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Abstract: Leishmaniasis is a group of infectious diseases caused by Leishmania protozoa. The in-
effectiveness, high toxicity, and/or parasite resistance of the currently available antileishmanial
drugs has created an urgent need for safe and effective leishmaniasis treatment. Currently, the
molecular-docking technique is used to predict the proper conformations of small-molecule ligands
and the strength of the contact between a protein and a ligand, and the majority of research for the
development of new drugs is centered on this type of prediction. Leishmania N-myristoyltransferase
(NMT) has been shown to be a reliable therapeutic target for investigating new anti-leishmanial
molecules through this kind of virtual screening. Natural products provide an incredible source of
affordable chemical scaffolds that serve in the development of effective drugs. Withania somnifera
leaves, roots, and fruits have been shown to contain withanolide and other phytomolecules that are
efficient anti-protozoal agents against Malaria, Trypanosoma, and Leishmania spp. Through a review
of previously reported compounds from W. somnifera-afforded 35 alkaloid, phenolic, and steroid
compounds and 132 withanolides/derivatives, typical of the Withania genus. These compounds
were subjected to molecular docking screening and molecular dynamics against L. major NMT.
Calycopteretin-3-rutinoside and withanoside IX showed the highest affinity and binding stability to
L. major NMT, implying that these compounds could be used as antileishmanial drugs and/or as a
scaffold for the design of related parasite NMT inhibitors with markedly enhanced binding affinity.

Keywords: leishmaniasis; L. major; N-myristoyltransferase; molecular docking; molecular dynamics

1. Introduction

Leishmaniasis is a serious neglected tropical disease that causes several illnesses
connected to immune-system dysfunction and poverty, which are sometimes associated
with high fatality rates [1]. The disease is manifested in three different ways: Cutaneous
leishmaniasis (CL), which is characterized by lesions at the site of infection; mucocutaneous
leishmaniasis, which is characterized by invasion and destruction of the mucosa; and
visceral leishmaniasis, which is the most severe form because the infection spreads to other
organs like the spleen and liver [2]. Each year, around two million new cases are reported
worldwide, with cutaneous leishmaniasis accounting for 75% of these infections. The
primary cause of cutaneous leishmaniasis is Leishmania major, and out of the 89 countries
where it is present, Afghanistan, Brazil, Iran, Peru, Saudi Arabia, and Syria account for 90%
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of CL cases [1,3]. Despite the long history of the disease, no vaccine is available, and all of
the current medications are either ineffective, have unfavorable side effects, or are losing
efficacy as resistance emerges [4].

To produce a new anti-Leishmania drug, long isolation, purification, or synthesis
processes, as well as excessively expensive in vitro and in vivo biological evaluations, are
required [5]. Thus, the present challenge is to identify novel molecules with potential
antileishmanial activity while conserving time and money. Utilizing in silico techniques
can shorten the time and lower the cost associated with developing new medications [6].

Molecular docking is an in silico technique used to identify correct conformations
of small-molecule ligands and estimate the strength of the protein–ligand interaction [7].
Presently, the majority of research for the development of novel drugs focuses on this
kind of analysis. Molecular docking has been employed in multiple studies to create
new antiparasitic medications while considering a variety of targets to find new Leish-
mania treatments [8]. Discovering new leishmaniasis treatments is made more enticing
by molecules implicated in parasite-specific metabolic processes [9]. The affection of this
kind of target implies the death of the parasite and the control of the infection [5]. Worth
mentioning is that standard chemotherapeutic antileishmanial drugs operate via related
mechanisms—namely, interference in parasite metabolic processes (Table 1) [10]. Targeting
specific molecular pathways is a common approach in rational drug design and discovery
for developing such leishmaniasis-treating compounds. Pteridine reductase, trypanothione
reductase, N-myristoyltransferase (NMT), trypanothione synthetase, inosine-uridine nucle-
oside hydrolase, and topoisomerases are just a few of the more than 21 potential therapeutic
targets of antileishmanial drug discovery that have been reported in the literature and
gathered in a book chapter [9].

Table 1. Standard antileishmanial chemotherapeutic drugs and their suggested mode of antileishma-
nial effect.

Drug Mode of Action
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(Solanaceae), also known as Ashwagandha or Indian ginseng, has been used as a traditional
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herb against a plethora of human medical conditions [23]. It is one of the most extensively
used plants in the Unani and Ayurvedic systems of medicine. It has been reported as
an important source of withanolides, alkaloids, steroids, flavonoids, nitrogen-containing
compounds, and others [23]. Among them, withanolides are a class of highly oxygenated
steroids generated from a C28 ergostane skeleton (Figure 2). They are marker compounds
characteristic of Solanaceae plants, particularly those of the genus Withania [23]. They are
thought to be responsible for the majority of W. somnifera bioactivity [16]. W. somnifera
happens to be one of the prime examples of Rasayana, a branch of Ayurvedic science,
a medicinal plant that possesses immunomodulation, anti-cancer, anti-depressant, and
neuroprotective properties; promotes the body’s resistance to diseases; increases strength
and intellect; and delays aging; as well as other biological properties [23]. Closer examina-
tion of pertinent in vitro and in vivo studies revealed that W. somnifera extracts molecules’
significant bioactivity against several metabolic, reproductive, cardiovascular, neurological,
and psychological conditions. Additionally, it has been shown to have antibacterial and
antiparasitic properties against Trypanosoma, Leishmania species, and Malaria [24]. The
alleged value of W. somnifera in treating leishmaniasis, as proposed by earlier research, is
highlighted in the following themes.
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Figure 2. Structural features of bioactive withanolides of W. somnifera represented by withaferin A,
withanolides D and Z, and withanone.

