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Introduction: Essential thrombocytosis (ET) is a group of myeloproliferative neoplasms 
characterized by abnormal proliferation of platelet and megakaryocytes. Research on potential 
key genes and novel regulatory markers in essential thrombocythemia (ET) is still limited.
Methods: Downloading array profiles from the Gene Expression Omnibus database, we identi-
fied the differentially expressed genes (DEGs) through comprehensive bioinformatic analysis. GO, 
and REACTOME pathway enrichment analysis was used to predict the potential functions of 
DEGs. Besides, constructing a protein–protein interaction (PPI) network through the STRING 
database, we validated the expression level of hub genes in an independent cohort of ET, and the 
transcription factors (TFs) were detected in the regulatory networks of TFs and DEGs. And the 
candidate drugs that are targeting hub genes were identified using the DGIdb database.
Results: We identified 63 overlap DEGs that included 21 common up-regulated and 42 common 
down-regulated genes from two datasets. Functional enrichment analysis shows that the DEGs 
are mainly enriched in the immune system and inflammatory processes. Through PPI network 
analysis, ACTB, PTPRC, ACTR2, FYB, STAT1, ETS1, IL7R, IKZF1, FGL2, and CTSS were 
selected as hub genes. Interestingly, we found that the dysregulated hub genes are also aberrantly 
expressed in a bone marrow cohort of ET. Moreover, we found that the expression of CTSS, 
FGL2, IKZF1, STAT1, FYB, ACTR2, PTPRC, and ACTB genes were significantly under- 
expressed in ET (P<0.05), which is consistent with our bioinformatics analysis. The ROC 
curve analysis also shows that these hub genes have good diagnostic value. Besides, we identified 
4 TFs (SPI1, IRF4, SRF, and AR) as master transcriptional regulators that were associated with 
regulating the DEGs in ET. Cyclophosphamide, prednisone, fluorouracil, ruxolitinib, and lena-
lidomide were predicted as potential candidate drugs for the treatment of ET.
Discussion: These dysregulated genes and predicted key regulators had a significant rela-
tionship with the occurrence of ET with affecting the immune system and inflammation of 
the processes. Some of the immunomodulatory drugs have potential value by targeting 
ACTB, PTPRC, IL7R, and IKZF1 genes in the treatment of ET.
Keywords: essential thrombocythemia, hub genes, regulatory markers, candidate drugs, 
bioinformatics analysis

Introduction
Essential thrombocythemia (ET) belongs to a class of BCR/ABL negative myelo-
proliferative neoplasm (MPN) that is characterized by unexplained proliferation of 
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megakaryocytes in the bone marrow.1 Generally speaking, 
the increased platelet is natural to be ignored by patients 
due to the lack of typical clinical characters and could 
result in persistent high platelet counts, even cause an 
embolism. However, the pathogenesis of the increased 
number of megakaryocytes is still unclear.2 When throm-
botic complications, bleeding, and leukemic transforma-
tion occur, which could severely affect the patient’s quality 
of life.3 In recent years, targeted therapeutic drugs are 
being explored as a mono-or combination therapy in this 
field, such as ruxolitinib, pacritinib, fedratinib.4 Although 
it seems that some existing researches focus on ET patho-
genesis, there still limited treatment is available on ET; 
also, the mechanism of ET is complicated, and more 
genetic mutations involved.5,6 Thus, identifying molecular 
biomarkers associated with ET is crucially essential for 
personalized therapy.

Gene chip is a new nucleic acid analysis and detection 
technology, and the relevant analysis results have been stored 
in public databases.7 Therefore, gene expression profiling is 
an appropriate application field of gene chip technology, and 
integrating and re-analyzing these genomic data to identify-
ing specific biomarkers that are closely related to the disease 
provides new avenues.8 Recently, with the massive genera-
tion of tumor sequencing data, bioinformatics is developing 
rapidly in hematological malignancies.9 Gene Expression 
Omnibus (GEO) database serves as a public gene expression 
profile repository for high-throughput experimental data, and 
this allows us to comprehensively clarify the pathogenesis of 
ET from extensive data analysis at the multi-gene level.10 In 
this study, we will thoroughly analyze genomic data in more 
detail to explore potential biological therapeutic targets.

Materials and Methods
Microarray Data Analysis and DEG 
Identification
The gene expression profiles were obtained from The 
National Center for Biotechnology Information-Gene 
Expression Omnibus Data Sets (NCBI-GEO Datasets, 
https://www.ncbi.nlm.nih.gov/gds/). The GSE61629 expres-
sion data was based on the GPL570 platform, which uses 
HG-U133_Plus_2 Affymetrix Human Genome U133 Plus 
2.0 arrays and includes 54 total RNA samples from whole 
blood [21control subjects, 8 ET patients, 21 polycythemia 
vera (PV) patients, 4 primary myelofibrosis (PMF) 
patients].11 The GSE124281 expression data was based on 
the GPL10558 platform, which profiling by uses Illumina 

HumanHT-12 V4.0 expression bead chip and includes 22 
RNA samples from whole blood (8 control subjects, 5 ET 
patients, 9 PMF patients). Another dataset, GSE123732, was 
used as an independent cohort for validating the results. The 
expression data of GSE123732 was based on the GPL10558 
Illumina HumanHT-12 V4.0 expression bead chip platform 
and contains 6 RNA samples from bone marrow mononuc-
lear cells (3 ET patients and 3 healthy individuals). In this 
study, the raw data from Affymetrix were processed using the 
robust multiarray (RMA) method for background correction, 
normalization quality control, and gene expression index 
summarization in the “Affy” package.12 The raw data from 
Illumina were processed using the “Lumi,”13 “org.Hs.eg. 
db”,14 and “Limma”15 packages from Bioconductor in the 
R program (Version 3.6.2) were used to annotate the micro-
array data and identify DEGs between patients with ET and 
control subjects. Genes with the absolute value of |log2FC| 
>0.5 and P < 0.05 were used as the cut-off criteria of DEG 
analysis. The DEGs data were processed by “pheatmap”16 

and “ggrepel”17 packages in the R program to draw 
a heatmap and volcano plot of the significantly changed 
genes. Venn diagrams were used to show up-regulated com-
mon genes, down-regulated common genes, and up- 
regulated versus down-regulated common genes.

