytoscape software and the STRING 

database (Fig. 7). The ten genes with the highest degree of 
connectivity [albumin (ALB), epidermal growth factor (EGF), 
MMP9, epidermal growth factor receptor (EGFR), fibronectin 
1 (FN1), matrix metalloproteinase (MMP) 1, plasminogen 
activator inhibitor‑1 (SERPINE1), tissue inhibitors of metallo-

proteinases (TIMP1), plasminogen activator urokinase (PLAU) 
and PLAU receptor (PLAUR)] were selected as the hub genes; 
two modules with MCODE scores>5 were selected from the 
PPI network (Fig. 7B and C). Coincidentally, Module 1 was 
composed of the 10 hub genes previously selected (Table II).

Construction of the prediction system. The prognostic predic-

tion system, composed of five signature genes (LAMC2, 

Figure 2. Heat map of the top 20 upregulated and downregulated DEGs. The gradient from green to red represents the change from down‑ to upregulation. 
DEGs, differently expressed genes.
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Figure 3. Histogram of the sources of the 136 DEGs. bar height represents the number of DEGs across multiple datasets linked by dots.

Figure 4. Gene ontology enrichment analysis of upregulated genes in pancreatic tumor compared with adjacent non‑tumor tissues. (A), Molecular function, (B), 
Biological process, (C), Cellular component.
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LAMB3, SERPINB5, AREG and SFRP4), was constructed 
using the survival information of 66 patients in the training 
set (GSE62452). The risk score formula for each patient was 
calculated as shown below: Risk score=(1.0656) x LAMC2 + 
(‑0.5804) x LAMB3 + (‑0.4488) x SERPINB5 + (0.3060) x 
AREG + (‑0.5294) x SFRP4. The area under the ROC curve 
was found to be 0.862, and consequently, specificity and 
sensitivity were both determined to be highest when the risk 
score was 0.960 (Fig. 8). The PDAC patients of the GSE62452 
dataset were divided into a high‑risk group (risk score, ≥0.960; 
n=33) and a low‑risk group (risk score, <0.960; n=33). The 
patients in the low‑risk group (45.5%; 95% CI, 30.1‑68.7%) had 
a significantly higher survival rate than those in the high‑risk 
group (48.0%; 95% CI, 33.5‑68.7%; P=4x10-6; Fig. 9A).

Validation of the prediction system. A dataset retrieved 
from TCGA, consisting of the clinical prognostic informa-

tion of 146 patients with PDAC, was used as an independent 

validation dataset for the prognostic prediction system. The 
individual risk score of each patient was calculated using 

the aforementioned formula. A risk score of 0.960 was used 
as the threshold and the patient samples were divided into 
high‑ and low‑risk groups (n=73 each). KM survival analysis 
showed that the high‑risk group (48.7%; 95% CI, 37.8‑62.7%) 
had significantly poorer OS scores than the low‑risk group 
(48.1%; 95% CI, 36.0‑64.4%; P=0.008; Fig. 9B).

Discussion

The pathogenesis of PDAC is extremely complex. Whilst there 
have been many studies on the biological mechanisms under-
pinning PDAC, the results are inconsistent and various aspects 
remain unclear. This could be attributable to the three following 
aspects: i) Small study sample sizes; ii) datasets retrieved 
from different platforms; and iii) different statistical analysis 
methods. However, using a combination of multiple datasets 
from different platforms, the present study aimed to improve 
the accuracy and reliability of these results. In the present 
study, eight PDAC datasets (GSE15471, GSE16515, GSE41368, 

GSE62165, GSE62452, GSE71729, GSE71989 and GSE91035) 

Figure 5. Gene ontology enrichment analysis of downregulated genes in pancreatic tumor compared with adjacent non‑tumor tissues. (A), Molecular function, 
(B), Biological process.
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from two platforms (Affymetrix and Agilent) were analyzed, 
and the RRA package was used to account for the differences 

between the platforms. Finally, a dataset from TCGA was used 
to verify the data and to further improve reliability.

A total of 136 DEGs were identified from the GEO datasets. 
These included 67 up- and 69 downregulated genes, which 

were differentially expressed in PDAC samples, compared 
with the normal controls.

Figure 7. PPI network of DEGs. The MCODE algorithm was applied to this network to identify neighborhoods where proteins were densely connected. the 
gradient from green to red represents the change from down to upregulation; two significant modules with a score>5.0 were selected. (A) PPI network of DEGs; 
(B) Module 1, MCODE score=8.182; and (C) Module 2, MCODE score=5.2. PPI, protein‑protein interaction; DEGs, differentially expressed genes.

Figure 6. Pathway analysis for differentially expressed genes between pancreatic tumor and adjacent non‑tumor tissues.