1.1. Overview of the Antileishmanial Properties of Withania somnifera

Screening of W. somnifera from different geographical regions has shown that methano-
lic extract exhibits in vitro antileishmanial action against free-living promastigotes [25,26]
and intracellular amastigotes of L. major [26]. Investigation of a solvent-soluble fraction
of root and fruit hydromethanolic extracts demonstrated significant antileishmanial pro-
mastigote properties of the butanol-soluble fraction from roots and fruits, whereas in vitro
growth-inhibitory assessment on axenic amastigotes revealed promising activity of the root
ethyl acetate-soluble and butanol-soluble fractions [1]. Further bio-guided fractionation
revealed that the withanolide-enriched fraction from W. somnifera ethanolic extract was
effective [17].
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Studies have shown that pure withaferin-A, a prominent withanolide in W. somnifera,
possesses antileishmanial activity. It inhibits protein kinase C, which allows the apoptotic
topoisomerase I-DNA complex to induce apoptosis [25,27]. Additionally, withanolide Z, a
chlorinated withanolide, has been reported to exert an inhibitory effect against L. donovani
topoisomerase-1 [28].

The anti-leishmanial activity of the withanolide-enriched extract and pure withanolide
of W. somnifera was found to be mediated by the induction of morphological alterations from
a spindle to round shape and the loss of flagella and cell integrity in promastigotes. They
also induce apoptosis-like cellular death in L. donovani by inducing DNA nicks, apoptosis,
and cell-cycle arrest in a dose- and time-dependent manner, actions that were mediated
by increasing reactive oxygen species (ROS) production and decreasing mitochondrial
potential [29]. Additionally, these withanolide-enriched fractions and pure withanolide
of W. somnifera, alone or in combination with other herbal products or standard anti-
Leishmanial drugs, were found to modulate hamsters’ immunological response to infection
with L. donovani.

1.2. Immunomodulatory Effects of W. somnifera in Leishmaniasis Infections

One of the immunopathological consequences of active visceral leishmaniasis is the
suppression of protective T-helper (Th)-1 cells and the induction of disease-promoting
Th-2 cells [30]. Therefore, host immunomodulation is crucial for the treatment of visceral
leishmaniasis. In animal-model research, W. somnifera chemotype NMITLI-101 R extract,
withaferin A, and the chemotype NMITLI-101 R extract in combination with an ED50
dose of miltefosine were investigated for their immunoprotective and therapeutic effects
against L. donovani infection. It has been observed that the efficacy of W. somnifera was
linked to the compelling Th1 immune responses driven by interferon-gamma (IFN-γ) and
interleukin-12 (IL-12), as well as dramatically reduced levels of Th2 cytokines (IL-4, IL-10)
and transforming growth factor beta (TGF-β). Meanwhile, they significantly increased the
levels of NO production, ROS creation, and Leishmania-specific IgG2 antibodies, along with
profoundly delayed-type hypersensitivity (DTH) and strong T-cell responses [31–34].

In another study, when Asparagus racemosus and W. somnifera were used to treat infected
mice, the parasite burden was successfully reduced and protective Th1-type immune
responses were elicited, resulting in the normalization of biochemical and hematological
parameters [30]. In the treatment of visceral leishmaniasis, the combination of W. somnifera
extract with cisplatin led to a notable selective elevation of the Th1 type of immunity,
verified immunomodulatory action, and a protective impact against the adverse effects of
cisplatin on multiple bodily organs. The percentage of CD4 and CD8 T-lymphocytes, as
well as the natural killer (NK) cell-associated marker NK1, increased significantly [33].

1.3. Molecular Docking Studies in the Development of Antileishmanial Drugs

According to molecular modeling and dynamic investigations of the leishmanial
protein kinase C structure, withaferin A and withanone were suggested to disrupt the
protein kinase C (PKC) pathway [23,35]. Molecular-docking studies of the binding mode of
withaferin-A with pteridine reductase 1 (PTR1), which is involved in pteridine salvage, a
crucial enzyme for parasite proliferation, revealed that withaferin-A inhibits PTR-1 enzymes
through the uncompetitive mode of inhibition in the parasites.

In summary, in rational antileishmanial drug design and discovery, targeting particular
biochemical pathways was found to be a typical strategy for creating leishmaniasis-treating
molecules. In order to screen molecules from both natural and synthetic sources, more than
21 molecular targets were used [9]. The structure-guided creation of new lead compounds
discovered in high-throughput screening efforts aimed at L. major and L. donovani NMT has
led to the identification of effective inhibitors [9,36]. These newly discovered Leishmania
NMT inhibitors did not possess the same cellular activity as the enzyme against Leishma-
nia donovani axenic amastigotes, a fact that has been explained by the restricted cellular
absorption related to the basic nature of the compounds [19].
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W. somnifera’s wide variety of the non-basic withanolide derivative and phenolics
would be an important source of new hits of Leishmania NMT inhibitors with higher cellular
activity against Leishmania parasites. Thus, the goals of this study are to highlight W. som-
nifera anti-leishmanial properties as well as to discover new L. major NMT inhibitors using
in silico molecular-docking and molecular-dynamics analysis of W. somnifera metabolites as
potential anti-L. major medicine.

2. Experimental
2.1. Phytochemical Review and Data Collection

A thorough review of the previously reported compounds from W. somnifera (L.) Dunal
in peer-reviewed research papers and international databases, including Science Direct,
Pubchem, Google Scholar, SciFinder, etc., afforded a total of 167 different phytoconstituents,
which were considered for the present study.

2.2. Molecular-Docking Simulation

PyRx software was used for the docking experiments [37]. The RCSB Protein Data
Bank (https://www.rcsb.org/ accessed on 20 March 2022) was used to retrieve the three-
dimensional (3D) structure of L. major N-myristoyltransferase (NMT) in complex with
the thienopyrimidine inhibitor IMP-0000096 (PDB ID: 6QDF) (Figure 3) determined by
X-RAY diffraction (Resolution: 1.49 Å) as a target for molecular-docking studies [21]. The
3D chemical structures of the selected molecules were retrieved from PubChem, with
polar hydrogen added, partial charge corrected, and energy minimized using the Merck
molecular force field (MMFF94x). Molecular-docking analysis was carried out via flexible
ligand-fixed receptor-docking parameters using an active complexed ligand active site.
The most stable affinity-binding interactions were selected based on the best pose scores.
The docking scores and 2D and 3D interactions were recorded [38,39]. BIOVIA Discovery
Studio (v21.1.0.20298) was used for 2D and 3D interaction visualization [40].
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Figure 3. 3D structure of L. major NMT in complex with the thienopyrimidine inhibitor IMP-0000096
(PDB ID: 6QDF).