Functional Enrichment Analysis of DEGs
The Gene Ontology (GO) and the pathway enrichment 
analysis of DEGs were carried out using the 
ClusterProfiler package of the R program (Version 
3.6.2).18 GO terms enrichment analysis include biological 
process (BP), molecular function (MF), cellular compo-
nent (CC). The pathway analysis was carried out using 
REACTOME (http://www.reactome.org) online database, 
and P-value <0.05 was considered the cut-off criterion.

Prediction of the Master Transcription 
Factors (TFs) Significantly Regulating the 
DEGs
To predict master TFs that are remarkably associated with the 
regulating of DEGs, we have utilized the iRegulon plugin of 
Cytoscape software (version 3.8.0) to detect regulons from all 
DEGs.19 For this purpose, we used an extensive collection of 
TF motifs and a large collection of ChIP-seq tracks. The 
iRegulon method depends on a ranking-and-recovery system 
where all genes of the human genome are scored by a motif 
discovery step integrating the clustering of binding sites within 
cis-regulatory modules (CRMs) and the potential distal 
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location of CRMs upstream or downstream of the transcription 
start site (TSS ±10 kb). The recovery step calculates the nor-
malized enrichment score (NES) of TFs for each set of genes, 
input for each of the individual analyses, leading to the pre-
diction of the TFs based on NES and their putative direct target 
genes which exist in the input lists. This method optimizes the 
association of TFs to motifs using both explicit annotations 
and predictions of TF orthologs and motif similarity. 
A transcription factor normalized enrichment score was com-
puted for each group where a normalized enrichment score > 
4.0 corresponds, and the maximum false discovery rate (FDR) 
on motif similarity set as 0.001.

Construction and Analysis of Protein– 
Protein Interaction (PPI) Network
The network of predicted associations for DEGs was 
searched through the STRING online database 
(STRING, http://string-db.org, version 11.0).20 DEGs 
with a Combined Score ≥0.4 was set as the cut-off 
criterion to construct the PPI network, and then the PPI 
network was visualized Cytoscape software (version 
3.8.0).21 The Molecular Complex Detection (MCODE) 
plugin of Cytoscape software was used to detect the 
functional clusters of the PPI network,22 cluster finding 
parameters sets as Node Score Cutoff=0.2; K-Core= 2; 
and Max.Depth= 100. Then the top 10 Hub genes were 
filtered from the results of the CytoHubba plugin of 
Cytoscape software,23 in this work, and we ranked hub 
nodes by the Maximal Centrality Clique (MCC) method.

Expression Level Differentially Expressed 
Hub Genes in a Bone Marrow Cohort of ET
The expression levels of top hub genes were further inves-
tigated using an independent cohort (GSE123732) associated 
with ET. We downloaded this dataset from NCBI that con-
tains the ET patients with healthy controls (n=6). We used 
ET patients with matched healthy controls for validating our 
findings. We employed the “limma” package in the 
R program from the Bioconductor project (http://www.bio 
conductor.org/) for identifying differential expression of sig-
nificant hub genes in ET. Hub genes with |log2FC| >0.50 and 
P < 0.05 were considered as statistically significant.

qRT-PCR Verify the Expression Level of 
Hub Genes in the Clinical Samples
To clarify whether the expression profile of key genes 
also had consistent results in our clinical samples, we 

further validated the expression levels of hub genes in 
peripheral blood from 10 ET patients (diagnosed accord-
ing to the WHO 2016 diagnostic criteria, including five 
patients with JAK2 V617F mutation) using qPCR. Total 
RNA was isolated from 1 mL of whole blood using 
Invitrogen Trizol (Carlsbad, CA, USA), followed by stan-
dard phenol-chloroform extraction. Complementary DNA 
(cDNA) was quantified using a reverse transcription kit 
(K1622, Thermo Fisher Scientific, USA), and the expres-
sion levels of hub genes were performed using SYBR 
Green Master Mix (SYBR GREEN, Beijing, China). The 
housekeeping gene GAPDH was used as an internal 
control. The primers were synthesized by Shanghai 
Biotechnology Co., Ltd (Table 1). qRT-PCR was per-
formed on ViiATM 7 system software (Thermo Fisher 
Scientific, ABI7500, USA). The results were normalized 
to the expression of GAPDH and expressed as fold 
change (2−ΔΔCT). The qRT-PCR experiment on each clin-
ical sample with three biological replicates. Peripheral 
whole blood from 10 anonymous healthy volunteers was 
used as control samples.

