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Abstract 

Background: Atherosclerosis is a chronic inflammatory disease that affects multiple arteries. Numerous studies have 

shown the inherent immune diversity in atheromatous plaques and suggest that the dysfunction of different immune 

cells plays an important role in atherosclerosis. However, few comprehensive bioinformatics analyses have investi-

gated the potential coordinators that might orchestrate different immune cells to exacerbate atherosclerosis.

Methods: Immune infiltration of 69 atheromatous plaques from different arterial beds in GSE100927 were explored 

by single-sample-gene-set enrichment analysis (presented as ssGSEA scores), ESTIMATE algorithm (presented as 

immune scores) and CIBERSORT algorithm (presented as relative fractions of 22 types of immune cells) to divide these 

plaques into ImmuneScoreL cluster (of low immune infiltration) and ImmuneScoreH cluster (of high immune infiltra-

tion). Subsequently, comprehensive bioinformatics analyses including differentially-expressed-genes (DEGs) analysis, 

protein–protein interaction networks analysis, hub genes analysis, Gene-Ontology-terms and KEGG pathway enrich-

ment analysis, gene set enrichment analysis, analysis of expression profiles of immune-related genes, correlation 

analysis between DEGs and hub genes and immune cells were conducted. GSE28829 was analysed to cross-validate 

the results in GSE100927.

Results: Immune-related pathways, including interferon-related pathways and PD-1 signalling, were highly enriched 

in the ImmuneScoreH cluster. HLA-related (except for HLA-DRB6) and immune checkpoint genes (IDO1, PDCD-1, 

CD274(PD-L1), CD47), RORC, IFNGR1, STAT1 and JAK2 were upregulated in the ImmuneScoreH cluster, whereas FTO, 

CRY1, RORB, and PER1 were downregulated. Atheromatous plaques in the ImmuneScoreH cluster had higher propor-

tions of M0 macrophages and gamma delta T cells but lower proportions of plasma cells and monocytes (p < 0.05). 
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Background
Increasing evidence has demonstrated that atheroscle-

rosis (AS) is a systemic chronic inflammatory disease of 

the arterial wall that results from the accumulation of 

lipoprotein and the activation of diverse dysregulated 

immune cells [1–4]. Previous studies have also shown 

that the upregulation of the leukocyte levels of the 

N6-methyladenosine (m6A) modification and the dis-

ruption of circadian clocks are proatherogenic [5, 6]. In 

addition, the metabolic changes driven by rhythms of 

the circadian clock of immune cells could direct their 

immune output [7]. Although some immune cells have 

been proposed as potential therapeutic targets of ather-

osclerosis [8–10], the specific roles of different immune 

cells and the mechanism regulating their coordination 

with each other in atherosclerosis remain unclear. �e 

molecular interactions between the circadian clocks 

and the immune system output in atherosclerosis are 

manifold and have not been fully documented. Further-

more, the role of the N6-methyladenosine (m6A) modi-

fication of different clock genes in different leukocytes 

in atherosclerotic lesions remains to be explored.

Given all the above-mentioned findings and prob-

lems, we hypothesized that more advanced stages of AS 

might be related to higher immune infiltration and dif-

ferent expression levels of immune checkpoint genes, 

m6A-related genes and circadian clock genes. Although 

the development of atherosclerosis in distinct vascular 

regions responds differently to common risk factors 

[11, 12] and the immune-related gene signatures show 

heterogeneity between different atherosclerotic lesions 

[13, 14], we presumed that some common genes or 

immune-related pathways might play important roles 

in the development of atherosclerosis. In this study, 

we conducted a comprehensive computational bioin-

formatic analysis using GSE100927 [14] and GSE28829 

[15] to identify potential pathways and genes that might 

coordinate different immune cells to contribute to the 

progression of atherosclerosis (Fig. 1).

Methods
Data acquisition

�e GSE100927 dataset was downloaded from the Gene 

Expression Omnibus (GEO) database (http:// www. ncbi. 

nlm. nih. gov/ geo/) [16]. �e GSE100927 dataset includes 

29 atheromatous carotid plaques, 26 atheromatous fem-

oral plaques, 14 atheromatous infra-popliteal plaques, 

12 control samples obtained from healthy carotid arter-

ies, 12 control samples obtained from healthy femoral 

arteries, and 11 control samples obtained from healthy 

infra-popliteal arteries. Expression profiling arrays 

of GSE100927 were generated using GPL17077 (Agi-

lent-039494 SurePrint G3 Human GE v2 8 × 60 K Micro-

array 039,381). Additionally, the GSE28829 dataset, 

which consists of 16 clinically proven advanced-stage 

atheromatous carotid plaques and 13 early-stage ather-

omatous carotid plaques, was downloaded from the GEO 

database. Expression profiling arrays of GSE28829 were 

generated using GPL570 (HG-U133_Plus_2, Affymetrix 

Human Genome U133 Plus 2.0 Array). �e batch effects 

between different datasets or different groups or different 

samples were eliminated using the limma R package (ver-

sion 3.40.6) [17].

Estimation of the immune and stromal scores 

in atheromatous plaques

Single-sample gene-set enrichment analysis (ssGSEA) 

was conducted to analyse the immune cell types pre-

sent in all the samples of the GSE100927 and GSE28829 

datasets using the GSVA R package(version 1.32.0) [18]. 

�e enrichment of an immune cell type meta-gene in a 

given sample was scored (ssGSEA score) based on a set 

of metagenes for 28 immune cell subpopulations [19]. 

Note that these enrichments should not be interpreted as 

deconvolutions of actual cell-type proportions. �e pres-

ence of infiltrated immune cells and stromal cells in the 

atheromatous plaques was further evaluated by immune 

and stromal scores calculated using the ESTIMATE 

algorithm using gene-level expression data (Estimate R 

package, version 1.0.11) [20]. �e different immune cell 

compositions in atheromatous plaques were assessed 

CAPG, CECR1, IL18, IGSF6, FBP1, HLA-DPA1 and MMP7 were commonly related to these immune cells. In addition, the 

advanced-stage carotid plaques in GSE28829 exhibited higher immune infiltration than early-stage carotid plaques.