2.3. Molecular-Dynamics Simulation

Molecular-dynamics simulations (MDS) for the best three generated ligand–enzyme
complexes were performed using the Nanoscale Molecular Dynamics (NAMD) 3.0 software,
applying the CHARMM27 force field, and the MDS was continued for 100 ns following

https://www.rcsb.org/
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the previously described protocol [41]. The trajectory was stored every 0.1 ns and further
analyzed with the VMD 1.9 software. The Molecular Mechanics Poisson–Boltzmann
Surface Area (MMPBSA) embedded in the MMPBSA.py module of AMBER18 was utilized
to calculate the binding free energy of the docked complex [42]. One hundred frames were
processed from the trajectories in total, and the binding free energy was estimated using
the following equation:

∆GBinding = ∆GComplex − ∆GReceptor − ∆GInhibitor

Each of the aforementioned terms requires the calculation of multiple energy compo-
nents, including van der Waals energy, electrostatic energy, internal energy from molecular
mechanics, and a polar contribution to solvation energy.

3. Results

Earlier phytochemical research on W. somnifera led to the isolation of many phytochem-
ical compounds. According to their chemical structures and the number of isolates, to the
best of our knowledge, it could be distinguished as 10 alkaloids, 15 phenolic compounds,
10 sterols, 6 withanones, 6 chloro-containing withanolides, 5 sulfur-containing withanolides,
9 withanamide, 87 withanolides, and 19 withanosides. To discover potential hits that could
be used as scaffolds for developing antileishmanial drug candidates, we evaluated these
compounds against the Leishmania major NMT utilizing in silico molecular docking and
molecular dynamics. The compounds are sorted according to their phytochemical groups
parallel to their docking results in descending order according to pose score in Table 2.

Table 2. List of the compounds isolated from W. somnifera along with their molecular docking results.

No. Name Pose Score
(kcal/mol)

Reference for
Compound Isolation

Alkaloids

1 Somniferine −16.4 [43]
2 D-α-Aminoadipic acid −13.8 [44]
3 Anaferine −12.6 [45]
4 Anahygrine −11.2 [45]
5 Tropine −11.2 [46]
6 Cuscohygrine −10.7 [45]
7 Isopelletierine −10.4 [47]
8 Putrescine −10.0 [48]
9 γ-Aminobutyric acid −9.6 [44]
10 Withasomnine −9.0 [49]

Phenolic compounds

1 Calycopteretin-3-rutinoside * −23.3 [50]
2 N-trans-feruloyl-methoxytyramine −16.9 [51]
3 Naringenin −15.8 [44]
4 Quercetin −15.7 [44]
5 Kaempferol −15.4 [44]
6 Catechin −14.4 [44]
7 Withaninsam A −13.5 [52]
8 Butein −13.1 [53]
9 Withaninsam B −12.6 [52]
10 Vanillic acid −12.4 [54]
11 Syringic acid −12.2 [55]
12 Acetosyringone −12.0 [56]
13 Aesculetin −11.7 [57]
14 Podocarpic acid −10.3 [44]
15 P-Coumaric acid −9.1 [58]
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Table 2. Cont.

No. Name Pose Score
(kcal/mol)

Reference for
Compound Isolation

Sterols

1 3β-Stigmasta-5,24-dien-3-ol −13.6 [59]
2 Campesterol −13.6 [44]
3 Stigmasterol acetate −13.5 [60]
4 β-Sitosterol oleate −13.3 [60]
5 β-Sitosterol −11.7 [61]
6 Cholesterol −11.6 [44]
7 Stigmasterol −11.3 [61]
8 Brassicasterol −11.1 [44]
9 Crinosterol −11.0 [60]
10 3β-Ergosta-5,24-dien-3-ol −10.5 [59]

Withanones

1 Isowithanone −15.6 [62]
2 27-Hydroxywithanone −15.1 [63]
3 4α-Hydroxywithanone −15.1 [57]
4 2,3-Dihydro-3β-hydroxywithanone −15.0 [64]
5 Withanone −14.1 [65]
6 14β-Hydroxywithanone −13.8 [66]

Chloride containing withanolides

1 Withanolide C −15.7 [67]
2 4-Deoxyphysalolactone −14.1 [67]

3
(4β,5β,6α,22R) 5-Chloro-4,6,27-trihydroxy-

1-oxowitha-2,24-dienolide
27-Acetate

−12.1 [68]

4 Withanolide D chlorohydrin −12.1 [69]
5 6α-Chloro-5β,17α-dihydroxywithaferin A −11.8 [70]
6 Withanolide Z −11.7 [28]

Sulfur-containing withanolides

1 Withanolide sulfoxide −17.7 [71]

2 5α,17α-Dihydroxy-6α,7α-epoxy-1-oxo-3β-
O-sulfate-witha-24-enolide −15.4 [72]

3 2,3-Dihydrowithanone-3β-O-sulfate −14.6 [73]
4 2,3-Dihydrowithaferin A-3β-O-sulfate −14.2 [73]
5 Ashwagandhanolide −14.2 [74]

Withanamides

1 Withanamide F * −18.4 [75]
2 Withanamide H −17.3 [75]
3 Withanamide E −16.5 [75]
4 Withanamide C −15.7 [75]
5 Withanamide G −15.5 [75]
6 Withanamide B −15.4 [75]
7 Withanamide A −15.3 [75]
8 Withanamide D −15.0 [75]
9 Withanamide I −14.2 [75]

Withanolides

1 Withanolide A * −18.7 [66]

2 (4β,5β,6β,17α,22R) 5,6-Epoxy-4,17,27-
trihydroxy-1-oxowitha-2,24-dienolide * −18.5 [66]

3 Somniferanolide −18.0 [76]
4 Withanolide H −17.7 [77]
5 17-Isowithanolide E −17.6 [78]
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Table 2. Cont.

