LUND UNIVERSITY

Identification of Processes in Closed Loop -- Identifiability and Accuracy Aspects

Gustavsson, Ivar; Ljung, Lennart; Séderstrém, Torsten

1976

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Gustavsson, |., Ljung, L., & Soderstrom, T. (1976). Identification of Processes in Closed Loop -- Identifiability
and Accuracy Aspects. (Technical Reports TFRT-7089). Department of Automatic Control, Lund Institute of
Technology (LTH).

Total number of authors:
3

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 24. Aug. 2022


https://portal.research.lu.se/en/publications/d26cc329-385f-45e3-9eb3-34a2ffe32aec




For the 4th IFAC Symposium on Identification, Tbilisi, USSR 1976

IDENTIFICATION OF PROCESSES IN CLOSED LOOP
- IDENTIFIABILITY AND ACCURACY ASPECTS

I Gustavsson, L Ljung and T S&derstrim
Dept of Automatie Control Dept of Automatic Control
Lund Institute of Technology Inst of Techn, Uppsala Univ
§-220 07 Lund 7, Sweden S-751 21 Uppsdla, Sweden

It is often necessary in practice to perform identification experi-
ments on systems operating in closed loop. There has been some confu-
sion about the possibilities of successful identification in such
cases, evidently due to the fact that certain common methods then fail.
A rapidly increasing literature on the problem is briefly surveyed in
this paper, and an overview of a particular approach is given. It is
shown that prediction error identification methods, applied in a direct
fashion will give correct estimates in a number of feedback cases.
Furthermore, the accuracy is not necessarily worse due to the presence
of feedback; in fact optimal inputs may very well require feedbhack

terms. Some practical applications are also described.

1. INTRODUCTION

The purpose of an identification experiment is to determine the dy-
namics of a given process. Most processes operate as a part of a con~
trol configuration and the inputs to the process are partly determined
as feedback from other signals. In many cases, security or production
reasons do not permit that the regulators are removed during an identi-
fication experiment. In other cases, like for economical and biological
systems, the feedback effects may be inherent. Consequently, not seldom
identification experiments have to be performed on processes operating
in closed loop.

During the last few years there has been a rapidly increasing lite-
rature on identification of closed loop svstems; and at this svmposium
a special session is devoted to these problems. The reason obviously is

that the task contains some fallacies, and it i3 not immediately clear



when identification can be successfully performed based on closed loop
experiments and how it should be done.

The purpose of this paper is to describe the problems which may
arise for closed loop identification, to summarize basic results on
possibilities and methods and to give an overview over the literature
in the field.

Several different approaches have been taken to the problem. Various
estimation schemes have been suggested, different feedback configura-
tions have been considered and the systems and models have been para-
meterized in varying ways., Moreover, sometimes the regulator may he
considered as part of what is to be identified, and then the input and
output are considered as a joint process. This approach, which has been
pursued in a series of interesting papers by Caines and Chan [1], [2],
is quite natural, e g for economic systems, where the feedback mecha-
nism is not open for manipulation. For other processes, in particular
for industrial ones, it is natural to assume that the regulator is
known, and that it can be chosen freely as long as it yields acceptable
performance of the output process.

Consequently the picture of approaches, methods and results is quite
diverse, and it is of course impossible to give a comprehensive treat-
ment of all aspects in a paper like this. In order to make the paper
readable, we have chosen to organize it as follows. In each section we
first describe problems, definitions and results which are related to
our own activities in the field, [3]-[7]. At the same time we also cov—
er a substantial part of the major results in the literature on closed
loop identification. In the second part of each section, we describe
and discuss aspects f{rom other papers. In that way the paper can he
read as a survey of the field, as well as a fairly complete overview
of one of the approaches taken.

In the unext section we shall describe the basic problems connected
with closed loop identification. Section 3 contains a discussion of
identifiability and accuracy. Section 4 contains the main results on
identifiability and accuracy aspects, and there also the major survey
of other papers is given. Section 5 reviews some applications of

closed loop identification.



2. BASIC CONCEPTS

2,1 Preliminaries

The result of an identification experiment depends clearly on
several items:
6 the system,
o the model structure or the model parameterization,
0 the identification method used,

0 the experimental conditions.

System

In this paper a linear, multivariable, discrete-time, stochastic

system, S, given on the general form
7(t) = Ggla Mule) + Holq He(t) (2.1)

will be considered. The output, y(t), is a vector of dimension ny and
the input, u(t), has dimension n The variables {e(t)} are a sequence
of independent, random variables with zero mean values and covariances
Ee(t)eT(t) = A, In (2.1} q_l denotes the backward shift operator,
qnlu(t) = u(t-1). It is assumed that Gg(z) and Hs(z) are matrices of
proper dimensions with rational functions as entries., It is also assum-
ed that HS(O) = I, which implies that e(t) has the same dimension as
y(t), but this is no loss of generality. Also let det[HS(Z)] have all

zeroes strictly outside the unit cirele.