Conclusions: Atheromatous plaques with higher immune scores were likely at a more clinically advanced stage. The 

progression of atherosclerosis might be related to CAPG, IGSF6, IL18, CECR1, FBP1, MMP7, FTO, CRY1, RORB, RORC, 

PER1, HLA-DPA1 and immune-related pathways (IFN-γ pathway and PD-1 signalling pathway). These genes and path-

ways might play important roles in regulating immune cells such as M0 macrophages, gamma delta T cells, plasma 

cells and monocytes and might serve as potential therapeutic targets for atherosclerosis.

Keywords: Atherosclerosis, Immune infiltration, ESTIMATE algorithm, Circadian clock
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using the CIBERSORT algorithm and an LM22 leukocyte 

signature matrix as the input matrix of reference gene 

expression signatures [21]. �e heterogeneity of immune 

infiltration among healthy artery samples and different 

atheromatous plaques and the correlation between differ-

ent types of immune cells were explored.

Consensus clustering and hierarchical cluster analysis 

of atheromatous plaques

�e consensus clustering of different atheromatous 

plaques was performed using the ConsensusClusterPlus 

R package (version 1.48.0) based on the ssGSEA scores 

of infiltrated immune cells [22]. �e Euclidean distances 

between samples were calculated. For the classification 

of atheromatous plaques into different subgroups, an 

unsupervised k-means clustering analysis using Euclid-

ean distances was adopted for consensus clustering with 

1000 repetitions. Hierarchical cluster analysis based on 

ssGSEA scores using Ward.D2 methods and Euclidean 

distances were performed for atheromatous plaques in 

each dataset (Stats R package, version 3.6.1).

GO and KEGG pathway enrichment analysis

Fold changes (FCs) in gene expression values were calcu-

lated for atheromatous plaques in different groups, and 

the Benjamini–Hochberg method was used to adjust the 

ssGSEA,

consensus clustering  

ESTIMATE 

algorithm 

GSE100927 (N=104)

GSE28829 

(29 atheromatous carotid plaques)

atheromatous plaques

(N=69)

unpaired healthy artery samples

(N=35)

ssGSEA,

consensus clustering  

ESTIMATE 

algorithm

CIBERSORT algorithm(LM22)

AND

Correlation within the distinct 

immune cell fractions

4 Clusters

differentially expressed 

genes analysis

immuneScoreH(N=16) immuneScoreL(N=13)

15 advanced-stage atheromatous carotid plaques 1 advanced-stage atheromatous carotid plaque

1 early-stage atheromatous carotid plaque 12 early-stage atheromatous carotid plaques

p value < 0.001

immuneScoreH(N=37) immuneScoreL(N=32)

28 atheromatous carotid plaques 1 atheromatous carotid plaque

8 atheromatous femoral plaques 18 atheromatous femoral plaques

1 atheromatous infra-popliteal plaque 13 atheromatous infra-popliteal plaques

p value < 0.001

GO and KEGG

pathway enrichment 

Protein-protein 

interaction network

GSEA

(KEGG / REACTOME)

Comparison of expression values of potential immune 

pathways related genes between different groups

correlation analysis to identify 

common genes relate to different 

types of immune cells

Comparison of expression values of potential immune 

regulators related genes between different groups

Fig. 1 Analysis pipeline of expression values from microarrays. The expression values of GSE100927 and GSE28829 were analysed according to the 

pipeline. The atheromatous plaques in GSE100927 and GSE28829 were divided into a cluster with low immune scores (ImmuneScoreL cluster) and 

a cluster with high immune scores (ImmuneScoreH cluster) according to the degree of immune infiltration. The distribution of clinically proven 

early-stage and advanced-stage carotid plaques in GSE28829 was statistically significant (p < 0.001), and the distribution of atheromatous plaques 

from different peripheral arteries in GSE100927 was statistically significant (p < 0.001)
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original p values. �e criteria |log2 FC|> 1 and adjusted 

p < 0.05 were used to identify the differentially expressed 

genes (DEGs) between the ImmuneScoreH cluster and 

other samples (including the healthy controls and Immu-

neScoreL cluster) in GSE100927(limma R package, 

version 3.40.6). Gene Ontology (GO) and Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) pathway enrich-

ment analyses of these DEGs were performed using the 

clusterProfiler R package(version 3.12.0) [23]. �e GO 

annotation included biological process (BP), molecular 

function (MF), and cellular component (CC) categories. 

In addition, the DEGs between the ImmuneScoreH and 

ImmuneScoreL clusters in GSE100927 were identified 

using the same method.

Construction of the protein–protein interaction (PPI) 

network

PPI networks of the DEGs between the ImmuneScoreH 

cluster and other samples (including the healthy controls 

and ImmuneScoreL cluster) in GSE100927 were con-

structed using the search tool for the retrieval of inter-

acting genes (STRING database, V11.0; http:// string- db. 

org/), which predicts protein functional associations and 

PPIs. After downloading the results from the STRING 

database with a confidence score > 0.9, Cytoscape soft-

ware (V3.7.2; http:// cytos cape. org/) was applied to 

visualize and analyse the biological networks and node 

degrees. Twelve algorithms on CytoHubba (version 

0.1) were used to identify the hub genes. Genes with 

degree > 30 were identified as hub genes. �ese hub genes 

together with the DEGs between the ImmuneScoreH and 

ImmuneScoreL clusters in GSE100927 were analysed 

using Pearson correlation coefficients to identify com-

mon genes related to the relative percentages of immune 

cells in each sample.