ROC Curve Analysis of Hub Genes
The receiver operating characteristic (ROC) curve was 
applied to examine the diagnostic value of differential 

Table 1 The Primers for qRT-PCR

Target Sequence (5ʹ - 3ʹ)

CTSS (human) -RT-F AAGCACAGGGACACAAAGAGGAATC

CTSS (human) -RT-R TTGATGAAGAGCAGCCAGTGATGTAG

FGL2 (human) -RT-F CACTCTGTTCATTCCTCCAGGTATTCG

FGL2 (human) -RT-R GTGTAGCATAAGAACCTAGCCGTCAG

IKZF1 (human) -RT-F GAACCTGCTGCTGCTCTCCAAG

IKZF1 (human) -RT-R GCTGCTCCTCGTTGTTGCTCTC

IL7R (human) -RT-F TTAAAGGCTTCTGGAGTGAATGGAGTC

IL7R (human) -RT-R CCAAGATGACCAACAGAGCGACAG

ETS1 (human) -RT-F TGAAGGCAAAGGAAACTAAGGAAGGAG

ETS1 (human) -RT-R TCACAACCAGCAGAAAGATGACTACC

STAT1 (human) -RT-F CTGTGCGTAGCTGCTCCTTTGG

STAT1 (human) -RT-R CTGAAGTTCGTACCACTGAGACATCC

FYB (human) -RT-F CGGAGTTACCTAGCGGACAATGATG

FYB (human) -RT-R GCACCTAATGAACACAGCAGAATGAC

ACTR2 (human) -RT-F TGGTAGACTCTGGAGATGGTGTGAC

ACTR2 (human) -RT-R TCCTCGCAACAGAAGTAGCTTGATAAG

PTPRC (human) -RT-F GGAGTCTGATGTTCAAGAGCAGGAAG

PTPRC (human) -RT-R GCAGGCACAAGAAGGTAGGAGAAG

ACTB (human) -RT-F GCAGAAATGGGATGGAAAATCAACC

ACTB (human) -RT-R ATGCTCTCTCATAAACTCTCGTGGA

GAPDH (human) -RT-F AGAAGGCTGGGGCTCATTTG

GAPDH (human) -RT-R AGGGGCCATCCACAGTCTTC
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hub genes in mRNA expression for distinguishing control 
subjects from ET patients. The statistical analysis and 
visualization were performed using GraphPad Prism 8.0 
software (version 8.3.0). The hub genes with an area under 
the ROC curve (AUC)≥0.5 consider significant sensitivity 
and specificity, and 0.8≤AUC≤1.0 indicates that hub genes 
may have remarkable diagnostic value.

Identification of Food and Drug 
Administration (FDA)-Approved 
Drug-Hub Gene Interaction
We identified the potential candidate drugs that target the 
differentially dysregulated hub genes by using the 
DGIdb.24 DGIdb collects drug-gene interaction data from 
30 disparate sources, including ChEMBL, DrugBank, 
Ensembl, NCBI Entrez, PharmGKB, PubChem, Clinical 
Trial Databases, and literature in NCBI PubMed. The 
drug-gene interactions supported by at least one database 
and PubMed reference were identified. We selected the 
only drugs that have been approved by the FDA.

Results
Identification of Differentially Expressed 
Genes in ET
For identifying DEGs in MPNs, we obtained gene 
expression data from three datasets of patients with 
Essential Thrombocythemia and healthy controls. 
A total of 864 DEGs were identified from GSE124281, 
and 717 DEGs were identified from GSE61629, respec-
tively. It should be noted that the datasets GSE124281 
and GSE61629 were both include ET, PV, and PMF 
samples, so we have further selected expression profil-
ing before treatment in ET patients and healthy controls 
from the raw data. Expectedly, we got very few genes 
between up and down groups. Figure 1A and B show 
the heatmap and volcano plot of DEGs; these DEGs 
were well clustered between ET patients and healthy 
controls. After that, the Venn diagram in R language 
was used to identify the 63 overlapping DEGs between 
two gene expression profiles. Among 63 DEGs, we 
identified 21 common up-regulated and 42 common 
down-regulated genes, as well as up-regulated versus 
down-regulated common genes between two gene 
expression profiles (Figure 1C).

GO Analysis and Function Enrichment of 
DEGs
The results of GO analysis demonstrated that biological 
processes (BP) of DEGs are mainly enriched in the neutro-
phil degranulation, neutrophil activation, and mediated 
involved in neutrophil-mediated immune response, regula-
tion of hemopoiesis, receptor signaling pathway via STAT, 
and interleukin-6-mediated signaling pathway (Table 2, 
Figure 2A). For cellular component (CC), GO analysis 
results showed that the DEGs were primarily enriched in 
the focal adhesion and cell-substrate junction (Table 2, 
Figure 2B). Regarding molecular function (MF), the DEGs 
are mainly enriched in RNA polymerase II-specific DNA- 
binding transcription factor binding and DNA-binding tran-
scription factor binding (Table 2, Figure 2C). Besides, the 
most significant pathways identified through REACTOME 
pathway analysis were present in Table 3, and the results 
have shown that the common DEGs were mainly related to 
the immune system, such as innate immune system, neutro-
phil degranulation, and interleukin-6 signaling.

Identification of TFs is Significantly 
Associated with the Overlap DEGs
We identified four TFs: SPI1, IRF4, SRF, and AR as master 
transcriptional regulators that are associated with regulating 
the DEGs in ET. Furthermore, we identified 8 (GTF2A1, 
TEAD4, E2F3, MYB, SP9, GATA2, CEBPA, IKZF2) and 
6 (SPIB, FLI1, SPI1, ELK1, LEF1, CREB3) TFs for the up- 
regulated and the down-regulated genes in ET, respectively. 
The master TFs associated with the DEGs were displayed in 
the regulatory networks. In the networks, TEAD4 (TEA 
Domain Transcription Factor 4) and MYB (MYB Proto- 
Oncogene, Transcription Factor) both target 11 up- 
regulated genes (Figure 3A). SPI1(Spi-1 Proto-Oncogene, 
Hematopoietic Transcription Factor) and SPIB (Spi-B 
Transcription Factor) target 26 and 23 down-regulated 
genes separately (Figure 3B). Besides, IRF4 (Interferon 
Regulatory Factor 4, Transcription Factor) targets 35 up 
and down-regulated genes (Figure 3C). The results of TFs 
prediction will provide insights into the development and 
pathogenesis of ET.