No. Name Pose Score
(kcal/mol)

Reference for
Compound Isolation

6 Withanolide K −17.4 [79]

7 (20R,22R)14,20-Dihydroxy-1-oxowitha-
2,4,6,24-tetraenolide −17.4 [66]

8 Withacoagulin I −17.3 [44]
9 3α-(Uracil-1-yl)-2,3-dihydrowithaferin A −17.1 [80]
10 14,17-Dihydroxywithanolide R −17.0 [57]
11 27-Hydroxywithanolide D −16.6 [81]
12 Withanolide D −16.6 [82]
13 24,25-Dihydro-27-desoxywithaferin A −16.4 [83]
14 Somniwithanolide −16.3 [76]
15 Withanolide S −16.1 [82]

16 5,6:14,15-Diepoxy-4,27-dihydroxy-1-
oxowitha-2,24-dienolide −16.0 [68]

17 (3α,4β,5β,6α,22R) 3,6-Epoxy-4,5,27-
trihydroxy-1-oxowith-24-enolide −15.9 [84]

18 3β-(Uracil-1-yl)-2,3-dihydrowithaferin A −15.7 [80]
19 Tubocapsanolide F −15.6 [85]
20 4-Hydroxywithanolide E −15.6 [86]
21 Withanolide E −15.4 [79]

22 (3β,5α,6α,7α,17α,22R) 6,7-Epoxy-3,5,17-
trihydroxy-1-oxowith-24-enolide −15.4 [72]

23 Quresimine B −15.3 [87]
24 Sominolide −15.3 [88]
25 Withanolide Ws 1 −15.3 [89]
26 Withanolide L −15.2 [79]
27 Withasomniferol C −15.2 [90]
28 Withacoagin −15.2 [91]
29 Somniferawithanolide −15. 2 [76]

30 6,7-Epoxy-5,23-dihydroxy-1-oxowitha-
2,24-Dienolide −15.0 [92]

31 Withaoxylactone −14.8 [93]
32 Dihydrowithaferin A −14.8 [63]
33 Withanolide J −14.7 [79]
34 5-Deoxywithanolide R −14.7 [94]
35 Withanolide I −14.7 [79]
36 17α-Hydroxywithanolide D −14.5 [81]
37 Withasomnilide −14.4 [76]

38 (3β,5α,6α,7α,20R,22R) 6,7-Epoxy-3,5,20-
trihydroxy-1-oxowith-24-enolide −14.4 [95]

39 Withanolide G −14.3 [79]
40 3β-O-Butyl-2,3-dihydrowithaferin A −14. 3 [80]
41 27-Deoxywithaferin A −14.3 [96]
42 Pubesenolide (sominone) −14.3 [97]
43 Quresimine A −14.2 [93]
44 27-Hydroxywithanolide B −14.2 [28]
45 Withanolide B −14.2 [98]
46 Withasomniferanolide −14.1 [76]
47 Somnifericin −14.1 [99]
48 20-Deoxywithanolide D −14.1 [100]

49

(5α,6α,7α,16β,17(20)E)
6,7-Epoxy-5,16-dihydroxy-1-oxowitha-

2,17(20),24-trienolide
16-acetate

−14.1 [98]

50 Withanolide M −14.0 [79]
51 Withanolide O −14.0 [101]
52 Dunawithagenin −13.9 [102]

53 5,6-Epoxy-4-hydroxy-1-oxowitha-2,16,24-
trienolide −13.9 [72]
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Table 2. Cont.

No. Name Pose Score
(kcal/mol)

Reference for
Compound Isolation

54 Withanolide U −13.9 [101]

55 (5α,17αOH,22R) 5,17-Dihydroxy-1-
oxowitha-2,6,24-trienolide −13.7 [103]

56 4-Deoxywithaperuvin −13.7 [104]

57 5,6-Epoxy-20-hydroxy-1,4-dioxowitha-
2,24-dienolide −13.7 [105]

58 17-Hydroxywithaferin A −13.6 [106]
59 2,3-Dehydrosomnifericin −13.5 [107]

60 5,6-Epoxy-4-hydroxy-1-oxowitha-2,14,24-
trienolide −13.5 [108]

61 Withanolide Q −13.5 [92]
62 Withasomniferin A −13.5 [94]

63 (14α,20R,22R)14,20-Dihydroxy-1-
oxowitha-2,5,16,24-tetraenolide −13.5 [109]

64 3β-(Adenin-9-yl)-2,3-dihydrowithaferin A −13.4 [80]
65 Withanolide F −13.4 [79]
66 Withanolide T −13.3 [66]
67 Withanolide Y −13.3 [110]
68 Withanolide N −13.3 [82]
69 Withacoagulin G −13.2 [44]

70 (4β,5β,6β,20R,22R) 5,6-Epoxy-4,20-
dihydroxy-1-oxowith-24-enolide −13.2 [105]

71 14α-Hydroxywithanolide D −13.2 [111]

72 4-Dimethyloxocyclopropyl-2,3-
dihydrowithaferin A −13.1 [83]

73 24,25-Dihydrowithanolide D −13.1 [71]
74 Withanolide P −12.8 [81]

75 5,6-Epoxy-20-hydroxy-1,4-dioxowith-2-
Enolide −12.6 [112]

76 Withasomniferol B −12.5 [113]
77 Withaferin A −12.5 [114]
78 Withasomniferol A −12.5 [113]

79 5,6-Epoxy-4,20-Dihydroxy-3-methoxy-1-
oxowithanolide −12.2 [115]

80 27-Deoxy-14-hydroxywithaferin A −12.2 [116]
81 Withanolide R −11.9 [92]
82 27-Hydroxywithanolide I −11.7 [102]
83 Viscosalactone B −11.6 [117]

84 5-Ethoxy-6,14,17,20-tetrahydroxy-1-
oxowitha-2,24-dienolide −11.6 [102]

85 Withalactone −11.5 [93]

86 (1α,3β,5α,6α,7α,20S,22R) 6,7-Epoxy-1,3,5-
trihydroxywith-24-enolide −11.3 [118]

87 Withasomidienone −10.1 [119]

Withanosides

1 4,16-Dihydroxy-5β,6β-epoxyphysagulin
D * −24.0 [83]

2 Withanoside IX * −22.2 [84]

3 Physagulin D (1→6)-β-D-glucopyranosyl-
(1→4)-β-D-glucopyranoside * −22.1 [83]

4 Withanoside VIII −20.5 [84]
5 Withanoside X * −19.9 [84]
6 Withanoside II * −19.6 [120]
7 Withanoside IV −19.2 [120]
8 24,25-Dihydrowithanoside VI * −18.5 [75]
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Table 2. Cont.