MA et al:  IDENTIFICATION OF POTENTIAL HUB GENES IN PANCREATIC DUCT ADENOCARCINOMA6748

GO enrichment analysis determined that the most significant 
enrichments in MF, BP and CC were related to the extracellular 
matrix (ECM), especially for the upregulated genes. For KEGG 
pathways analysis, ‘pancreatic secretion’, ‘PI3K‑Akt signaling 
pathway’ and ‘ECM‑receptor interaction’ were highly enriched. 
High enrichment of ECM related genes and pathways suggests 
that ECM regulation is closely associated with PDAC progression. 
The ECM is a complex, three‑dimensional structure composed 
of both structural and non‑structural proteins (22,23). It plays a 
fundamental role in facilitating cell differentiation, apoptosis, 

proliferation and migration (24). The ECM is also the most 
abundant component in the tumor microenvironment (TME), 
which profoundly influences the behavior of cancer cells (25). 
Furthermore, certain studies have suggested that alterations in the 
ECM can induce cell transformation and metastasis, promoting 
the development and progression of tumors (26,27). In the TME 
of PDAC, some ECM proteins, such as collagen, fibronectin 
and laminin, are significantly upregulated (28). Each of these 
proteins promotes the growth and invasion of PDAC cells (29‑32). 
Moreover, the results of the present study indicated LAMC2 and 
LAMB2 are significantly associated with PDAC prognosis.

Based on PPI network analysis of the common DEGs in 
the selected studies, the 10 most highly connected genes (ALB, 
EGF, MMP9, EGFR, FN1, MMP1, SERPINE1, TIMP1, PLAU 
and PLAUR) were screened and Module 1 is, coincidentally, 
composed of the 10 hub genes. Furthermore, FN1 and PLAU 
have previously been identified as hub genes in a similar 
study (10). Multiple studies have determined that these genes are 
associated with tumorigenesis and progression. For example, 
the FN1 gene encodes fibronectin, which is a major constituent 
of the ECM within the TME. The binding of FN1 to its receptor 
activates the FN1 signaling pathway in pancreatic cancer cells, 
and promotes tumor cell survival, invasion, metastasis and 
angiogenesis (33). The expression of fibronectin in pancreatic 
cancer cells is also associated with a low survival rate (34,35). In 
addition, FN1 participates in the progression of ovarian cancer 

by increasing the expression level of matrix metalloproteinase 
MMP‑9 (36). MMPs and TIMPs are important enzymes in the 
process of ECM degradation. Expression of the MMP‑9 protein 
is upregulated during the progression of various cancer types, 
including pancreatic cancer, and is directly involved in tumor 
cell migration, invasion, metastasis, tumor‑related inflammation 
and angiogenesis (37,38). Therefore, its expression is associated 
with malignant progression (39).

The MMP‑1 protein is one of the most widely expressed 
MMPs. It activates the G protein‑coupled receptor protease‑acti-
vated receptor‑1 (PAR1) and induces secretion of bioactive 
proteins (most prominently interleukin-8, growth-regulated 

oncogene-α and C-C motif chemokine ligand 2) to regulate tumor 

migration (40). TIMP‑1 enzyme is a natural inhibitor of MMPs, 
but it can also stimulate cell proliferation and prevent apoptosis, 
promoting cancer progression (41). The binding of TIMP1 to 
receptors on the cell surface activates the PI3K/Akt signaling 
pathway via Ras, and the EGF signal then induces TIMP1 
expression (42,43). High plasma TIMP1 levels may interact with 
EGFR signaling, and thereby reduce the anti‑tumor effects of 
EGFR inhibitors (44). The EGF and EGFR proteins are widely 
recognized for their role in numerous cancer types, including 
PDAC (45,46). Upon binding to EGF, EGFR forms homologous 
dimers, auto-phosphorylates and interacts with downstream 

factors to activate genes involved in cell proliferation, differen-

tiation, survival and migration (47,48). As such, inhibitors of the 
EGFR signaling pathway have received attention as potential 
therapeutic agents (49). Moreover, EGF‑induced activation of 
EGFR increases MMP‑9 expression levels through the activa-

tion of the PI3K/Akt pathway in patients with glioblastoma (50).
In the present study, the ALB gene showed the highest 

connectivity to other genes in Module 1A, and this gene 
encodes the most abundant protein found in human blood (51). 
Cachexia is expressed in <80% of patients with PDAC, and 
plasma albumin is often reduced (52,53). In the current study, 
it was speculated that besides digestive and absorption disor-

Figure 8. AUC for the GSE62452 dataset. ROC, receiver operating character-
istic; AUC, area under the curve.

Table II. Hub genes with high degree of connectivity.

Name MCODE cluster MCODE score Degree

FN1 Cluster 1 7.363636 20
ALB Cluster 1 7.363636 33
MMP1 Cluster 1 7.363636 16
TIMP1 Cluster 1 7.363636 14
MMP9 Cluster 1 7.363636 23
SERPINE1 Cluster 1 7.363636 13
PLAUR Cluster 1 7.363636 12
PLAU Cluster 1 7.363636 11
EGF Cluster 1 7.363636 26
EGFR Cluster 1 7.363636 23 