PPI Network Analysis and Hub Gene 
Identification
Based on the STRING database (version 11.0), we con-
structed a PPI network reflecting the functional association 
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Figure 1 Identification of DEGs in two datasets (GSE61629 and GSE124281). (A) Heatmap of the top 50 DEGs in GSE621629 and GSE124281 datasets, respectively. (B) 
Volcano plot of DEGs in GSE61629 and GSE124281 datasets. Red and blue plots represent genes with [logFC]>0.5 and P<0.05, and black plots represent genes with no 
significant difference. Furthermore, the green plots represent up-regulated and down-regulated genes with [logFC]>1 and P<0.05, and the labeled genes represent these 
genes with [logFC]>1.5 and P<0.05. (C) Venn diagram of commonly changed DEGs in the two datasets. (including 22 common up-regulated genes, 41 common-down- 
regulated genes, six genes have interacted between GSE124281 up-regulated DEGs and GSE61629 downregulated DEGs, four genes have interacted between GSE61629 up- 
regulated DEGs GS124281 downregulated DEGs). DEGs, differentially expressed genes. DEGs, differentially expressed genes.
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between DEGs and visualized the network analysis results 
in Cytoscape software (version 3.8.0) with 33 nodes and 
54 edges, as shown in Figure 4. Then, we identified two 
clusters in the PPI network by utilizing the MCODE 
application in Cytoscape. Cluster 1 consists of four nodes 
and six edges, including FYB, FGL2, PTPRC, CTSS 
(Figure 5A). Cluster 2 contained three nodes and three 
edges, including CD93, STOM, CMTM6 (Figure 5B). 
The top 10 hub genes inside the network were identified 
with the CytoHubba plugin, including ACTB, PTPRC, 
ACTR2, FYB, STAT1, ETS1, IL7R, IKZF1, FGL2, and 
CTSS (Table 4, Figure 5C).

Differentially Expressed Hub Genes are 
Dysregulated in a Bone Marrow Cohort 
of ET
To investigate the hub genes expression in bone marrow, 
we re-analyzed the significant hub genes in an independent 
cohort. Interestingly, we found that the top ten down- 
regulated hub genes (ACTB, PTPRC, ACTR2, FYB, 
STAT1, ETS1, IL7R, IKZF1, FGL2, and CTSS) were also 
down-regulated in a bone marrow cohort containing ET 
and healthy samples (Figure 6). It indicates that these 
aberrantly expressed hub genes may have a vital contribu-
tion to the ET. ACTB, PTPRC, ACTR2, FYB, STAT1, IL7R, 

Table 2 Gene Ontology Term Enrichment Analysis of DEGs in Essential Thrombocythemia

Ontology Description Genes Ratio P-value Genes Found

BP Neutrophil degranulation 10/57 1.84E-06 STOM/PNP/FGL2/IQGAP1/CTSS/LYZ/CD93/ 
CMTM6/ACTR2/PTPRC

BP Neutrophil activation involved in the immune 
response

10/57 1.95E-06 STOM/PNP/FGL2/IQGAP1/CTSS/LYZ/CD93/ 
CMTM6/ACTR2/PTPRC

BP Neutrophil activation 10/57 2.34E-06 STOM/PNP/FGL2/IQGAP1/CTSS/LYZ/CD93/ 
CMTM6/ACTR2/PTPRC

BP Neutrophil mediated immunity 10/57 2.38E-06 STOM/PNP/FGL2/IQGAP1/CTSS/LYZ/CD93/ 

CMTM6/ACTR2/PTPRC

BP Positive regulation of hemopoiesis 6/57 2.08E-05 PNP/ETS1/IL7R/LEF1/STAT1/PTPRC

BP Interaction with symbiont 4/57 8.95E-05 IFI27/STOM/GPX1/LEF1

BP Regulation of hemopoiesis 8/57 9.16E-05 PNP/FGL2/PRKCB/ETS1/IL7R/ LEF1/STAT1/ 

PTPRC

BP Interleukin-6-mediated signaling pathway 3/57 9.32E-05 CBL/IL6ST/STAT1

BP Negative regulation of immune response 5/57 9.36E-05 GPX1/FGL2/IL7R/CNOT7/ PTPRC

BP Receptor signaling pathway via STAT 5/57 0.000163942 IL6ST/IL7R/CNOT7/STAT1/ PTPRC

BP Regulation of cell-cell adhesion 7/57 0.000212952 PNP/FGL2/IL6ST/ETS1/IL7R/ LEF1/ PTPRC

CC Focal adhesion 8/59 2.62E-05 FHL2/ITGB5/CBL/IQGAP1/ ACTB/ACTR2/ 

YWHAB/PTPRC

CC Cell-substrate junction 8/59 2.96E-05 FHL2/ITGB5/CBL/IQGAP1/ ACTB/ACTR2/ 

YWHAB/PTPRC

MF RNA polymerase II-specific DNA-binding 

transcription factor binding

7/57 2.89E-05 IFI27/FHL2/PRKCB/ACTB/ LEF1/ RBL2/STAT1

MF DNA-binding transcription factor binding 7/57 0.000128279 IFI27/FHL2/PRKCB/ACTB/ LEF1/RBL2/STAT1

Abbreviations: BP, biological processes; CC, cellular component; MF, molecular function.
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Figure 2 GO term enrichment analysis of DEGs. (A) Biological process. (B) Cellular component. (C) Molecular function. DEGs, differentially expressed genes. GO, Gene 
Ontology.
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and FGL2 dysregulated hub genes are also downregulated 
in a bone marrow cohort of ET (P< 0.05). It indicates the 
consistency of our findings in this study. However, three of 
the down-regulated hub genes (ETS1, IKZF1, and CTSS) 
showed similar expression differences between ET and 
healthy samples but not significant (P> 0.05). This result 
Indicating that the hub genes are also deregulated in the 
bone marrow of ET patients.