No. Name Pose Score
(kcal/mol)

Reference for
Compound Isolation

9 Sitoindoside IX * −18.1 [121]
10 Withanoside III −17.8 [120]
11 Withanoside VII −17.5 [120]
12 Withanoside V −16.6 [120]
13 Withanoside VI −16.3 [120]
14 Glucosomniferanolide −16.1 [90]
15 Withanoside XI −15.7 [84]
16 Sitoindoside VII −14.4 [122]
17 Sitoindoside VIII −14.0 [122]
18 Withanoside I −14.0 [120]
19 Sitoindoside X −12.9 [121]

* Compounds with top-scoring docking results.

4. Discussion

Cutaneous leishmaniasis, caused by more than 20 species of Leishmania parasites, is
a derelict tropical disease endemic in most world nations with high incidence rates. In
the Kingdom of Saudi Arabia, CL is a significant public-health issue because of several
risk factors, including rapid population growth and migration. The disease is endemic
in many parts of the kingdom, and L. major and L. tropica are the most commonly de-
tected species [123]. Current chemotherapeutic drugs used for leishmaniasis treatment
are discouraging due to associated toxicity, a rase of drug resistance, and high cost. The
development of new medications with enough safety and affordability is immediately
needed to tackle this disease. W. somnifera is a perennial shrub found in open fields and
deserts from the Mediterranean region to Southeast Asia [1]. A reasonable level of safety
has been supported by up to 30 clinical studies; there were no obvious side effects or
changes in hematological, biochemical, or vital indicators. Pre-clinical studies on chronic
toxicity that lasted up to 8 months [16] further supported the safety. As stated above, both
in vitro and in vivo tests were used to determine the antileishmanial activity of various
organ extracts and sub-extracts of W. somnifera. However, only a small subset of metabolites
was tested for antileishmanial activity. Together, these factors make it more important
than ever to thoroughly research the phytoconstituents of the plant as possible sustainable
and affordable antileishmanial remedies. Due to the economic issue and the hazards of
handling a live Leishmania parasite in laboratory work, we adopted computational analysis,
molecular docking, and molecular dynamics as a quick and cost-effective scheme to identify
potential anti-L. major compounds from W. somnifera.

N-Myristoyltransferase is a prevalent essential enzyme in all Leishmania species [21].
NMT catalyzes the binding of myristate to the amino-terminal glycine residue of a subset
of eukaryotic proteins involved in various cellular processes, such as vesicular protein
trafficking and signal transduction. NMT has been demonstrated to be essential for viability
by classical gene knockout and RNA interference, suggesting that this enzyme has the
potential as a target for drug development. It has been proven that NMT is a valid
therapeutic target for the treatment of fungus and parasite infections [15,124]. The discovery
of the NMT crystal structure establishes a method for structural analysis of inhibitor
complexes and structure-assisted drug discovery [21]. Amazingly, it has been demonstrated
that the inhibitors only operate on the host enzyme despite the high degree of conservation
between the active regions of the parasite and human NMTs [125]. According to the
determined structure of β-sheet in the C-terminal domain and protein loops, the residues
that are predicted to be the targeted inhibitor site in the NMT are Tyr-80, Val-81, Glu-82,
Phe-88, Phe-90, Tyr-92, Asn1-67, Thr-203, Tyr-217, His-219, Phe-232, Tyr-326, Ile-328, Ser-330,
Leu-341, Ala-343, Tyr-345, Val-374, Asn-376, Asp-396, Leu-399, Met-420, and Leu421 [126].

As a first step toward utilizing one or more of them as an effective CL medication,
the wide range of previously reported compounds from W. somnifera species was chosen
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for virtual screening as L. major NMT inhibitors. In total, 167 compounds were studied
for their binding affinity as NMT enzyme inhibitors using molecular-docking simulation
(Table 2). The results revealed a wide range of compounds’ affinity to the NMT enzyme
(−9.0 to −24.0 kcal/mol).

The compounds with a score of less than −18.0 kcal/mol are thought to be the most
active. To evaluate the experimental stability of the docked ligand conformers, these
compounds were filtered by RMSD value with a cutoff of 1.7 Å [127]. The top-scoring com-
pounds were calycopteretin-3-rutinoside, withanamide F, withanolide A, (4β,5β,6β,17α,22R)
5,6-Epoxy-4,17,27-trihydroxy-1-oxowitha-2,24-dienolide, withanoside II, withanoside X,
physagulin D (1→6)-β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside, withanoside IX,
sitoindoside IX, 4,16-dihydroxy-5β,6β-epoxyphysagulin D, and 24,25-dihydrowithanoside
VI. These compounds showed the highest affinity for the NMT active site within the selected
parameter range (Figure 4). 4,16-Dihydroxy-5β,6β-epoxyphysagulin D, calycopteretin 3-
rutinoside, and withanoside IX revealed the most potent affinity to the receptor active site
with −24.0, −23.3, and −22.2 kcal/mol, respectively.

Targeting with a pose score of −24.0 kcal/mol and an RSMD value of 1.07, 4,16-
dihydroxy-5,6-epoxyphysagulin D demonstrated the highest affinity to the selected enzyme.
Hydrogen bonds were formed between the compound and Met-420 and Asn-167 as H-
donors, as well as interactions with Asn-383, Tyr-80, Val-378, and Asn-167 as H-acceptors
(Figure 5).