FN1, fibronectin 1; ALB, albumin; MMP, matrix metallopeptidase; 
TIMP1, tissue inhibitor of metalloproteinases 1; SERPINE1, serpin 
family E member 1; PLAUR, plasminogen activator urokinase 
receptor; PLAU, plasminogen activator urokinase; EGF, epidermal 
growth factor; EGFR, epidermal growth factor receptor.
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ders, cachexia may also be related to the low expression of 
ALB. Nevertheless, investigations into the regulatory genetic 
mechanism of ALB in PDAC have rarely been reported. PLAU, 
PLAUR and SERPINE1 represent the main components of 
the system. This system not only participates in cell signaling 
pathways (such as angiogenesis, cell growth, cell adhesion and 

migration) to influence cancer‑related processes, but also in the 
disruption of the ECM through various pathways, such as the 
downregulation of the tumor suppressor gene p53, interference 

of Hoxa5 function, inhibition of the p38 pathway and activa-

tion of mitogen‑activated protein kinase 1 (54‑57).
An accurate and credible prognostic prediction system 

may help to better evaluate patient prognosis, provide a basis 
for clinical decision-making and indicate new therapeutic 

targets. Of the five genes associated with prognosis in the 
present study, LAMC2 and SER5 have also been reported to 
be prognosis‑associated genes in PDAC (6,10). The LAMC2 
and laminin subunit α 3 proteins are important components 

of laminin 5. Through interaction with cell surface receptors, 
they participate in a variety of biological processes, including 
cell adhesion, differentiation, tumor angiogenesis and metas-

tasis. The upregulation of LAMC2 is considered an indicator 
of adverse prognosis and the high metastatic potential of 
multiple cancer types, including colorectal cancer and lung 

adenocarcinoma (58). LAMC2 gene‑silencing has been shown 
to significantly inhibit cell migration and invasion in head and 
neck squamous cell carcinoma cells (59). The LAMB3 protein 
regulates epithelial mesenchymal transition-related proteins 

and MMP‑9 via the activation of the Akt signaling pathway, 
to promote the invasion and metastasis of tumors in papillary 
thyroid cancer (60). The important role of LAMA3 in the 
metastasis of lung adenocarcinoma has also been reported (61).

SERPINB5 is regarded as a tumor suppressor and an 
important senescence‑associated biomarker. Notably, it is 
expressed in PDAC, but not in healthy pancreatic tissue (62). 
There is abundant evidence that SERPINB5 plays an onco-

genic and pro-metastatic role (63,64), and is associated with 

the prognosis of patients with PDAC (62).

AREG is a ligand of EGFR and is overexpressed in various 
cancer tissues. It has been demonstrated that high AREG 
expression can be used as an independent prognostic indicator 
of poor overall survival in patients with PDAC, and there is a 
significant association between AREG/EGFR co‑expression 
and poor tumor differentiation (65). The AREG protein 
has been clinically indicated as a prognostic and predictive 
biomarker, and numerous novel strategies have been developed 
to disrupt AREG‑mediated oncogenic pathways (66).

SFRP4 is a Wnt‑signaling antagonist. Due to its pro‑apop-

totic properties, SFRP4 provides axon‑guidance information 
and functions as a tumor suppressor in multiple tissue types. 
Highly methylated SFRP4 induces transcriptional silencing, 
which activates abnormal Wnt signaling, leading to tumorigen-

esis and tumor progression (67). Moreover, SFRP4 monotherapy 
(or in combination with chemotherapy) can inhibit prolifera-

tion, reduce cell survival and initiate apoptosis in cancer stem 
cells in breast, prostate and ovarian cancer cell lines. This 
increases cell sensitivity to chemotherapy, amplifying the treat-
ment effect (68). However, the mechanism of SFRP4 in PDAC 
remains poorly characterized.

Certain limitations of the present study should be noted. 
Firstly, the effects of certain patient and disease characteristics 
(tumor grade/stage, sex, age and race) on gene expression were 
not accounted for. Secondly, the GEO and TCGA data were 
obtained from public databases, and consequently, evaluation 
of data quality was challenging. Thirdly, variation in the accu-

racy of the prediction system for different molecular subtypes 
of PDAC has not been investigated due to a lack of consensus 
on the clinical classification of different molecular subtypes. 
Fourthly, TCGA dataset was used to validate 136 DEGs identi-
fied in the meta‑analysis of the GEO datasets, but the results 
are not as similar as anticipated. This could be due to the small 
sample size of normal tissues in TCGA dataset. Finally, analysis 
was performed on gene expression databases; further molecular 
experimentation is required to validate the results.

In conclusion, the present study confirmed certain DEGs 
that were previously indicated in similar studies, and has also 

Figure 9. Kaplan‑Meier survival curves of (A) GSE62452 and (B) The Cancer Genome Atlas.
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identified a set of genes that were not discovered in individual 
analyses. Therefore, this technique should be considered 
useful for the further analysis of heterogeneous expression 
datasets, improvement of DEG recognition techniques and 
the discovery of new biomarkers for PDAC diagnosis or thera-

peutic targeting. Furthermore, the present study identified 10 
hub genes that may be involved in the pathogenesis of PDAC 
using multi‑platform, multi‑gene expression profile datasets and 
bioinformatics meta‑analysis. In addition, a reliable predictive 
system, composed of five genes, for determining the prognosis 
of patients with PDAC has been constructed. The results of 
the current study may help to guide individualized clinical 
decision‑making and future molecular‑targeted therapies.
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