Model
To determine a model of the system the function G(z) and H(z) have
to be parameterized in a suitable manner by a parameter vector 6. A
model corresponding to a certain value of 8 ig denoted by M(8) and is
given by
y(£) = Gy(a Dult) + By(q He(e) (2.2)

where {c(t)} is a sequence of independent, random vectors with zero
mean values and covariances A. When 8 is varied over the region of
feasible values, eq (2.2) represents a family of models denoted by M,

This family will sometimes be referred to as the "model structure’.

The identification problem is to determine the parameter & so that
M(8) in some sense suitably describes the system, S, given by eq (2.1),

The parameterization of Ge(qul) and He(qwl) can be made in several



ways., Frequently used representations are the vector difference equa-
tion,
-1 -1 -1 R
Ag(a dy(t) = B (q “ulr) + Cola Delr) 2.3)

and the state space form (here given in the time-invariant innovations
representation form),
{ x(t+1) = Agx(c) + Byu(e) + Roe(e)

y(t) = Cex(t) + De u(t) + () (2.4)

Experimental conditions

The input u{t) to the system given by eq (2.1) can be determined in
several ways. It can, as in open loop experiments, be chosen freely by
the experiment designer. It can also be determined partly from output
feedback by a regulator of a given structure ete. On the whole, the
manner in which the input is determined will in this paper be referred

to as experimental condition, denoted by X, In this concept other ex-

perimental conditions such as the sampling rate, the experiment length
etc. can be included. These will, however, not be considered here.

In this paper we shall discuss identifiability and accuracy aspects
of systems cperating in closed loop. A typical such system is shown in
fig 2.1,
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Fig 2.1 Block diagram of a typical feedback system.



Several different configurations will be discussed in Section 4.
They are essentially covered by the one given in Fig 2.1 and correspond
to various assumptions about vi,i = 1,2,3, and about the character of
the regulator. We shall throughout assume that the signals u and y are

measurahla.

Tdentification method

Finally, the procedure by which 6 is determined is called the identi-

fication method, I. For systems operating in closed loop different ways

to apply the identification methods are possible. One way which always
can be applied is to treat the input~output data exactly as if they

were obtained from an open loop experiment. This procedure will be call-
ed direct identification, I,. If for example the regulator is linear,

1
noise-free and time-invariant (or alternates between such feedback laws)

then an indirect way of estimating the parameters can be applied. The
closed loop system can be regarded as & whole and its parameters can be
determined by some method. The open loop process parameters can then be
determined from the estimated closed loop process parameters using the

knowledge of the regulator. This apptoach will be called indirect iden-

tification, I,., Notice that it is sometimes difficult to refer a speci-

9
fic identification scheme to be either a direct ov an indirect identi-
fication method.

Further, in some cases it may be advantageous to consider both the
input and output processes jointly as the output of a system driven by

noise only. This appreoach may be called joint input-output identifica-

tion, 13, and has in particular been pursued by Caines and Chaa, [l],
[21.

In general it will be assumed in the following that a statistically
efficient identification method is used. In particular prediction
error identification methods like the maximum likelihood method will

be considered. Then the parameter 6 1s chosen so that a suitable scalar

-ty

unetion (e g the determinant or the trace) of the matrix
Q€ ,M(GEE*»*TFY\L) Y] e-1;MN] ly(e)=-y (]t~ 1;0¢an 17T (2.5)

~

is winimized, cf [8). y(t|t-1;M(8)) denotes the linear least squares

P

1%

prediction of v{t) based on data up to time t-1 and using the immodel
M(8). The minimizing element is the estimate 8(N;8,M,7,X). Neglecting

initial value effects 1t is given by

At . ) - : - -1 -
y(tie-1;M(8)) = [I~ H (q )Jy(t)‘*Hﬁléq >Ge(q 1)u(t) (2.6)



The "true" prediction §(t|t-1;8) is defined analogously. In Ljung [8]
it is shown that under mild conditions

B(N;S,M,T,X) » DI(S,M,I,X) with prob cne as Now
where

DL(S,M,T,X) = {8 Lim inf £ IB|F(c|t-1;8)-F(c]e=1;Me)) [P 01 (2.7)
N-#<o

It is also clear that ''desired estimates' are given by the set
DT(S,M) = {GIGe(z) = GS(Z) and He(z) = HS(Z) a.e. z)} (2.8)

This set consists of the parameter values that give medels M(6) with
the same transfer function and the same noise characteristics as the

system S,

2.2 Basic problems

There are several interesting problems concerning identification of

systems operating in closed loop. Some of them will be reviewed here.

Identifiability

The questiaon of identifiability concerns whether or not the open
loop characteristics of the system can be obtained as the number of
data tends to infinity. The problems when identifying systems operating

under closed loop can be illustrated by the following examples.

EXAMPLE 2.1

Consider the system given in Fig 2.2. W

u_ o Y
G

Eaz? F"“‘"""‘""‘“

.

Fig 2.2 A simple closed loop configuration.