Gene set enrichment analysis (GSEA)

�e expression profiles of healthy samples and atheroma-

tous plaques and the expression profiles of different sub-

types of atheromatous plaques in GSE100927 were used 

for GSEA using software provided by the Massachusetts 

Institute of Technology (version 4.1.0) [24]. �e KEGG 

and REACTOME subsets of canonical pathways (CPs) 

of MSigDB (V7.1, https:// www. gsea- msigdb. org/ gsea/ 

msigdb/ index. jsp), which contains gene sets derived from 

the KEGG and Reactome pathway databases, were used 

as the a priori knowledge for the GSEA. �e NES and a 

FDR < 0.25 were used to quantify the enrichment magni-

tude and statistical significance.

Expression pro�les of genes of interest

�e expression profiles of HLA molecules, immune 

checkpoint molecules, m6A regulators, circadian 

rhythm-related genes, and IFN-γ signalling pathway-

related genes (Additional file 6: Supplementary Table 1) 

were explored and compared between healthy artery 

samples and atheromatous plaques. �e expression pro-

files of these genes were also explored and compared 

between different clusters of atheromatous plaques.

Statistical analysis

All statistical analyses in this study were performed 

using R version 3.6.1. �e expression profiles of genes of 

interest or predefined gene sets between clusters were 

compared using the Mann–Whitney-Wilcoxon test. 

�e correlation among variables was evaluated with the 

Pearson correlation coefficient. Fisher’s exact test was 

used for nominal variables. A p value < 0.05 was consid-

ered statistically significant. Where appropriate, p values 

were corrected for multiple testing using the Benjamini–

Hochberg false discovery rate method.

Results
Subtypes of atheromatous plaques in GSE100927

�e gene expression profiles of 69 atheromatous plaques 

and 35 healthy samples in the dataset GSE100927 were 

obtained from the GEO database. �e relationship 

between these samples was evaluated by principal com-

ponent analysis (PCA), and the intergroup distances were 

greater than the inner-group distances (Additional file 1: 

Figure S1A). �e enrichment of an immune cell type 

meta-gene in a given sample was scored (ssGSEA score). 

Hierarchical clustering of the ssGSEA scores showed 

that all 104 samples were distributed into three distinct 

groups: a healthy group, a low immune infiltration group, 

and a high immune infiltration group. Healthy artery 

samples were mainly gathered into the healthy group, 

and atheromatous plaques were mainly gathered into the 

low and high immune infiltration groups. Notably, the 

atheromatous carotid plaques had higher ssGSEA scores 

than other plaques (Fig. 2A). An unsupervised consensus 

clustering analysis was performed to classify all 69 ath-

eromatous plaques in GSE100927 based on their ssGSEA 

scores, and the cumulative distribution function (CDF) 

curve showed that k = 4 was an optimal choice (Addi-

tional file  1: Figure S1B–H). �erefore, the 69 ather-

omatous plaques in GSE100927 were grouped into four 

distinct subgroups (Fig. 2B). Based on the immune scores 

and stromal scores calculated using the ESTIMATE 

algorithm (Fig. 2C, D), the four subgroups (Fig. 2B, sub-

group1/2/3/4 in Fig. 2E) of the 69 atheromatous plaques 

were divided into a cluster with high immune scores 

(ImmuneScoreH cluster) and a cluster with low immune 

scores (ImmuneScoreL cluster) (Fig. 2E). We found that 

all but one of the atheromatous carotid plaques were in 

the ImmuneScoreH cluster. Furthermore, we evaluated 

http://string-db.org/
http://string-db.org/
http://cytoscape.org/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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the fraction of immune cells in different groups of ather-

omatous plaques using the CIBERSORT algorithm. Fig-

ure  2F showed the different distributions of 21 types of 

immune cells in the 69 atheromatous plaques. �e ath-

eromatous plaques in the ImmuneScoreH cluster had a 

higher proportion of M0 macrophages and gamma delta 

T cells but a lower proportion of plasma cells and mono-

cytes (Additional file 2: Figure S2A, B). Moreover, plasma 

cells were positively correlated with resting mast cells 

(r = 0.55, p < 0.001, Additional file 2: Figure S2C), and M0 

macrophages were negatively correlated with activated 

NK cells (r = − 0.63, p < 0.001, Additional file  2: Figure 

S2C).

Subtypes of atheromatous plaques in GSE28829

To explore whether results of unsupervised K-means 

clustering (using ssGSEA scores as input) is consistent 

with clustering results of immune scores (calculated by 

ESTIMATE algorithm) in a dataset with small sample 

size(n < 30), and to explore whether higher immune infil-

tration is correlated with more advanced atherosclerosis, 

we analysed the immune infiltration of atheromatous 

plaques in GSE28829. As shown in Additional file 3: Fig-

ure S3A, the 29 atheromatous plaques in GSE28829 were 

grouped into two distinct groups based on the ssGSEA 

analysis. �e cluster dendrogram also showed that all 

the samples were divided into two groups (Additional 

file  3: Figure S3B). An unsupervised consensus cluster-

ing analysis of all 29 atheromatous plaques in GSE28829 

based on the ssGSEA score showed that k = 2 was an 

optimal choice (Additional file  3: Figure S3C, D, sub-

group1/2 in Additional file 3: Figure S3E). Based on the 

immune scores and stromal scores calculated using the 

ESTIMATE algorithm, the 29 atheromatous plaques were 

divided into the ImmuneScoreH and ImmuneScoreL 

clusters (Additional file  3: Figure S3E). �e distribution 

Fig. 2 Atherosclerosis subtypes and distinct infiltrated immune cells in the samples in the GSE100927 dataset. A Heatmap of ssGSEA scores 

of all 104 samples in GSE100927 that were clustered based on the Euclidean distance using the Ward.D2 method. B Consensus clustering of 

ssGSEA scores of 69 atheromatous plaques based on the Euclidean distance using the k-means clustering method with k = 4. C, D Violin plots 

of stromal scores and immune scores in the plaques with high immune scores (ImmuneScoreH cluster) and the plaques with low immune 

scores (ImmuneScoreL cluster) of the 69 atheromatous plaques based on the ESTIMATE algorithm. E Heatmap of ssGSEA scores of four 

subgroups (subgroup1-4 which were divided using the k-means clustering method with k = 4 in B) and two clusters (ImmuneScoreH cluster and 