The flavonoid glycoside calycopteretin 3-rutinoside was found to have a potential
affinity with a pose score value of −23.3 kcal/mol (RSMD = 1.24 Å) with a hydrogen-bond
interaction with Met-420 and Leu-421 as H-donor in addition to Tyr-80 as H-acceptor
(Figure 6).

Furthermore, the withanolide glycoside withanoside IX formed hydrogen bonds with
Glu-82, Asp-83, Val-346, Val-346, and Met-420, yielding a binding score of −22.2 kcal/mol
(RSMD = 1.41; Figure 7). Other hydrophobic interactions were found in all interacted
compounds, as shown in Figure 7.

Compared with the pose score of the complexed thienopyrimidine inhibitor IMP-
0000096 (−14.2 kcal/mol), these compounds could be promising antileishmanial scaffolds.

The introduction of promastigote into the body, the blood circulation of amastigote,
phagocytosis and macrophage cell growth, lysis, and blood flow as amastigote once more
are among the steps that occur in Leishmania infection [1]. However, NMT inhibitors
obtained by synthesis from various research groups were unable to kill parasites inside
macrophages at reasonable therapeutic doses, as shown by in vivo assay [2]. On the
other hand, withanolide-enriched extracts from W. somnifera reduced the intracellular
parasite load by ~50% compared to the infected control [34]. Withaferin-A produced a
dose-dependent decrease in parasite number inside the macrophages at concentrations of
0.5–1.5 µM [34]. These literature results, together with our findings from docking studies,
suggest that the compounds with the top docking scores could be leishmanicidal agents that
operate by inhibiting L. major NMT in the free promastigote and the intercellular amastigote
forms. Another exciting outcome of our research is the potential to use these molecules
as a promising framework for the development of novel leishmanial NMT inhibitors and
possibly NMT inhibitors of other protozoa.
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Molecular-Dynamics Simulation Study

To validate the docking results, we subjected the retrieved docking poses to a 100 ns-
long molecular-dynamics simulation (MDS) run. As depicted in Figure 8, calycopteretin-3-
rutinoside, withanoside IX, and 4,16-dihydroxy-5β,6β-epoxyphysagulin D achieved good
binding stability inside NMT’s active site, showing average RMSDs (i.e., 1.1 Å, 2.2 Å,
and 3.9 Å, respectively) that were comparable with that of the co-crystallized inhibitor
(i.e., 1.4 Å). The global dynamic behavior of NMT did not show significant change upon
binding with either the co-crystallized inhibitor or with the three selected ligands (i.e.,
calycopteretin-3-rutinoside, withanoside IX, and 4,16-dihydroxy-5β,6β-epoxyphysagulin
D), where the RMSFs of either the ligand-free enzyme or the enzyme bound to the three
ligands and the co-crystalized inhibitor showed good alignment (Figure 8B).
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Figure 8. (A) RMSDs of the compounds calycopteretin-3-rutinoside, withanoside IX, and 4,16-
dihydroxy-5β,6β-epoxyphysagulin D along with the co-crystalized inhibitor inside the active site of
NMT (PDB ID: 6QDF) throughout 100 ns MDS runs. (B) RMSFs of NMT in the absence and in the
presence of calycopteretin-3-rutinoside, withanoside IX, and 4,16-dihydroxy-5β,6β-epoxyphysagulin
D along with the co-crystalized inhibitor.

The frequency of H-bonds detected for each ligand along with the co-crystalized
inhibitor averaged around two H-bonds (cut-off distance for H-bonds was set to 3.0 Å;
Figure 9). In regard to the interaction energies (i.e., electrostatic + van der Waals energies) of
each ligand, calycopteretin-3-rutinoside showed the worst average total interaction energy
(−26.4 kcal/mol), whereas withanoside IX and 4,16-dihydroxy-5β,6β-epoxyphysagulin
D, along with the co-crystalized inhibitor, showed convergent average total interaction
energies (−55.5, −54.5, and −44.4 kcal/mol, respectively; Figure 10).

Accordingly, the calculated binding free energies (∆Gbinding) extracted from the MDS
runs were also convergent, ranging from −7.3 kcal/mol for the co-crystallized inhibitor
to −9.8 kcal/mol for 4,16-dihydroxy-5,6-epoxyphysagulin D, except for calycopteretin
3-rutinoside, which obtained the lowest negative value (Table 3).
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Figure 9. Number of H-bonds detected for calycopteretin-3-rutinoside, withanoside IX, and 4,16-
dihydroxy-5β,6β-epoxyphysagulin D along with the co-crystallized inhibitor inside the active site of
NMT throughout 100 ns MDS runs ((A–D), respectively). The cut-off distance for H-bonds was set to
3.0 Å.

Table 3. Binding free energies (MM-PBSA) of top-scoring compounds along with the co-crystalized
inhibitor in complex with NMT.

Energy
Component

Calycopteretin
3-Rutinoside Withanoside IX 4,16-Dihydroxy-5,6-

epoxyphysagulin D
Co-Crystalized

Inhibitor

∆Ggas −17.98 −24.63 −21.45 −28.73
∆Gsolv 9.76 16.15 11.64 15.44
∆GTotal −8.21 −8.47 −9.80 −13.29



Metabolites 2023, 13, 93 19 of 25Metabolites 2023, 13, x FOR PEER REVIEW 18 of 23 
 

 

 

Figure 10. Interaction energies of calycopteretin-3-rutinoside, withanoside IX, and 4,16-dihydroxy-

5β,6β-epoxyphysagulin D along with the co-crystallized inhibitor inside the active site of NMT 

throughout 100 ns MDS runs (A–D), respectively). The total interaction energy is the sum of both 

electrostatic and van der Waals energies. 