Results of Expression Validation of Hub 
Genes in Clinical Samples
By further validating the hub genes in 20 clinical samples 
(10 ET vs 10 healthy individuals), we found that the expres-
sion of 8 of hub genes (CTSS, FGL2, IKZF1, STAT1, FYB, 
ACTR2, PTPRC, and ACTB) was significantly down- 
regulated in the ET samples (P<0.05), which was consistent 
with our analysis. However, two of the hub genes (IL7R and 

Table 3 Signaling Pathway Enrichment Analysis of DEGs in REACTOME

Pathway Name Genes Gene Ratio P-value FDR

Innate Immune System 11 0.0099 1.64E-08 2.52E-05
Neutrophil degranulation 8 0.0167 3.68E-08 2.82E-05

Interleukin-6 signaling 3 0.2727 1.85E-07 9.46E-05

Interleukin-6 family signaling 3 0.125 2.25E-06 8.62E-04
MAP2K and MAPK activation 3 0.075 1.09E-05 2.94E-03

Cell-Cell communication 4 0.0308 1.15E-05 2.94E-03

Signaling by moderate kinase activity BRAF mutants 3 0.0667 1.55E-05 3.39E-03
Clathrin-mediated endocytosis 4 0.0276 1.77E-05 3.39E-03

Figure 3 Regulatory networks of the TFs and their targeted DEGs identified by iRegulon. (A) Regulatory network of the TFs and their targeted up-regulated genes. (B) 
Regulatory network of the TFs and their targeted down-regulated genes. (C) Regulatory network of the TFs and their targeted up and down-regulated genes. The green 
color octagon indicates TFs, the purple color oval indicates the DEGs regulated by TFs, and the blue color oval indicates that TFs do not restrict them. TFs, transcriptional 
regulators; DEGs, differentially expressed genes.
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ETS1) were significantly up-regulated (P<0.05) in both ET 
samples (Figure 7). This result further indicates that these 
hub genes, which we identified in our previous analysis, 
might be recognized as potential key genes in ET.

The Expression Levels of Hub Genes are 
Associated with the Diagnostic Value in 
ET
To evaluate the diagnostic value of the dysregulated hub 
genes, we analyzed the correlation of hub gene expres-
sion levels. The performance of these ten hub genes in 
the ET group and healthy individuals was analyzed by 
the receiver operating characteristic (ROC) curve. The 
results show that the expression of these hub genes 
showed excellent diagnostic value between ET patients 
and healthy. All the hub genes showed a significant 
sensitivity and specificity between ET patients and 
healthy [area under the ROC curve (AUC)≥0.5] 
(Figure 8). ROC curves showed their high diagnostic 
value as biomarkers for ET (such as ACTB AUC: 0.975 
in GSE 124281 and 0.768 in GSE61629; PTPRC AUC: 
1.0 in GSE 124281 and 0.768 in GSE61629; STAT1 
AUC: 0.8 in GSE 124281 and 0.5 in GSE61629; EST1 
AUC: 0.8 in GSE 124281 and 0.893 in GSE61629; CTSS 
AUC: 0.975 in GSE 124281 and 0.774 in GSE61629). 
This result indicating the diagnostic significance of these 
aberrantly expressed hub genes in ET patients, and these 
genes may be promising targets for developing diagnos-
tic markers to manage patients with ET.

Identification of Candidate Drugs 
Targeting Hub Genes
We screened all ten hub genes for drug-gene interactions 
by using DGIdb, and we identified FDA-approved drugs 
that potentially target the protein products of four hub 
genes (PTPRC, ACTB, IL7R, IKZF1). Still, the interaction 
types between target genes and drugs are uncertain 
(Table 5). The results showed that cyclophosphamide, 
prednisone, fluorouracil, ruxolitinib, and lenalidomide 
both had been identified as potential medicine for ET 
treatment. However, as far as we know, the inhibitory 
effects of ACTB, PTPRC, IL7R, and IKZF1 have not 
been tested for the treatment of ET. Our data suggest that 
these genes may be promising targets for developing antic-
ancer drugs to treat patients with ET.

Discussion
The Philadelphia chromosome-negative myeloproliferative 
neoplasms (MPNs) are a group of clonal hematopoietic 
stem cell disorders. As far as we know, there are signaling 
pathways that are highly sensitive to cytokines and aber-
rantly activated in MPNs. However, the molecular 
mechanisms leading to the alteration of these signaling 
pathways are still unknown.25 Since 2005, the discovery 
of mutations in JAK2, CALR, and MPL genes has changed 
the classification and diagnosis of BCR/ABL-negative 
MPN. The JAK2V617F positive variations are in 50–60% 
of ET patients,26,27 MPL gene mutations are in 3%-5%, 
and CALR mutations are in 60–88% of JAK2 V617F 
mutation-negative ET patients.28,29 It is noteworthy that 