ImmuneScoreL cluster based on the immune score calculated by ESTIMATE algorithm) of the 69 atheromatous plaques in GSE100927. F Immune 

infiltration landscape in the four subgroups and two clusters of 69 atheromatous plaques demonstrated in E 
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of clinically proven early-stage and advanced-stage ath-

eromatous plaques in the two clusters was statistically 

significant (Fig.  1). �e ImmuneScoreL cluster of ath-

eromatous plaques in GSE100927 (Additional file  2: 

Figure S2A) and GSE28829 (Additional file  3: Figure 

S3F) contained relatively higher proportions of plasma 

cells (p < 0.05) and monocytes (p < 0.05). In contrast, 

M0 macrophages (p < 0.05) and gamma delta T cells 

(p < 0.05) were present at relatively higher proportions 

in the ImmuneScoreH cluster. To further demonstrate 

the immune infiltration in health controls to atheroma-

tous plaques derived from different datasets, we pooled 

GSE28829 and GSE100927. After removing batch effects, 

ssGSEA socres of different immune cell types in these 

pooled samples were calculated. Healthy arteries were of 

lower immune infiltration (Additional file 3: Figure S3G).

Gene set enrichment analysis (GSEA) of GSE100927

Multiple immune-related pathways were highly 

enriched in atheromatous plaques (vs. healthy artery 

samples, Additional file  3: Fig.  3A–F), and these 

pathways included the B cell receptor signalling path-

way (normalized enrichment score (NES) = 1.5637, 

false discovery rate (FDR) = 0.2085), leukocyte transen-

dothelial migration (NES = 1.4851, FDR = 0.1689), nat-

ural killer cell-mediated cytotoxicity (NES = 1.5498, 

FDR = 0.1852), T cell receptor signalling pathway 

(NES = 1.5517, FDR = 0.1952), primary immunodefi-

ciency (NES = 1.4222, FDR = 0.1732), and antigen pro-

cessing and presentation (NES = 1.5726, FDR = 0.2379). 

�ese six immune-related pathways were also highly 

enriched in the ImmuneScoreH group (vs. the Immune-

ScoreL group, Additional file 4: Fig. 4A–F). In addition, 

interferon-related pathways (Fig.  4G–J), PD-1 signalling 

(Fig.  4K, NES = 1.4343, FDR = 0.1613) and neutrophil 

degranulation (Fig.  4L, NES = 1.6372, FDR = 0.1153) 

were highly enriched in the ImmuneScoreH group (vs. 

the ImmuneScoreL group). To cross-validate these find-

ings, we also performed GSEA for GSE28829. We found 

that these pathways were also highly enriched in the 

ImmuneScoreH cluster (vs. the ImmuneScoreL cluster) 

of GSE28829 (Additional file 4: Figure S4A–L).
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Fig. 3 Gene set enrichment analysis (GSEA) comparing atheromatous plaques with healthy control samples of GSE100927. KEGG canonical 

pathways were used as the a priori information for the GSEA. A Primary immunodeficiency, B leukocyte transendothelial migration, C antigen 

processing and presentation, D natural killer cell-mediated cytotoxicity, E T cell receptor signalling pathway, and F B cell receptor signalling pathway 

were highly enriched in atheromatous plaques
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Correlation between atherosclerosis and genes of interest 

in GSE100927

Based on the above-presented results, we further 

explored immune-related genes, including HLA mole-

cule-related genes, immune checkpoint-related genes, 

IFN-γ pathway-related genes, circadian rhythm-related 

genes, and m6A methylation regulator-related genes 

(Additional file  6: Supplementary Table  1). Eighty of 

these genes were detected in GSE100927 (Fig. 5). The 

expression of these 80 genes were compared between 

atheromatous plaques and healthy control artery sam-

ples (Fig.  5A–E), as well as between plaques of high 

immune scores (ImmuneScoreH cluster) and low 

immune scores (ImmuneScoreL cluster) (Fig.  5F–J). 

Fifty out of these 80 genes showed the same trends in 

both sets of comparisons and were statistically differ-

ent, including HLA-DPA1, PDCD-1, CD274(PD-L1), 

CD47, IFNGR1, STAT1, JAK2, FTO, RORB, RORC, 

CRY1 and PER1. Only eight genes were of no statis-

tical difference in both sets of comparisons (Fig.  5k). 

These findings were cross-validated in GSE28829. 

Thirty-four genes of interest were statistically different 

between immuneScoreH cluster and immuneScoreL 

cluster in GSE28829 (Additional file 5: Figure S5A–E). 

Thirty-one of these 34 genes showed the same trends 

when compared between immuneScoreH cluster and 

immuneScoreL cluster in GSE100927 (Additional 

file 5: Figure S5F).
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Fig. 4 Gene set enrichment analysis (GSEA) comparing atheromatous plaques in the ImmuneScoreH cluster with those in the ImmuneScoreL 

cluster of GSE100927. A–F KEGG canonical pathways were used as the a priori knowledge for the GSEA. A Primary immunodeficiency, B leukocyte 

transendothelial migration, C antigen processing and presentation, D natural killer cell-mediated cytotoxicity, E T cell receptor signalling pathway, 

and F B cell receptor signalling pathway were highly enriched in the ImmuneScoreH cluster. G–L The REACTOME subset of canonical pathways 

was used as the a priori information for the GSEA. G–J Interferon-related pathways, K PD-1 signalling, and L neutrophil degranulation were highly 

enriched in the ImmuneScoreH cluster
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Identi�cation of the DEGs and hub genes of GSE100927

�e comparison of the ImmuneScoreH cluster with the 

other samples (including the healthy controls and Immu-

neScoreL cluster) identified 698 DEGs (Additional file 7: 