Suppose the identification is performed by methods which do not imply
a causal structure, e g methods based on correlation analysis aud spec-
tral analysis. Then an attempt to identify GS from measurements of u
and y.in a direct fashion will give

A 1

G i &
S Gy



i e the inverse of the transfer function of the feedback. This has been
pointed out e g by Akaike [9], AstrSm-Eykhoff [10], and Box-MacGregor
(111,

Using other identification methods, e g a prediction error identifi-~
cation method and postulating a causal parametric model, identifiability
may be achieved for this type of experimental condition. This is not al-

ways true which can be seen from the next example.

o
EXAMPLE 2.2
Consider the system
y(t) + ay(t 1) = bu(t™D) + e(t) (2.9)
with a proportional regulator
u(t) = gy(t)

An attempt to estimate the parameters & and b, e g by the least squares
method, shows that all parameter estimates
a=a+yg

{B=b+Y
vy arbitrary, give the same value for the identification ¢riterion. For
Y % 0 an erroneous description of the open loop system is obtained.
Notice in particular that it is of no help to know the regulator para-
meter g.

If on the other hand identification is considered in a class of mod-
els given by

y(t) + ay(t-1) = bu(t-1) + e(t)
where a is known, it is obvious that the system (2.9) will be identifi-

able, _ o

The examples have shown the following characteristic problems when
identifying systems operating in closed loop,

o the importance to choose an appropriate identification
method (see Example 2.1),

o the importance of using experimental conditions which will
guarantee identifiability (in Example 2.2 e g shifting
between two proportional regulators with different g
will do},

o the importance of choosing a proper model structure in
cases where the experimental conditions do not guarantee

identifiability (see Example 2.2).



Testing of identifiability

As will be seen in Section 4 some conditions invoking the true order
of the system must be evaluated in order to test identifiability for
certain kinds of experimental conditions. Thus & priori information of
the order of the system is a crucial peint. Moreover, the order cannot
be tested a posteriori, i e it is not possible to test after the experi-
ment if the system is actually identifiable., This fact has been pointed

out e g by Bohlin [12] and can be illustrated by the following example.

EXAMPLE 2.3

Consider the system

At Byt = ¢ ¥ Hu(e) + et He(r) (2.10)

with the feedback given by

F(a Du(e) = a¢q Ny (e) (2.11)

It is obvious that the system

[aCa H+Lta H6(a HIv(e) = [q T B(a H+L(g HF(Q T ule) +

+ ¢(g"He(e) (2.12)
with the feedback (2.11) and with an arbitrary polynomial L(th) will
have the same input-output relation in closed loop as the system (2.10).
Hence from input-output experiments (under the given experimental con-
ditioms: a linear, noise-free, time~invariant regulator) the true system
cannot be distinguished. This means that it cannot in general be estab-
lished a posteriori that the obtained system is identifiable and hence
that the estimated model has the same open loop transfer function as

the system. o

Accuracy aspects

So far only identifiability has been considered. In practice also
the quality of the estimates, i e the accuracy, for a finite number of
data is of interest. It is then an important question how the experi-
mental condition influences on the accuracy. This problem is closely
related to optimal experiment design and can be viewed as an extension
of the optimal input synthesis problem which has been given much atten-

tion. Regarding this problem see e g the survey paper, Mehra [13].

2.3 Other formulations and problems

The preliminaries given in Section 2.1 cover most of the approaches

in the literature. The system and models are almost always taken to be



linear. Usually more spaeific linear models than (2.2) are considered,

e g (2.3}, (2.4) ({14},[15),[16]), impulse response models ([17],[181],
{19]} or transfer function models ([9],[19]-[22]), cf Table 4.1 below.
Most experiment configurations studied are covered by Fig 2.1. There
may be some more specific ones discussed, and it should be realized
that identifiabiliﬁy properties may be critically dependent upon what
is known about the special structure of the system versus the regulator.

2]
o

schemes, like indireet identification use that vy rather than u
is measureable. The most diverse situation is for the choice of estima-
tion scheme, I. Apart from prediction error identification methods,
(2.5), of which least squares is a special case, correlation and spec-
tral analysis methods are often discussed. They cannot be used in a
direct identification fashion, of Example 2.1, but several special
schemes have been deviced and discussed, e g Akaike [9], [17] and Box
and McGregor [11].

Problems, in addition to those listed in Section 2.2, which have
been discussed are basically the problem to detect whether feedback is
present and to analyse causal relationships between the recorded sgig-

)

nals. These questions are :treated, & g in [2],

3. IDENTIFIARILITY AND MEASURES OF ACCURACY

3.1 TIdentifiability

The concept of identifiability has been given several different de-
finitions in the literature. The most common approach is to relate the
identifiability property to consistency of the parameter estimate 8(N).

The "true' parameter &, is then said to be identifiable, if the sequence

0

of estimates 6(N) converges to 6. in some stochastic sense, see, e g,

Astrém— Bokhlin [23], Staley-Yue ?24] and Tse-Anton [25]. In this paper

the definitions introduced in Ljung et al [4] will be used: (DT is the

set defined by (2.8)).