Figure 4 PPI network of DEGs in the STRING database. Based on the STRING online database, the DEGs PPI network was constructed containing 63 DEGs. The different 
colors in the figure indicate the connectivity of genes, and the deep color shows the genes with the highest connectivity in the PPI network. PPI, protein–protein interaction; 
DEGs, differentially expressed genes.
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Figure 5 Clusters and hub genes identified in the PPI network. (A) Cluster 1 in the PPI network. The orange nodes represent the screened genes in cluster 1. (B) Cluster 2 
in the PPI network. The orange nodes represent the screened genes in cluster 2. (C) Ten hub gene identification in a PPI network based on the MCC method. The dark (red) 
nodes show the genes with higher MCC scores in the PPI network. PPI, protein–protein interaction; MCC, maximal centrality clique.
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there are still 10–15% of patients with triple-negative gene 
mutations, and their genetic abnormalities are unknown. 
Recently, with the development of second-generation 
sequencing (NGS) and other whole-genome analysis tech-
niques, many different gene mutations have been found in 
MPNs, including TET2, DNMT3A, IDH1/2, TP53, and 
EZH2.30

Nevertheless, these gene mutations also exist in other 
diseases, which are not specific to MPNs, and have a low 
frequency of mutations (< 10%).31 Some of these genes 
are directly involved in the pathogenesis of ET, and some 
are directly involved in epigenetic regulation. They can 
induce JAK2 mutations, and often earlier than JAK2 varia-
tion, suggesting that the pathogenesis of ET is the result of 

Table 4 The Rank of Hub Genes in the PPI Network of DEGs

Rank Name Score Regulatory Status GSE124281 GSE61629

logFC P-value logFC P-value

1 ACTB 10 Down −0.5 2.10E-04 −0.71 8.24E-03

2 PTPRC 9 Down −0.65 4.68E-04 −1.04 1.04E-02
3 ACTR2 7 Down −0.72 1.88E-05 −0.9 3.14E-05

3 FYB 6 Down −1.02 1.07E-04 −0.52 1.26E-03

5 STAT1 6 Down −0.53 4.26E-02 −0.78 1.75E-03
6 ETS1 5 Down −0.63 3.42E-02 −0.95 4.32E-04

7 IL7R 5 Down −1.2 2.09E-04 −0.54 3.17E-04

8 IKZF1 5 Down −0.72 4.34E-04 −0.59 2.28E-06
8 FGL2 4 Down −1.35 2.61E-04 −0.55 1.87E-03

10 CTSS 4 Down −0.6 6.41E-04 −0.69 2.33E-04

Note: The rank of hub genes was identified in the PPI network.

Figure 6 Validated the expression of the identified hub genes in an independent cohort group. The top 10 hub genes were both lower expressed in ET samples from the 
GSE123732 database, and the seven genes as ACTB, PTPRC, ACTR2, FYB, STAT1, IL7R, and FGL2 with a significant difference between ET and control. *P<0.05, **P<0.01. ET, 
essential thrombocythemia.
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multiple gene disorders, not a single gene mutation.32 

Recently, the rapid development of bioinformatics technol-
ogy provides us with an advanced method to study the 
pathogenesis of disease more comprehensively and iden-
tify possible core targets, which can also offer the potential 
for the diagnosis and treatment of ET.

In this study, we selected two microarrays (accession 
GSE57793 and GSE124281) that met the inclusion criteria 
from the GEO databases and screened a total of 63 overlap 
DEGs. GO analysis results showed that the DEGs signifi-
cantly enriched in the immune system and regulation of 

hemopoiesis, like neutrophil mediated immune response, 
Interleukin-6-mediated signaling pathway, and receptor sig-
naling pathway via STAT. Neutrophils are an essential part 
of the human immune system,33 they could make an active 
immune response, and the formation of the neutrophil extra-
cellular trap (NET) has been known as a component of 
innate immunity.34 It is currently recognized that NET 
could be triggered by a variety of proinflammatory cyto-
kines, such as increased levels of IL-6, IL-1, IL-8, and 
TNFα.35 Although NETs are mainly involved in host 
defense, they also provide a suitable scaffold for the 

Figure 7 Validated the expression of the identified hub genes in clinical samples. Eight of the hub genes (CTSS, FGL2, IKZF1, STAT1, FYB, ACTR2, PTPRC, and ACTB) were both 
lower expressed in ET samples, and two hub genes (IL7R and ETS1) were higher expressed in ET samples. ***P<0.001. ET, essential thrombocythemia.

Figure 8 ROC curves employed to assess the diagnostic value of the hub genes. The ROC curve of the top 10 hub genes both showed a significant sensitivity and specificity 
in two databases (all the genes with AUC≥0.5). This result indicating these genes may have good diagnostic value for patients with ET. ROC, receiver operating characteristic.
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formation of blood clots and induce a robust procoagulant 
response by binding red blood cells, platelets, and von 
Willebrand factor (VWF).36 Through the contact phase, 
activation NETs will link the processes between innate 
immunity and thrombosis, and it explains how NET pro-
motes the function of immune thrombosis. Recent research 
found that neutrophils isolated from patients with JAK2 
V617F mutations in MPNs showed up-regulation of 
NADPH oxidase activity, which is closely related to the 
increase in ROS production.37 Furthermore, the other study 
showed that inhibition of JAK2 could lead to a reduction in 
neutrophils induced superoxide production.38 The results 
have further confirmed that the abnormal activation of 
JAK2 V617F is related to the excessive activation of neu-
trophil NADPH oxidase, and the neutrophils could play 
a vital role in the activation of oxidative stress and the 
occurrence of myeloproliferative neoplasms. These conclu-
sions also provide a new explanation for the occurrence of 
embolism in ET patients.