Supplementary Table  2, 216 upregulated DEGs and 482 

downregulated DEGs) (Fig. 6A). Most of the DEGs in the 

ImmuneScoreH cluster were enriched in KEGG path-

ways such as haematopoietic cell lineage and phagosome 

(Fig. 6B). In addition, most of these DEGs were enriched 

in biological functions such as neutrophil activation, neu-

trophil degranulation, neutrophil-mediated immunity, 

and leukocyte migration (Fig.  6C). �e protein–protein 

interaction network of these genes is shown in Fig. 6D. In 

addition, 19 hub genes (PTPN6, HLA-DRA, HLA-DRB1, 

VAMP8, ITGB2, ITGAM, CXCL1, CYBB, FCER1G, 

CYBA, HLA-DRB5, HLA-DQB1, HLA-DQA1, HLA-

DQB2, HLA-DPB1, HLA-DPA1, LCK, HLA-DQA2, 

and PTPRJ; all with degrees > 30) were identified in the 

ImmuneScoreH cluster (Fig.  6E). �e overlaps between 

the 698 DEGs, 19 hub genes, 80 detected genes of interest 

and 782 metagenes of ESTIMATE were shown in Fig. 6F. 

In addition, 284 DEGs (177 upregulated DEGs and 107 

downregulated DEGs) were identified in the ImmuneS-

coreH cluster compared with the ImmuneScoreL cluster 

(Additional file 8: Supplementary Table 3). �e overlaps 

between the 284 DEGs, 19 hub genes, 80 detected genes 

of interest and 782 metagenes in ESTIMATE were shown 

in Fig. 6G.

Identi�cation of common genes related to the relative 

percentages of immune cells in GSE100927

In the ImmuneScoreL cluster, actin regulatory protein 

CAP-G (CAPG), immunoglobulin superfamily member 

6 (IGSF6), interleukin-18 (IL18), cat eye syndrome criti-

cal region protein 1 (CECR1), fructose-bisphosphatase 

1 (FBP1), and HLA-DPA1 were positively related to the 

Fig. 5 Comparison of the expression of genes related to different 

immune regulators in GSE100927. ns: p > 0.05, *p <  = 0.05, **p  ≤ 0.01, 

***p  ≤ 0.001, ****p  ≤ 0.0001. 80 genes were detected in GSE100927. 

A–E were a set of comparisons between atheromatous plaques and 

healthy control: A box plot comparing the expression of human 

leukocyte antigen (HLA)-related genes, B immune checkpoint-related 

genes, C IFN-γ pathway marker genes, D m6A methylation 

regulator-related genes, E circadian rhythm-related genes. F–J 

were a set of comparisons between atheromatous plaques in the 

ImmuneScoreH cluster with that in atheromatous plaques in the 

ImmuneScoreL cluster: F Box plot comparing the expression of 

HLA-related genes, G immune checkpoint-related genes, H IFN-γ 

pathway marker genes, I m6A methylation regulator-related genes, J 

circadian rhythm-related genes. K Summarized the consistent results 

between the two sets of comparisons (atheromatous plaques vs. 

healthy controls/ImmunceScoreH cluster vs. ImmunceScoreL cluster)

▸
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proportion of M0 macrophages and gamma delta T cells 

but negatively related to the proportion of plasma cells 

or monocytes (Fig.  7A, B). In the ImmuneScoreH clus-

ter, CAPG and matrix metallopeptidase 7 (MMP7) were 

positively related to the proportion of M0 macrophages 

and gamma delta T cells but negatively related to the pro-

portion of plasma cells or monocytes (Fig.  7C, D). �e 

relationships were the same for the CAPG and plasma 

cells / monocytes / M0 macrophages in the health sam-

ples (Fig. 7E, F).

Discussion
Atherosclerosis is a systemic chronic inflammatory dis-

ease associated with activated innate immune response 

[25]. A better understanding of immune infiltration in 

different plaques might provide a better understanding 

of atherosclerosis. In our study, we first deemed that the 

ESTIMATE algorithm might be appropriate for assess-

ing the immune infiltration of different plaques because 

the gene sets used for estimating stromal and immune 

scores in the ESTIMATE algorithm are filtered by a 

dataset of gene expression in normal tissues (GSE1133, 

including smooth muscle, endothelium, heart, and hae-

matopoietic cells) [20]. �en, an unsupervised consensus 

clustering of ssGSEA scores and the ESTIMATE algo-

rithm were used successively to classify the plaques. As 

expected, in GSE100927, ImmuneScoreH cluster has 

higher ssGSEA scores than ImmuneScoreL group, indi-

cating that the clustering of immune scores calculated 

by ESTIMATE algorithm were consistent with the unsu-

pervised consensus clustering of ssGSEA score (Fig. 2E). 

Meanwhile, the results obtained from the application of 

the ESTIMATE algorithm to GSE28829, a dataset with 

small sample size (n = 29), were consistent not only with 

the unsupervised consensus clustering results but also 

with the different clinical stages of these carotid plaques 

(Additional file 3: Figure S3E), reinforcing the feasibility 

of applying ssGSEA and ESTIMATE algorithm to the 

classification of atheromatous plaques. In addition, the 

analysis of GSE100927 gathered most plaques from the 

infrapopliteal and femoral arteries into clusters different 

from those that included most plaques from the carotid 

artery (Fig.  2E), which indicated the distinct heteroge-

neity of immune infiltration in different atherosclerotic 

lesions. �ese findings suggest that plaques with higher 

immune infiltration might be at a more advanced stage of 

atherosclerosis.

In this study, we identified 12 immune-related path-

ways that might play important roles in atherosclerosis 

development by GSEA: seven pathways were related to 

immune cells, four pathways were related to interferon, 

and the other pathway was related to PD-1 signalling. 