EFINITION 1: The system S is said to be System Identifiable under M, 7
and X, SI(M,I,X), if o(N; S,M,1,X) + DT(S,M) with prob one as No>w

[ive. inf [8(N,5,M,1,X) - 6]+0 w.p. 1 as N+w],
8 € D,

DEFINITION 2: The system § is said to be Strongly sttem Identifiable
under T and X, $SI(I,X), if it is SI(M,1,X) for all M such that DL(S,H)

Tl




10.

is non-empty. .
DEFINITION 3: The system S is said to be Parameter Identifiable under
M, T and X, PI(M,I,X), if it is SI(M,1,X) and DT{S,M) consists of only

one element.

These definitions make no referemce to any "true" parameter value,
60, but should be regarded as consistency~oriented since the require-
ment that DT(S,M) is non-empty implies that there is a "very good"
model available among the set of models M. If the set of permitted
values 6 contains a "true' parameter 90 then the definition of para-
meter identifiability is equivalent to the definitions given by e g
Tse-Anton [25], Glover-Willems [26] and Bellman-Astrdm [27].

Notice that PI(M,1,X) is always implied by ST(M,1,X) if DT(S,M)
consists of only one point. This condition on DT(S,M) involves neither
T nor X, and is the problem of canonical representation of transfer
functions as indicated earlier. It turns out to be convenient to treat
this problem separately and study the identifiability properties for
different experimental conditions, identification methods and model
structures by considering SI(M,],X).

Clearly, a necessary condition on M to achieve SI(M,I1,X) is that
DT(S,M} ig nen-empty. If the system is $SI(I,X), this condition is
2lso a sufficient condition on M for SI(M,I,X). In that case the fact
that the system may operate in closed loop does not add dny extra diffi-
culties when choosing appropriate model structures M. Experimental con-
ditions that give SSI{I,X) therefore are equivalent to open loop from

the view point of jdentifiability.

3.2 Criteria of accuraey

The reasons for performing parameter identification may for example be:
determination of certain parameter values which have some specific
physical meaning, control system design, or prediction.

The result of an identificaticn is very often used for all the above
purposes. This immediately leads to the conelusion rhat it is not pos~
sible to give a single criterion of accuracy covering all situations.
Discussions about different criteriz and refersnces ro other works on
this subject can be found in Mehra [13], and, & gz, SS5derstrém et al [6]1.

One common measure of accuracy is to use the covariance marrix P of

the parameter estimates (it will be ascumed that the estimates are un—

biased). An alternative is to use Fisher’s information matrix J, see



11,

e g Kendall-Stuarz [28] for a definition. In eq (2.3) e(t) can be re-
garded as a function of 8. Let €'(t) denote the derivative of e(t) with
respect to 8 and evaluated in 8, Then the information matrix can be
written as

g=wEle ()T A7 et (o)) (4.1)
where N is the number of data., For statistically efficient methods like
the maximum likelihood method the covariance matrix P of § asymptotic-
ally satisfies

P o= gl | (4.2)
For an arbitrary identification method the Cramér-Rao inequality, see
Crawér [29] and for this particular case also Astrdm [30], can be stated

as

pygt (4.3)

It will be generally assumed in the following that only efficient me-
thods are considered so that P is minimal, i e (4.2) is satisfied. It
is then equivalent to use P or J as a measure of the accuracy.

It is, however, advantageous to have a scalar measure. In this paper
we shall take det J = (det P)nl, which is commonly used, e g Mehra
[13] and Nahi and Napjus [31]. The larger the value of det J is, the

better the identification result.

4. INFLUENCE OF FEEDBACK ON IDENTFIABILITY AND ACCURACY

From the discussion of the previous sectious, it follows that all
the three items, the model structure M, the identification method I
and the experimental conditions X will have influence on the identifia-
bility of a system as well as on the accuracy when it is identifiable.
Some general results concerning the influence of M and T are given in
S6derstrdm et al [6]. In general it can be said that the maximum likeli-
hood method (= minimizing det Q in (2.5)) is always efficient, Further,
if this procedure fails to give identifiability, then no other method,
based on measurements of y and u, will be successful.

In this section the influence of X will be discussed. In one sense
the experimental conditions will have a greater influence on the results.
If it is found that an X does not yield identifiability or acceptable
accuracy, thenm the whole identification experiment has to be repeated.
In contrast, if M (or 1) was not chesen in & suitable manner it is pos=-

sible to try other M (or I) on the same data.



2.