5. Conclusions 

The urgent need to discover a new anti-L. major drug in a reasonable time and at a 

low cost encouraged us to consider in silico techniques to examine W. somnifera 

metabolites as an inhibitor of L. major NMT. Among the 167 virtually screened 

compounds, the phenolic glycoside calycopteretin-3-rutinoside, withanoside IX, and 4,16-

dihydroxy-5β,6β-epoxyphysagulin D showed promising binding affinity towards 

Leishmania NMT. In light of the fact that the standard chemotherapeutic antileishmanial 

medications, such as antimonials, amphotericin B, miltefosine, paromomycin, and 

pentamidine, work by interfering with parasite metabolic processes, exploring new 

natural substances that are connected to parasite-specific metabolic processes, such as our 

discovered NMT inhibitors from W. somnifera, is extremely promising. The results of our 

investigation will help scientists design in vitro and preclinical animal studies employing 

Figure 10. Interaction energies of calycopteretin-3-rutinoside, withanoside IX, and 4,16-dihydroxy-
5β,6β-epoxyphysagulin D along with the co-crystallized inhibitor inside the active site of NMT
throughout 100 ns MDS runs (A–D), respectively). The total interaction energy is the sum of both
electrostatic and van der Waals energies.

5. Conclusions

The urgent need to discover a new anti-L. major drug in a reasonable time and at a
low cost encouraged us to consider in silico techniques to examine W. somnifera metabo-
lites as an inhibitor of L. major NMT. Among the 167 virtually screened compounds, the
phenolic glycoside calycopteretin-3-rutinoside, withanoside IX, and 4,16-dihydroxy-5β,6β-
epoxyphysagulin D showed promising binding affinity towards Leishmania NMT. In light
of the fact that the standard chemotherapeutic antileishmanial medications, such as anti-
monials, amphotericin B, miltefosine, paromomycin, and pentamidine, work by interfering
with parasite metabolic processes, exploring new natural substances that are connected
to parasite-specific metabolic processes, such as our discovered NMT inhibitors from W.
somnifera, is extremely promising. The results of our investigation will help scientists
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design in vitro and preclinical animal studies employing W. somnifera metabolites, with an
emphasis on the promising NMT inhibitors we have discovered.

Author Contributions: Conceptualization, M.A.A.O., M.E.A. and E.-S.A.-S.; methodology, M.M.A.,
A.M.S., K.A.S. and M.E.A.; software, A.M.S., K.A.S. and M.E.A.; validation, A.M.S., K.A.S. and
M.E.A.; formal analysis, A.M.S., K.A.S. and M.E.A.; investigation, M.A.A.O., E.-S.A.-S., A.M.S.,
K.A.S. and M.E.A.; resources, M.M.A., A.M.S., K.A.S. and M.E.A.; data curation, M.M.A., A.M.S.,
K.A.S. and M.E.A.; writing—original draft preparation, M.M.A., M.A.A.O., E.-S.A.-S. and M.E.A.;
writing—review and editing, M.A.A.O.; visualization, M.M.A., A.M.S., K.A.S. and M.E.A.; supervi-
sion, M.A.A.O.; project administration, M.A.A.O. and E.-S.A.-S.; funding acquisition, M.A.A.O. All
authors have read and agreed to the published version of the manuscript.

Funding: The authors are thankful to the Deanship of Scientific Research at Najran University,
Saudi Arabia, for funding this research under the National Research Priority Funding Program
(NU/NRP/MRC/11/8).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data, which include the 2D and 3D structures of the compounds
under investigation, are obtainable from the corresponding author upon request.

Acknowledgments: The authors are thankful to the Deanship of Scientific Research at Najran Uni-
versity, Saudi Arabia, for funding this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Orabi, M.A.; Zidan, S.A.; Sakagami, H.; Murakami, Y.; Ali, A.A.; Alyami, H.S.; Alshabi, A.M.; Matsunami, K. Antileishmanial and

lung adenocarcinoma cell toxicity of Withania somnifera (Linn.) dunal root and fruit extracts. Nat. Prod. Res. 2022, 36, 4231–4237.
[CrossRef]

2. Brannigan, J.A.; Wilkinson, A.J. Drug discovery in leishmaniasis using protein lipidation as a target. Biophys. Rev. 2021, 13,
1139–1146. [CrossRef] [PubMed]

3. Riezk, A.; Raynes, J.G.; Yardley, V.; Murdan, S.; Croft, S.L. Activity of chitosan and its derivatives against Leishmania major and
Leishmania mexicana in vitro. Antimicrob. Agents Chemother. 2020, 64, e01772-19. [CrossRef] [PubMed]

4. Zidan, S.A.; Abdelhamid, R.A.; Alian, A.; Fouad, M.A.; Matsunami, K.; Orabi, M.A. Diterpenes and sterols from the Red Sea soft
coral Sarcophyton trocheliophorum and their cytotoxicity and anti-leishmanial activities. J. Asian Nat. Prod. Res. 2022, 24, 794–802.
[CrossRef]

5. Corpas-Lopez, V.; Moniz, S.; Thomas, M.; Wall, R.J.; Torrie, L.S.; Zander-Dinse, D.; Tinti, M.; Brand, S.; Stojanovski, L.; Manthri, S.
Pharmacological validation of N-myristoyltransferase as a drug target in Leishmania donovani. ACS Infect. Dis. 2018, 5, 111–122.
[CrossRef] [PubMed]

6. Rao, V.S.; Srinivas, K. Modern drug discovery process: An in silico approach. J. Bioinform. Seq. Anal. 2011, 2, 89–94.
7. Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies.

Molecules 2015, 20, 13384–13421. [CrossRef]
8. Alamzeb, M.; Ali, S.; Mamoon-Ur-Rashid; Khan, B.; Ihsanullah; Adnan; Omer, M.; Ullah, A.; Ali, J.; Setzer, W.N. Antileishmanial

Potential of Berberine Alkaloids from Berberis glaucocarpa Roots: Molecular Docking Suggests Relevant Leishmania Protein Targets.
Nat. Prod. Commun. 2021, 16, 1934578X211031148. [CrossRef]

9. Istanbullu, H.; Bayraktar, G. Toward New Antileishmanial Compounds: Molecular Targets for Leishmaniasis Treatment. In
Leishmaniasis—General Aspects of a Stigmatized Disease; de Azevedo Calderon, L., Ed.; IntechOpen: London, UK, 2021; p. 256.