�ese results, together with those from previous studies 

that explored the function of IFN-γ [26, 27] and PD-1/

PD-L1 inhibitors [28], suggest that the inhibition of 

IFN-γ and PD-1/PD-L1 might reduce atherosclerosis. In 

addition, nine of the 19 hub genes belonged to major his-

tocompatibility complex (MHC) class II (HLA-DP, HLA-

DQ, and HLA-DR), which present antigens from outside 

a cell to T lymphocytes. All these results indicate that the 

IFN-γ pathway and PD-1 signalling pathway might serve 

as potential targets in atherosclerosis therapy.

Many types of immune cells have been proven to pos-

sess intrinsic clocks, and these cell types include mac-

rophages [29], monocytes [30], neutrophils [31], natural 

killer (NK) cells [32], mast cells and eosinophils [33]. Cir-

cadian clock and m6A for the function of the circadian 

clock have emerged as important gatekeepers for differ-

ent immune functions [34, 35]. In this study, we revealed 

that RORB, RORC, PER1, CRY1, FTO were in close rela-

tionship with atherosclerosis, particularly in atheroscle-

rotic lesions with higher immune infiltration. While it’s 

been reported that the demethylase FTO (alpha-ketoglu-

tarate-dependent dioxygenase) coimmunoprecipitates 

Fig. 6 Differentially expressed genes (DEGs) and hub genes in the ImmuneScoreH cluster (vs. the ImmuneScoreL cluster and healthy controls). FDR: 

false discovery rate, logFC: log(fold change). A Heatmaps of DEGs among healthy control samples and atheromatous plaques in the ImmuneScoreL 

and ImmuneScoreH clusters. B Bubble and circle plots showing the results from the KEGG pathway enrichment analysis of DEGs of atheromatous 

plaques in the ImmuneScoreH cluster (vs. ImmuneScoreL cluster and healthy controls). The top 10 KEGG pathways ranked by the FDR are shown. 

C Bubble and circle plots showing the results from the Gene Ontology (GO) enrichment analysis, including the biological process (BP), molecular 

function (MF), and cellular component (CC) categories, of DEGs of atheromatous plaque in the ImmuneScoreH cluster (vs. ImmuneScoreL cluster 

and healthy controls). The top 10 BP, MF and CC terms ranked by the FDR are shown. D PPI network of DEGs of plaques in the ImmuneScoreH 

cluster. E Nineteen hub genes of plaques in the ImmuneScoreH cluster. F UpSet plot demonstrating overlaps between the 698 DEGs 

(ImmuneScoreH cluster vs. other samples, Additional file 7: Supplementary Table 2), the 19 hub genes (E), 80 detected genes of interest (Fig. 5K) 

and 782 metagenes in ESTIMATE. G UpSet plot demonstrating overlaps between the 284 DEGs (ImmuneScoreH cluster vs. ImmuneScoreL cluster, 

Additional file 8: Supplementary Table 3), 19 hub genes (E), 80 detected genes of interest (Fig. 5K) and 782 metagenes in ESTIMATE. HLA: human 

leukocyte antigen, PTPN6: protein tyrosine phosphatase non-receptor type 6, VAMP8: vesicle-associated membrane protein 8, ITGB2: integrin 

subunit beta 2, ITGAM: integrin subunit alpha M, CXCL1: C-X-C motif chemokine ligand 1, CYBA: cytochrome B-245 alpha chain, CYBB: cytochrome 

B-245 beta chain (also known as NADPH oxidase 2), FCER1G: Fc receptor gamma chain, LCK: lymphocyte cell-specific protein-tyrosine kinase, PTPRJ: 

protein tyrosine phosphatase receptor type J (also known as SCC1 or DEP1)

(See figure on next page.)
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with CRY1/2 [36], studies also showed that upregulation 

of FTO and CRY1 attenuated atherosclerosis through 

macrophages and proinflammatory factors respectively 

[37, 38]. It was also reported that receptor tyrosine 

kinase-like orphan receptor (ROR) inverse agonist could 

induce an anti-atherogenic immune profile to decrease 
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plaque formation [39]. Besides, loss of Per1 enhanced 

the recruitment of macrophages through an increase in 

CC chemokine receptor 2 (Ccr2) expression level [40]. In 

addition, the chronic inflammation of large vessels sub-

jected to rhythmic myeloid cell recruitment is regulated 

by the rhythmic release of myeloid cell-derived CCL2 

[41]. All the available evidence suggests that chronophar-

macology-based therapy targeting RORB, RORC, PER1, 

CRY1, or FTO might constitute another approach for the 

treatment of atherosclerosis.

Our analysis also identified four significantly changed 

types of immune cells (M0 macrophages, gamma delta 

T cells, plasma cells, and monocytes) in plaques with 

higher immune infiltration. According to the correla-

tion analysis between genes and immune cells, seven 

genes (IGSF6, IL18, CECR1, FBP1, CAPG, HLA-DPA1 

and MMP7) exhibited good correlation with these 

immune cells. Previous studies have demonstrated 

that the interruption of IL18 function reduces athero-

sclerosis in mice [42], and loss-of-function mutations 

in CECR1 could lead to systemic vasculopathy or vas-

culitis [43]. In addition, CAPG modulates the protec-

tive effects of unidirectional shear stress and might 

be related to the macrophage responses to oxidized 

LDL [44, 45]. However, fewer studies have focused 

on how these genes regulate immune cells in athero-

sclerosis. Further exploration of their functions in the 

pathogenesis of atherosclerosis might provide new 

methods for atherosclerosis therapy.