4.1 Influence on identifiasbility

It follows from (2.6) and (2.7) that the set D._ consists of those 0

I
for which
1 ¥ -1 -1 2
lim inf & 2 |L, (g y(t) - M, {q dul{e)|[" =0 (4.1)
N 6 B
Nao 1
where
=yt i (4.2)
Le(z) = He (z) HS (z) (4.2)a
-1 -1
L = F - (z Gf‘,\ .
Me(z) He (z) Ge(z) HS {z) ¢(2) (4.2)b
Clearly, DT‘:DI (DT defined by (2.8)}, since for GEEDT we have Le(z) =

= Me(z) 2 0. However, if the system is not SI under the current experi-
mental conditions, then there exiets a 8*‘€DI such that e*cﬁnT. This
means that the non-zero filters L8$(z) and Me*(z) are such that (4.1)
holds. This defines, essentially, a linear, time invariant, noisefree
relationship between y and u,

Mox(qh) u(t) ~ Loala ™) y(o) (4.3)

Therefore only if there is a feedback like (4.3) we may loose SI. This
condition is the most general statement about System Identifiability,
but as it stands it is fairly implicit. We shall therefore proceed to
give an exact explicit condition for SI, which ghould cover most practi-
cal cases of interest.

Let the input signal, u(t), to the process be given by

w(t) = F (7)) y(&) « K (@™h v(e)  iel,..r (4.4)
where F; and K; are linesr rational functions of the delay operator
q—l. These filters are changed during the identification experiment bet~
ween r (different) ones, so that each is used a non-zero proportion of
the total time. The variable v is a vector of dimension ny and it is an
external disturbance to the input signal. Comparing with Fig 2.1 we see
that v can be considered as an additicnal extra input signal vy (measur-

able), as noise v, in the regulator, as set point changes in the regu-~

2
lator, Vg, Or as a combinaticn of these effects. Te include the case
wvhere v is correlated with the system noise e, assume that it ¢an be
written

v(t) = v(t) + R(g"Y) e(t) (4.5)
where R is a causal filter. Before we give the result, we may rsmind the
readers of the concept of persistenly exciting signals, see, & g Estrim-
-Bohlin [23] and Mayne [32]. We say that a signal v(<) is persistently

exciting {p e) of order m if



13.

1

T 1 .
§1 < 5 z Vm(t) Vm(t) < 3 )8 N 2 NO {4.6)
where
v (t) = col (vit)y oo, ,v(t-m+l)} (4.7)

It is clear that if v is a stochastic process with full rank innova-

tions, then it iz p e of any finite order.

Theorem 1

Consider the system S, (2.1) with input signal (4.4), X, where v is
p e of any finite order. The model set may consist of arbitrary time
invariant linear models as in (2.2}). We asssume there is a time delay
either in the system (and wodel} or im the regulator, i e G(O)F, (0)=0.
The identification method T is a prediction error identification method
(2.5) applied in a direct fashion. Then S is Strietly System Identifi-
able, SSI(I,X) if and only if

r Kl(z} Cve e Kréz) Fo{z) o... Fr(z>

I ¢ I N |

rank E = O, *tny, (4.8)
L a.e. 2
[The dimension of K, is n [n , of F; nu|ny, of 0 nylnv and of 1 ny[ny,
go the dimension of the matrix in (4.8) is (nu+ny)|r(nv+ny)J o
This theorem is an extension of the results in Ljung et al [4]. The
proof of the extended version is in Sdderstrdm et al [33].
Obviously, a necessary condition for (4.8) to hold is that

r > (ny + n%)/(ny + nv) (4.9)

On the other hand, if (4.9) holds then Ki and Fi can always be chosen
o that (4.8) is satisfied,

Let us discuss some special cases of the result, First we see that if
n, =mn  and chz) is non-singular, then (4.8) is satisfied for any r
(including r=1) regardless of the feedback filters Fi. Therefore, if the
nunber of independent "extra inputs” is equal to the anumber of inputs
to the system, then we always have 55I, no matter what the feedback
might be, This fact is by now also widely recognized, see below. If
there are no extra inputs, nvwo, then (4.8) can be satisfied if and only
if

rz 1+ nu/ny (4.103
by a proper choice of feedback laws. This wmeans that by shifting bet-
ween sufficiently many regulators we can also obtain SSI even if no
extra input signal is allowed. This fact was pointed out in [4]. Por
example .if nu=ny§‘then it ig sufficient to use two regulators. These

i
shall be chosen so that det (Fliz)“FZ{Z)E # 0, which is quite a mild
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condition. In certain applications additional input would require a
very good regulator in order to keep the output variance sufficiently
low. In such cases it may be easier to find several different regula-
tors that yield acceptable output variance, than to find one close to
the optimum. Then the way of obtaining S8I by shifting regulaters is
of importance,

We may repeat that when (4.8) ig satrisfied, 1 e when the system is
§SI, there is no additional difficulties in finding an appropriate
modei structure due to the feedbeck terma. The whole identification
procedure can be performed as though the data was collected during open
loop operation. In fact, the open loop situation is just a special case
in the theorem (FiﬁG)e It can also he remarked that when the distur-
bance signal is measurable, indirect identification may be applied, as
described inm Section 2, Then the transfer function(s) from v to y are
determined (or, if v=0, y is modelled as a time series) and knowing
the regulator(s) the cpen loop dynamics is solved for, However, it can
be shown, ¢f Ljung et al [4] and [33], that the identifiability pro-

perties for this procedure are exactly the same as those for direet

]

s

-

identification using (2.5), i e Theorem 1 is valid also for indirect
identification, '

When (4.8) is not satisfied, then the system is not SSI. It may,
however, be S5I for certain model structures, but these can be charac~
terized only in terms of fairly complex expressions invelving the
matrix in (4.8) and the structure of the true system 8. Neither can
it be tested a posteriori from data only, whether the chosen M actu~
ally yielded SI, ¢f Example 2.3.