Regulation and misregulation of TFs are associated 
with human diseases since TFs crucially controlled the 
genes and gene expression programs.39 In human T cell 
acute lymphoblastic leukemia, the core transcriptional 
machinery regulates molecular pathogenesis.40 It was 
demonstrated that a crucial transcription factor, GATA1, 
is associated with the pathogenesis of ET.41 Therefore, 
identifying more master TFs that regulating gene expres-
sions in human diseases, including ET, is one of the sub-
stantial targets. To identify regulatory networks of master 
transcriptional regulators (MMTRs), we utilized iRegulon, 
a plugin of Cytoscape, to identify MMTRs. We found that 
the TFs such as IRF4, SRF, AR, SPI1, GTF2A1, TEAD4, 
E2F3, MYB, SP9, GATA2, CEBPA, IKZF2, SPIB, FLI1, 
ELK1, LEF1, and CREB3 were significantly associated 
with the DEGs. Based on our research, we have confirmed 
IRF4, TEAD4, MYB, SPI1, and SPIB with the most 
regulatory relationships.

IRF4 belongs to the IRF (Interferon Regulatory Factor) 
family of transcription factors and is significant in the 
regulation of interferon in the regulation of interferon- 
induced genes.42,43 It has been confirmed with lymphocyte- 
specific and negatively regulate Toll-like receptor (TLR) 
signaling and is essential for the activation of the innate 
and adaptive immune system.44,45 Recently, IRF4 also has 
been reported in the literature that it can bind to the inter-
feron-stimulated response element (ISRE) of MHC class 
I promoters and is specifically involved in the pathogenesis 
of lymphatic system cancer.46 Furthermore, research has 
found that IRF4 is highly expressed in B cells and plasma 
cells, as well as controls the differentiation of B cells to 
plasma cells and the conversion of immunoglobulin 
classes.47 There was also a study that hypothesizes that 
direct targeting of IRF4 may be a potential therapeutic 
strategy for the treatment of multiple myeloma.48

TEAD4 (also known as Transcription Enhancement 
Factor 3, TEF-3) is a crucial member of the TEAD 
family.49 Studies have reported TEAD4 plays a vital role 
in the Hippo signaling pathway, thereby regulating cell 
proliferation, migration, and epithelial-mesenchymal tran-
sition (EMT) induction.50 In the study of the expression 
pattern and biological function of TEAD4, it was observed 
that the expression level of TEAD4 was increased in 
a variety of tumor tissues, such as lung adenocarcinoma, 
colorectal cancer, breast cancer, etc., and patients with 
higher TEAD4 expression tend to have higher poor overall 
survival.51–53 More and more convincing evidence also 
shows that TEAD4 does play a role in cancer development, 
and it is also a new prognostic marker for various cancers.54

MYB has been confirmed to play an essential role in the 
regulation of hematopoiesis.55 As far as we know, MYB has 
abnormal expression or rearrangement or undergoes transloca-
tion in leukemia and lymphoma and is considered to be an 
oncogene.56 In recent years, the implementation of advanced 
molecular biology and genetic manipulation techniques 
in vitro and in vivo has further revealed the critical role of 

Table 5 FDA-Approved Drugs Potentially Targeting Five Hub Genes

Drug Target Gene Interaction Types Sources PMIDs

Cyclophosphamide ACTB N/A NCI 12167460
Prednisone PTPRC N/A NCI 17063711

Fluorouracil PTPRC N/A NCI 15206578

Ruxolitinib IL7R N/A CGI 22897847,22955920
Lenalidomide IKZF1 N/A CKB 24292625

Note: The analysis results were obtained from the cancer-relevant drug-gene interactions database. 
Abbreviations: NCI, national cancer institute; CGI, cancer genome interpreter; CKB, the Jackson laboratory clinical knowledgebase.
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MYB in many types of tumors, including leukemia, colon 
cancer, breast cancer, and adenoid cystic carcinoma.57–59 In 
general, the high level of MYB expression is related to the 
blockade of cell differentiation and continued proliferation, 
which leads to carcinogenicity.60 Clinically, MYB has been 
found to have abnormal expression, rearrangement, or translo-
cation in many types of leukemia and lymphoma, so it is 
considered to be an oncogene, and its strange expression or 
rearrangement or translocation is closely related to poor 
prognosis.61 Still, there a study has found that lower levels of 
MYB expression have been shown to promote an ET-like 
disease in mice and megakaryocytic development in humans.62

SPI1 (also named hematopoietic transcription factor 
PU.1) encodes an ETS (Erythroblast Transformation 
Specific) domain transcription factor, which activates gene 
expression during the development of myeloid cells and 
B lymphocytes, and can also specifically participate in the 
differentiation or activation of macrophages or B cells.63 In 
recent years, research has found that SPI1 as a critical reg-
ulator of many steps in the hematopoietic process, not only 
can limit the self-renewal of blood stem cells but also the 
imbalance of its expression or activity leads to leukemia.64,65

Moreover, SPIB (SPI1 Related Transcription Factor) 
also can act as a lymphoid-specific enhancer and promote 
the development of plasmacytoid dendritic cells (pDCs), 
which can produce large amounts of interferon.66 SPIB has 
been shown to regulate many genes essential for BCR- 
mediated signals, including Igβ heavy chain, Ig light 
chain (α and α), mb-1 (Igα), and tyrosine kinase BTK.67 

Recently, a study has found that SPIB with the diffuse 
large B-cell lymphoma (DLBCL).68 Its expression is 
essential for the survival of patients with DLBCL and 
contributes to cell apoptosis through the PI3K-AKT 
pathway.69 Besides, gene expression profiling, and IHC 
staining have both detected SPIB in some solid malignant 
tumors, indicating that SPI1 and SPIB may be abnormally 
expressed in In many types of tumors.70 Also, the other 
TFs such as GATA2, CEBPA, FLI1, SPI1, CREB3 may 
also have been implicated in the pathogenesis of leukemic 
transformation of myeloproliferative neoplasm.71–75 These 
results of TFs identification revised us to an in-depth 
understanding of the regulatory network of MMTRs in ET.