�e innovation of this study is the exploration of dif-

ferent immune infiltration profiles, potential pathways 

and common genes associated with different immune 

cells in atherosclerosis using plaques from different vas-

cular beds. Previous outstanding single-cell proteomic 

and transcriptomic study of plaques [46] and previous 

re-analysis of GSE100927 and GSE28829 [47] have only 

used the carotid plaques to identify the DEGs and to 

explore the immune infiltration, ignoring the heteroge-

neous nature of arteries from different peripheral vascu-

lar beds. �e relationships between genes and different 

immune cells has not been explored in the previous study 

which has re-analysed GSE100927 and GSE28829 either 

[47]. Hence, our study might be more rational for iden-

tifying common cellular and molecular biological fea-

tures in the course of atherosclerosis by pooling plaques 

from different vascular beds together. In addition, the 

classification method for atheromatous plaques based 

on immune infiltration calculated by ssGSEA and ESTI-

MATE algorithm in our study might be complementary 

to traditional clinical classification methods based on 

gross pathology and histopathology. �e proposed clas-

sification method might provide us a better understand-

ing of the molecular pathophysiological procedure of 

atherosclerosis.

Fig. 7 Identification of common genes related to plaques in the ImmuneScoreL and ImmuneScoreH clusters. CAPG: actin regulatory 

protein CAP-G, IGSF6: immunoglobulin superfamily member 6, IL18: interleukin-18, CECR1: cat eye syndrome critical region protein 1, FBP1: 

fructose-bisphosphatase 1, MMP7: matrix metallopeptidase 7. A Pearson correlation coefficients obtained for the correlations of CAPG, CECR1, 

IL18, IGSF6, and FBP1 with the relative proportions of M0 macrophages, gamma delta T cells, plasma cells and monocytes in the ImmuneScoreL 

cluster. B Scatterplot showing the correlations of the relative expression levels of CAPG, CECR1, IL18, IGSF6, and FBP1 to the relative proportions 

of M0 macrophages, gamma delta T cells, plasma cells and monocytes in the ImmuneScoreL cluster. C Pearson correlation coefficients obtained 

for the correlations of CAPG and MMP7 with the relative proportion of M0 macrophages, gamma delta T cells, plasma cells and monocytes in the 

ImmuneScoreH cluster. D Scatterplot showing the correlations of the relative expression levels of CAPG and MMP7 to the relative proportions of 

M0 macrophages, gamma delta T cells, plasma cells and monocytes in the ImmuneScoreH cluster. E Pearson correlation coefficients obtained for 

the correlations of CAPG with the relative proportion of M0 macrophages, gamma delta T cells, plasma cells and monocytes in the healthy controls. 

F Scatterplot showing the correlations of the relative expression levels of CAPG to the relative proportions of M0 macrophages, gamma delta T 

cells, plasma cells and monocytes in the healthy controls. The grey-shaded areas in the scatterplots represent the standard errors of the regression 

lines. R: correlation coefficient. The p values of all these genes were < 0.05 except for the correlation of the relative expression levels of CAPG to the 

relative proportions of gamma delta T cells in F 
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However, our study has some limitations. First, there is 

no detail clinical information pertaining to the exact clin-

ical stages of plaques in GSE100927. Hence, our hypoth-

esis that plaques with higher immune infiltration might 

be at a more advanced stage of atherosclerosis, just like 

the results in GSE28829, needs to be cross validated in 

further study. Second, the results of this study are based 

on an analysis of gene expression values obtained from 

microarrays, and gene expression might not be directly 

equivalent to protein expression. Both in vitro and in vivo 

experiments should be performed to validate our findings 

at the gene transcription and translation levels. In addi-

tion, because the techniques of using in vivo or in vitro 

models for investigating the interaction between differ-

ent immune cells and stromal cells (including vascular 

endothelial cells and smooth muscle cells) are immature, 

next-generation sequencing and proteomics studies of 

atheromatous plaques from different vascular beds with 

larger sample sizes might increase the confidence of our 

results.

Conclusions
Taken together, the results obtained in our study pro-

vide novel insight into atherosclerosis: dysregulated 

in  situ immune responses, loss of circadian rhythm, 

and abnormal m6A modification might orchestrate and 

lead to the progression of atherosclerosis. Chronophar-

macology-based treatment targeting different immune 

cells (macrophage M0 and T cells gamma delta, plasma 

cells and monocytes) through different immune-related 

genes (CAPG, IGSF6, IL18, CECR1, FBP1, MMP7, 

HLA-DPA1, FTO, CRY1, RORB, and PER1) and 

immune-related pathways (IFN-γ pathway and PD-1 

signalling pathway) might serve as potential therapies 

for atherosclerosis.
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N6-methyladenosine RNA binding protein 1/2; NR1D1/2: Nuclear receptor 

subfamily 1 Group D Member 1/2; SIRT1: Sirtuin 1; FBXL3: F-box/LRR-repeat 

protein 3; RORA: RAR related orphan receptor A; RORB: RAR related orphan 

receptor B; RORC: RAR related orphan receptor C; CRY1/2: Cryptochrome cir-

cadian regulator 1/2; CLOCK: Circadian locomoter output cycles kaput protein; 

ARNTL: Aryl hydrocarbon receptor nuclear translocator-like protein 1(also 

known as BMAL1); PER1/2/3: Period circadian regulator 1/2/3; SUMO3: Small 

ubiquitin like modifier 3; CSNK1A1: Casein kinase-1 alpha-1; MAPK: Mitogen-

activated protein kinase; ERK: Extracellular signal-regulated kinase; JNK: JUN 

N-terminal kinase; E4BP4: E4 promoter-binding protein 4 (also known as 

NFIL3); DBP: Albumin D-Box binding protein; CSNK1E: Casein kinase 1 epsilon; 

CSNK1D: Casein kinase 1 delta; GSK3B: Glycogen synthase kinase 3 beta; BTRC 

: Beta-transducin repeat containing E3 ubiquitin protein ligase; IFNGR1/2: 

Interferon gamma receptor 1/2; IFNG: Interferon gamma; STAT1: Signal 

transducer and activator of transcription-1; JAK1/2: Janus kinase1/2; PTPN6: 

Protein tyrosine phosphatase non-receptor type-6; VAMP8: Vesicle associated 

membrane protein 8; ITGB2: Integrin subunit beta 2; ITGAM: Integrin subunit 

alpha-M; CXCL1: C-X-C motif chemokine ligand-1; CYBA: Cytochrome B-245 

alpha chain; CYBB: Cytochrome B-245 beta chain (also known as NADPH 

Oxidase 2); FCER1G: Fc receptor gamma-chain; LCK: Lymphocyte cell-specific 

protein-tyrosine kinase; PTPRJ: Protein tyrosine phosphatase receptor type-J 

(also known as SCC1 or DEP1); CAPG: Actin regulatory protein CAP-G; IGSF6: 

Immunoglobulin superfamily member-6; IL18: Interleukin-18; CECR1: Cat eye 

syndrome critical region protein-1; FBP1: Fructose-bisphosphatase-1; MMP7: 

Matrix metallopeptidase-7.