An important case when SS8I is impossible is when the regulator is
time invariant, linear and noisefree and no extra input is added, i e
r=1, nVGO. We shall further investigate this case for nuﬁny=1 and M
being difference equation models,

Let the system be given by
S: y(t)-faly(t~1) * e +an& y(t-n,) =bluCt“k"l} +..,'+bﬂbu€tmk~nb)+
+ e(t) + cre(e=1)+ ... *en, %{t"ﬁc} {4,113

k20, an %0, by #0, cy %0 )

and the regulator is
ult) = -f-flu(t—l) RTTICE

{u(a“nf)+~gﬁy{ﬁ) *aeotg ylemng)  (4.12)
= W "g o
fnf & 0, gng & 0,
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Define the pelynomials A(z), B(z), C(z), F(z) and G(z) by

Ng

A(z) = 1l +a.z+.,,+a. =z C(z), F(z) analogously

i ng
o,

B(z) = blz+ cee +bnbz

Gz} = 8y t glz-+.u,-kgngz

Assume that F(z) and 6(z) are relatively prime and that there is no

v}

"8

common factor te all the polynomials A(z), B(z) and C(z). Further
agsume that the polynomials C(z) and A(2)F(z) = sz(z)G(z) have exactly

np common factora. Then we have the following result.

Theorem 2

(Séderstrsm et al [5]) Consider the system given by (4.11) with the
feedback X (4.12). Let the class of models M also be given by (4.11),
where the coefficients a;,b, and c, are estimated using the identifi-
cation method (2.3); I. Then S is SI(M,1,X) if and only if

max (nf~nb, ng+k—na) - np > 0 (4.13;

A similar result is shown in Vorchik [341; «f &lso Box and McGregor
[35]. In [5] further results are given for the case when the time delay

and- the orders of the model do not coincide with those of the system.

Remark 1

In order to test identifiability of & system some condition invoking
the true order of the system must be evaluated, Thus a priori informa-
tion of the order of the system is a crucial point. Moreover, the order
cannot be tested a posteriori, i e it is not poesible to test after the
experiments if the system really was identifisble as was illustrated by

the Example 2.3.

Remark 2

The results can for example be applied to the special case when a
minimum variance regulater, [36], is used. It can then easily be shown
that (4.13) reduces to

kxn + 1.
o

4.2 Influence on the accuracy

From Section 4.1 it follows that good identifiability properties are
obtained for a number of feedback situations. It is, however, sometimes

claimed that even‘if identification of systems operating in closed loop
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is theoretically possible, the obtained estimates are in practice very
poor, due to the effect of the feedback terms in the input signal.
Normally, the reason for feedback control is to decrease the variance
of the output. Then, naturally, also the information contents of the
measured data decreases and the estimates obteined have worse acecuracy.
For this reason closed loop experiments may be inferior to open loop
ones. However, this comparison is clearly unfzir. Often the limiting
variable for an identification experiment is the output variance. Due
to security or production reasons this variance must be kept below a
certain value. Therefore different experimental conditions should be
compared for the same output varidnce.
Then the interesting questions te ask are:
o Are open loop experiments inherently better than closed loop
ones giving the same output variance?
o Is there any systematic difference between various experimental
conditions that all yield identifiability?
In Soderstxdm et al [6],[7], these two problems are studied by means of
simulations and analysis of low order systems. The answers are quite
clear for thess examples: Open loop experiments are not necessarily
better than closed loop ones that give the same output variance, and
there is no systematic difference between different experimental condi-
tions that yield identifiability. In fact, it can be shown that the
ssme information matrices can be obtained within each class of feedback
configurations, like when an extra input signal is injected, when the
reguiator alternates batween different feedback laws or when a linear
regulator of sufficiently high order is used,
Encouraged by these results, we proceed to optimize the experimental
conditions in order to obtain as good accuracy of the parameter esti-
mates as possible, We shall consider the following classes of experi-

mental conditicns.

X(0): Open loop experiments., The covariance function (or the spec-
trum) of the input signal is at the experiment designer’s

disposal.

X(S(r,n)): Shifts between r linear vregulators of order n. The para-
meters of the regulators, and the proportion of the total

time each one is used are at disposal.
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X(E(n)): A linear regulator of order n and an extra input signal,
The parameters of the regulator as well as the covariance

function of the extra input is at disposal.