10. Hassan, A.A.; Khalid, H.E.; Abdalla, A.H.; Mukhtar, M.M.; Osman, W.J.; Efferth, T. Antileishmanial Activities of Medicinal Herbs
and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021. Molecules 2022, 27, 7579. [CrossRef]

11. Wright, M.H.; Paape, D.; Storck, E.M.; Serwa, R.A.; Smith, D.F.; Tate, E.W. Global analysis of protein N-myristoylation and
exploration of N-myristoyltransferase as a drug target in the neglected human pathogen Leishmania donovani. Chem. Biol. 2015, 22,
342–354. [CrossRef] [PubMed]

12. McKean, P.G.; Delahay, R.; Pimenta, P.F.; Smith, D.F. Characterisation of a second protein encoded by the differentially regulated
LmcDNA16 gene family of Leishmania major. Mol. Biochem. Parasitol. 1997, 85, 221–231. [CrossRef] [PubMed]

13. Towler, D.; Eubanks, S.; Towery, D.; Adams, S.; Glaser, L. Amino-terminal processing of proteins by N-myristoylation. Substrate
specificity of N-myristoyl transferase. J. Biol. Chem. 1987, 262, 1030–1036. [CrossRef] [PubMed]

14. Frearson, J.A.; Brand, S.; McElroy, S.P.; Cleghorn, L.A.; Smid, O.; Stojanovski, L.; Price, H.P.; Guther, M.L.S.; Torrie, L.S.; Robinson,
D.A. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 2010, 464, 728–732. [CrossRef]

http://doi.org/10.1080/14786419.2021.1973462
http://doi.org/10.1007/s12551-021-00855-0
http://www.ncbi.nlm.nih.gov/pubmed/35035594
http://doi.org/10.1128/AAC.01772-19
http://www.ncbi.nlm.nih.gov/pubmed/31871082
http://doi.org/10.1080/10286020.2021.1979522
http://doi.org/10.1021/acsinfecdis.8b00226
http://www.ncbi.nlm.nih.gov/pubmed/30380837
http://doi.org/10.3390/molecules200713384
http://doi.org/10.1177/1934578X211031148
http://doi.org/10.3390/molecules27217579
http://doi.org/10.1016/j.chembiol.2015.01.003
http://www.ncbi.nlm.nih.gov/pubmed/25728269
http://doi.org/10.1016/S0166-6851(97)02829-6
http://www.ncbi.nlm.nih.gov/pubmed/9106195
http://doi.org/10.1016/S0021-9258(19)75745-7
http://www.ncbi.nlm.nih.gov/pubmed/3100524
http://doi.org/10.1038/nature08893


Metabolites 2023, 13, 93 21 of 25

15. Price, H.P.; Menon, M.R.; Panethymitaki, C.; Goulding, D.; McKean, P.G.; Smith, D.F. Myristoyl-CoA: Protein N-
myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J. Biol. Chem. 2003, 278,
7206–7214. [CrossRef] [PubMed]

16. Glover, C.J.; Hartman, K.D.; Felsted, R.L. Human N-myristoyltransferase amino-terminal domain involved in targeting the
enzyme to the ribosomal subcellular fraction. J. Biol. Chem. 1997, 272, 28680–28689. [CrossRef] [PubMed]

17. Herrera, L.J.; Brand, S.; Santos, A.; Nohara, L.L.; Harrison, J.; Norcross, N.R.; Thompson, S.; Smith, V.; Lema, C.; Varela-Ramirez,
A. Validation of N-myristoyltransferase as potential chemotherapeutic target in mammal-dwelling stages of Trypanosoma cruzi.
PLoS Negl. Trop. Dis. 2016, 10, e0004540. [CrossRef]

18. Hutton, J.A.; Goncalves, V.; Brannigan, J.A.; Paape, D.; Wright, M.H.; Waugh, T.M.; Roberts, S.M.; Bell, A.S.; Wilkinson, A.J.;
Smith, D.F. Structure-based design of potent and selective Leishmania N-myristoyltransferase inhibitors. J. Med. Chem. 2014, 57,
8664–8670. [CrossRef]

19. Åsberg, P.; Hammer, K.; Olsson, J.; Henriksson, M. Novel Compounds and Their Use in Therapy. U.S. Patent No WO2013009259,
17 January 2013.

20. Rackham, M.D.; Yu, Z.; Brannigan, J.A.; Heal, W.P.; Paape, D.; Barker, K.V.; Wilkinson, A.J.; Smith, D.F.; Leatherbarrow, R.J.;
Tate, E.W. Discovery of high affinity inhibitors of Leishmania donovani N-myristoyltransferase. MedChemComm 2015, 6, 1761–1766.
[CrossRef]

21. Bell, A.S.; Yu, Z.; Hutton, J.A.; Wright, M.H.; Brannigan, J.A.; Paape, D.; Roberts, S.M.; Sutherell, C.L.; Ritzefeld, M.; Wilkinson,
A.J. Novel thienopyrimidine inhibitors of Leishmania N-myristoyltransferase with on-target activity in intracellular amastigotes.
J. Med. Chem. 2020, 63, 7740–7765. [CrossRef]

22. Olaleye, T.O.; Brannigan, J.A.; Roberts, S.M.; Leatherbarrow, R.J.; Wilkinson, A.J.; Tate, E.W. Peptidomimetic inhibitors of
N-myristoyltransferase from human malaria and leishmaniasis parasites. Org. Biomol. Chem. 2014, 12, 8132–8137. [CrossRef]

23. Paul, S.; Chakraborty, S.; Anand, U.; Dey, S.; Nandy, S.; Ghorai, M.; Saha, S.C.; Patil, M.T.; Kandimalla, R.; Proćków, J. Withania
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