In the procession of REACTOME pathway analysis, we 
also found that the DEGs were mainly enriched in the innate 
immune system, neutrophil degranulation, interleukin-6 sig-
naling. As far as we know, the abnormal expression of cyto-
kines related to inflammation and immune regulation was 
ubiquitous in MPN patients, especially those with ET.76 

Thus, driving clonal evolution by inducing mutations in addi-
tional inflammatory and immunomodulatory genes can further 
enhance cytokine and cytokine release, thereby promoting 
MPNs development.77 Also, recent clinical trials have proved 
that IL-6 can mediate the occurrence and development of 
MPN through the IL-6/JAK2/STAT3 axis, and current clinical 
trials about new drugs target the IL- 6/JAK2/STAT3 signal axis 
have achieved encouraging results.78 Besides, the 
REACTOME database used to conduct pathway enrichment 
analysis also presented additional enrichment in both MAP2K 
and MAPK activation, signaling by moderate kinase activity 
BRAF mutants, and the role of these classic signal pathway 
has been confirmed related with MPNs through an effect on 
the immune system and inflammation processes.79–81

Subsequently, we further analyzed the protein interaction 
network in the STRING database and the top 10 hub genes 
screened out, such as ACTB, PTPRC, ACTR2, FYB, STAT1, 
ETS1, IL7R, IKZF1, FGL2, and CTSS, were both down- 
regulated in two profiles. Interestingly, we found that the 
hub genes we identified were both down-regulated in 
a bone marrow cohort, and we also confirmed that the 
expression level of 8 identified hub genes was down- 
regulated in our clinical samples. However, it is worth men-
tioning that two of the hub genes (IL7R and ETS1) are 
contrary to the results of previous findings, and the result 
indicating that the deregulation of hub genes might be started 
from patients’ bone marrow and exist in peripheral blood. 
Besides, we used multiple databases to identify and analyzed 
the therapeutic drugs targeting these genes, and five target 
drugs were finally determined. Studies have found that ACTB 
appeared to be strongly associated with the JAK2 V617F 
mutation in ET patients, and the drug interaction analysis 
showed that ACTB was target by cyclophosphamide.82 

PTPRC (also named CD45) is protein tyrosine phosphatase 
(PTP) as a natural counter-product of PTK activity. A single- 
Cell RNA-Seq research has determined that the PTPRC gene 
can be stably expressed in MPN stem and progenitor cells.83 

Then, the target drug identification shows that prednisone 
and fluorouracil have been detected as the potential drug for 
targeting PTPRC.84 The defect of the IL7R gene may be 
related to severe combined immunodeficiency (SCID), and 
IL7R could lead to the activation of downstream JAK/STAT 
and PI3K/Akt/mTOR signaling cascades, so loss-of-function 
mutations in IL7R could play an essential role in the onco-
genesis of MPNs.85 IL7R signals through the JAK/STAT 
(specifically, JAK1) and PI3K/mTOR pathways and gain-of- 
function mutations result in their constitutive activation; 
there is research that finds that Ruxolitinib would be expected 
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to abrogate this signaling.86 IKZF1 gene encodes 
a transcription factor that is associated with MPN transfor-
mation, and lenalidomide could significantly reduce the 
abundance of IKZF1 in the multiple myeloma cell line.87,88

Although we have verified the relationship between the 
above four genes and MPN through the literature, as well as 
potential therapeutic drugs that target these genes, the rela-
tionship between STAT1 and MPN is still worthy of our 
attention. STAT1 is one of the members of the STAT family, 
which is involved in cell proliferation, differentiation, 
immune response, and other essential biological 
processes.89 Studies have shown that under the stimulation 
of IFN, the phosphorylation of STAT1 will activate down-
stream gene expression, and the megakaryocytes of mice 
lacking STAT1 showed a decrease in polyploidy. This evi-
dence indicates that STAT1 signal transduction plays an 
essential function in the differentiation of normal megakar-
yocytes. Under the background of JAK2V617F, the deletion 
of the STAT1 gene can lead to the occurrence and develop-
ment of ET and aggravate the disease burden.90 Altogether, 
these dysregulated hub genes and key regulators are asso-
ciated with complications and pathogenesis of ET. It should 
be emphasized that this study still has some limitations. The 
GSE124281 and GSE61629 were originated from different 
experimental platforms (GPL570 vs GPL1058), which may 
lead to internal heterogeneity of the study. Another limita-
tion of this study is that the sample size (n=7) of the bone 
marrow cohort is small, and our findings need to be further 
validated with a larger clinical sample.

Conclusion
Above all, the hub genes and key regulators were screened 
out as the critical markers in ET, and these markers could 
mediate the occurrence, development, and diagnosis of MPN 
by affecting the immune system and inflammatory processes. 
The hub genes we screened in this present study both have 
essential diagnostic value, and we found that the deregula-
tion of hub genes might be started from bone marrow and 
exist in peripheral blood. Besides, we find that cyclopho-
sphamide, prednisone, fluorouracil, ruxolitinib, and lenalido-
mide could be potential treatments through targeting on 
CTB, PTPRC, IL7R, IKZF1. Due to the complex pathogen-
esis of ET and many influencing factors, it is necessary to 
explore and sort out the genes and interaction clusters with 
logical relationships and practical significance, then to find 
out the entry point of the follow-up research work.
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