To choose the optimal experimental conditiong within the class X(0} is
of course the well-known probliem of optimal iaput design, which has
been studied in a great number of papers, e g Levin [37], Levadi [38],
Gagliardi [39], Aoki-Staley [40], Nahi-Napjus [31], Goodwin et al [41],
Keviczky-Bidnyasz [42], Goodwin-Payne [43], Ljubojevié [44] and Mehra
[13]. In these papers the possibility to change the experimental condi-
tions by for example introducing a feedback hes not been considered,
Unfortunately, it is technically very involved to consider optimiza-
tion of X for a general system. We shall therefore anaiyse the problem

only for a first order system,

S.: y(t) + ay(t=1) = b u(t-1) + e(t) + ce(t=1) (4.14)
Assume that the model set M is chosen as
M,: y(t) + & y(t-1) = b u(t=1) + eg(t) + ¢ e(t-1) (4.15)

As measures of the accuracy the determinant ¢f the information matrix,
det J, given in Section 3 will be used. When no restriction is put on
the variances of the input and the output it would be favourable to
have very large signals. This is of course for different reasons not
possible in practice. Therefore the cases of constrained output vari-

ance,

C .

o By s aPass), 620

1

and constrained input variance,

C.i B ui(t) < zzsszz, §. 20

2° 2y |
will be considered. Of these constraints it seems more realistic to put

bounds on the variance of the output.

EXAMPLE 4.1

Consider the system Sl (4.14) where Eez(t) = 1, Asgume that det J is
maximized subject to the constraint Cl' Then it can be shown, [7], (601,
that the optimal experimental condition in the class X(E(n)) is obtained
as

&

u(t) = == y(t) + v(t) (4.16)

2

where v(t) is white noise with variance 61(1~c . It is consequently

sufficient to take n=0.
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In the class X(S(r,n)) the optimal experimental condition will be
Vs, (1~c2+6,)
1 1
ut) == z

5 T T, ) y(e) (4.17)

1+ 61
(the + sign and - sign are used 50% of the time each). Hence r can be
taken as Z and n as 0.
Both (4.16) and (4.17) give the optimal value
s A
1

3
det J = N° wgm——r—r

b
It can alse be shown that no open loop input can yield this value, un-

less in the degenerated case a=c¢., o

Although we consider it to be more natural to require that the vari-
ance of the output is bounded than that the variance of the input is
bounded, it is instructive to see how this change of constraint will

influence the result.

EXAMPLE 4.2
Consider again the system Sl’ (4.14) with ¢ = & = 0, Let the cri-
terion still be det J but change the constraint to 02= Then optimiza-
tion in the classes X{0)}, X{(5(r,n)), X(5(1,1)), X(E(n)) will give the
game optimum, namely
2 62(62+1-a%1
b2 (1-a%)?

The optimum can be obtained in class X(0) if

det J = N

u(e) = e (1)
1 + aq

where w(t) is white noise with variance62(1~a2)/b2.
In the class X(S(r,n)) the optimum is obtained with shifts between

the two proportional regulators (each used 50% of the total time)

- - 2
a 62 * /g2(1+62 a®)

b(1+62) g

wit) =

The analysis has several important implications. In the first place
it shows that feedback terms may have to be included in the input sig-
nal in order to obtain optimal accuracy. The optimal input problem, as
usually discussed, therefore can be gaid not to be well posed. Inclusion
of feedback terms is by no means any problem in practice, and therefore

the optimal input should be sought in the classes X(3(+,+)) or X(E(:))
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rather than in X{0}.
Ons might discuss the generality of the results in Example 4.1. It

s aifficult to earry out the analysis in the general case, but it

B

fi
seems plausible that it is always favourable to control the process
with 2 wminimum variance controller and add extra input so that the
constraint on the cutput variance is met. Now, to know the minimum
variance controller is essentially equivalent to know the system it~
self and then there is no need for identification. This is the usual
dilemma of optimal input synthesis: The system must be known in order
to design the optimal imput signal. However, the following rule-of-
~thumb can be given: Decrease the output variance as much as possible
using a feedback regulator. This makes use of the available a priori
information about the system in a sensible manner. Then add an extra
perturbatioﬁ signal (e g white noise) so that the output variance
reaches its allowed value. Alternatively, change the regulator para-
meters in two different ways so that the bound on the variance of
the output is met. Then shift between these two regulator settings.
One way to obtain a suitable regulator in the fivst place if the pro-
cess dynamics are unknown could be to use a sslf=tuning regulater,

Rstrém and Wittemmark [45].

4.3 Survey of other contributions

PR

A number of papers dealing with the problem of identifying a process
operating in closed loop are now gvailable. So far most of them dis-
cuss the problem from the identifiability peint of view. In the follow-
ing the references will be briefly reviewed. In a short review like
this it is not possible to give full details. Notions like identifiabi-
1ity ete will therefore be used without giving the definitions that
were used in each particular paper. Neverthelass it is most often intui-
tively clear what is meant. In Table 4.1 an attempt is made to systemize
the contributions according to the cases discussed and the methods and
model structures used. The papers are reviewed in chronological order.