Supplementary Information
The online version contains supplementary material available at https:// doi. 

org/ 10. 1186/ s12920- 021- 00991-2.

Additional �le 1. Supplementary Figure 1: Consensus clustering analy-

sis of atherosclerosis samples in GSE100927. (A) Plot showing the results 

from the principal component analysis (PCA) of the gene expression pro-

files of 29 atheromatous plaques from the carotid arteries, 26 atheroma-

tous plaques from the femoral arteries, 14 atheromatous plaques from 

the infrapopliteal arteries, 12 healthy control samples from the carotid 

arteries, 12 healthy control samples from the femoral arteries, and 11 

healthy control samples from the infrapopliteal arteries in the GSE100927 

dataset. (B) Cumulative distribution function (CDF) curve obtained from 

the consensus clustering analysis with k = 2–6 based on the Euclidean 

distance of the ssGSEA scores using the k-means clustering method. (C) 

Relative change in the area under the CDF curve obtained with k = 2–6. 

(D) Tracking plot for k = 2–6. (E)–(H) Consensus clustering matrices of k = 

2, 3, 5, 6.

Additional �le 2. Supplementary Figure 2: Identification of immune 

infiltration in different atheromatous plaques in GSE100927.  (A) Boxplot 

comparing the relative proportion of 21 types of infiltrated immune cells 

between the ImmuneScoreL cluster and the ImmuneScoreH cluster. (B) 

Heatmap of the relative proportion of 21 types of infiltrated immune 

cells calculated using the CIBERSORT algorithm. (C) Correlations between 

21 types of infiltrated immune cells. Pearson correlation coefficients are 

indicated in the upper triangular matrix. The p values are indicated in the 

lower triangular matrix: blank: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p 

<= 0.001, ****: p <= 0.0001.

Additional �le 3. Supplementary Figure 3: Atherosclerosis subtypes 

and distinct immune cell infiltration of samples in GSE28829. (A) Heatmap 

of ssGSEA scores of all 29 atheromatous carotid plaques in GSE28829 

that were clustered based on the Euclidean distance using the Ward.D2 

method. (B) Cluster dendrogram of ssGSEA scores of the 29 atheroma-

tous carotid plaques based on the Euclidean distance using Ward.D2 

method. (C) Cumulative distribution function (CDF) curve obtained from 

the consensus clustering analysis with k = 2–6 based on the Euclidean 

distance of the ssGSEA scores using the k-means clustering method. (D) 

Relative change in the area under the CDF curve obtained with k = 2–6. 

(E) Heatmap of the ssGSEA scores of plaques from the two subgroups in 

Figure S3B-C, as well as of the ImmuneScoreL cluster and the Immune-

ScoreH cluster. (F)Boxplot comparing the relative proportion of 21 types 

https://doi.org/10.1186/s12920-021-00991-2
https://doi.org/10.1186/s12920-021-00991-2


Page 13 of 14Shen et al. BMC Med Genomics          (2021) 14:145  

of infiltrated immune cells calculated by CIBERSORT between the Immu-

neScoreL cluster and the ImmuneScoreH cluster. (G) The comparison of 

immune infiltration in health controls to atheromatous plaques derived 

from GSE28829 and GSE100927 which were calculated after removing 

batch effects.

Additional �le 4. Supplementary Figure 4: Gene set enrichment 

analysis (GSEA) comparing atheromatous plaques in the ImmuneScoreH 

cluster with those in the ImmuneScoreL cluster of GSE28829. (A-F) KEGG 

canonical pathways were used as the a priori knowledge for the GSEA. 

(A) Primary immunodeficiency, (B) leukocyte transendothelial migration, 

(C) antigen processing and presentation, (D) natural killer cell-mediated 

cytotoxicity, (E) T cell receptor signalling pathway, and (F) B cell receptor 

signalling pathway were highly enriched in the ImmuneScoreH cluster. 

(G-L) The REACTOME subset of canonical pathways was used as the a 

priori information for the GSEA. (G-J) Interferon-related pathways, (K) PD-1 

signalling, and (L) neutrophil degranulation were highly enriched in the 

ImmuneScoreH cluster.

Additional �le 5. Supplementary Figure 5: Comparison of the expres-

sion of genes related to different immune regulators in GSE28829. ns: 

p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001. 

Supplementary Figure 5A–E were a set of comparisons between ather-

omatous plaques in the ImmuneScoreH cluster with that in atheromatous 

plaques in the ImmuneScoreL cluster: box plot comparing the expres-

sion of human leukocyte antigen (HLA)-related genes(S5A), immune 

checkpoint-related genes (S5B), IFN-γ pathway marker genes(S5C), m6A 

methylation regulator-related genes(S5D), circadian rhythm-related 

genes(S5E). Figure S5F summarized the consistent results between the 

GSE100927 and GSE28829 (ImmunceScoreH cluster vs. ImmunceScoreL 

cluster).

Additional �le 6. Supplementary Table 1: Gene of interest defined 

based on prior biological knowledge.

Additional �le 7. Supplementary Table 2: DEGs between ImmuneS-

coreH cluster and other samples of GSE100927.

Additional �le 8. Supplementary Table 3: DEGs between ImmuneS-

coreH cluster and ImmuneScoreL cluster of GSE100927.
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