Fisher [14] discusses jdentifiability of continuous, deterministic,
linear state space systems with no extra perturbation and with a time
invariant, noise free feedback. A least squares approach to the para-
mater estimation ig taken. Necessary and gufficient conditions for iden-
tifisbility are in this case that the control law is non-linear in the

states, and that the system is completely controllable.



20.

The problem of identification of closed loop systems has been treated
by Akaike [9], [17]. There are also several applications using his ideas,
e g Otomo et al [46] and Itoh et al [47]. Akaike points out that cross
spectral analysis requires, that the input is measured without noise and
that the noise and the input are independent. This last condition is
violated for closed loop systems. Lf there is an extra perturbation, i e
vltO, cross spectral analysis can, howeaver, be used in a special way.
Akaike treats particularly the case when there is an unmeasurable dis-
turbance in the feedback loop. Then ordinary cross spectral analysis
fails. Instead the problem is solved by introducing a causal time domain
model. Direct identification is used with an impulse response model with
a finite number of parameters.

Priestley [19] treats the problem of estimating the process transfer
function from data consisting of records of tha input and the output
from a closed loop system with additive disturbances. No known perturba-
tion is available and the feedback is linear, Direct identification is
used. The least squares method is compared with the weighted least
squares method.

In the survey paper on identification by AstrSm and Eykhoff [10]

identification of closed loop systems is only discussed very briefly.
An example is given for the case of noise free, linear, time invariant
regulator without extra perturbation. In this case a noncaugsal method
will give the inverse of the regulator as the model. However, a method
using a causal model may or may not give the correct model, cf Example
2,1 and 2.2.

The most general discussion is given by Bohlin [12]. This paper is
concerned with the basic limitations of identification and the practical
implications of the mathematical assumptions involved. Thus also identi-
fication of processes operating in closed loop during the experiments is
treated. Bohlin remarks that there are very simple but realistic cases
when identification is impossible under closed loop conditions. However,
a closed loop during the experiments does not necessarily prevent iden-
tification of the open loop characteristics. In the case of noise free,
linear feedback without any extra perturbation the process is not iden-
tifiable without a priori knowledge of the structure. A chosen structure
cannot be validated by the data, cf Example 2.3.

In Bohlin [48] the ambiguity of the maximum likelihood method 1is

treated. It is demonstrated that if the regulator ig ncise free, linear,
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time invariant and if no extra perturbation is injected only the noise
transfer function for the closed loop system is identifiable. When the
structure is known, identifiability of the open leop transfer function
is secured if there is a one to one correspendance between the parame-
ters of the open loop transfer function and the closed loop noise trans-
fer function. No explicit conditions for the identifiability of the
open loop dynamics are given.

Schultze [49] treats the case with an extra perturbation vi or with
an unknown disturbance v,. The choice of model structﬁre and identifi-
cation criterion is also discussed. It is demonmstrated that this choice
is of crucial importance. For the closed loop case the difference equa-
tion model for the process must include possibilities to handle correla-
ted disturbancee. Direct identification is proposed. An application to
a ball mill ia presented.

Box and MacGregor [1L1,[18] first show that correlation methods fail

for closed loop systems. If an extra input signel is available however
identification is possible. They also discuss what can be done in the
case of no extra input by modelling the process as a pure time series
using the output {i e indirect identification). They propose a test for
feedback by testing the cross covariance betwéen the input and output.
Applicaciocns to polymer viscosity and paper machine data are given.

Caines and Wall [50] diascuss parameter estimation of closed loop

systems and particularly the case with an unknawn disturbance in the
feedback loop. They state that direct identification using the loss
function for the open loop maximum likelihood estimation will not give
the maximum likelihood estimates for the closéd loop case. Instead it
is proposed to estimate the parameters in the model consisting of the
inputs and outputs expressed as time series of the noise socurces. This
idea has been pursued by Caines and Chan, see below,

Leonhard [51] dicusses the identification of systems operating in
closed loop. Indirect identification with ths least squares method is

used. It is stated that the open lcop transfer function can be obtained

v, acting in the feedback loop. An example using direct identification
igs also given.

Eykhoff [52] discusses briefly identification of closed Loup systems
in connection with leas: squares estimation. The case with noise free

feedback and with a perturbation signal is traated. Indirect and direct
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sdentification are proposed as the two existing possibilities. It is
mentioned that difficulties can arise in indirect identification be-
cause it is not always trivial to solve for the open loop dynamics from
the closed loop transfer function.

Clover [15] is mainly concerned with paramater identifiability of
continuous and discrete time state space syestems. A recomuended way to
model a system with feedback is to write down the state space equations
for the open loop system and then modify these equations with the feed-
back law. The closed loop system is then expressed in terms of the open
loop parameters and the parameters of the feedback law. The identifiabi-
lity questions for the unknown parameters of this closed loop system can
then be answered as for the open loop case.

Goodwin, Payane and Murdoch (53] are mainly concerned with the syn-—

thesis of optimal test signals for cloaed loop identification. A variant
of the case with an extra perturbation is treated. According to our
aotion indirect identification is used.

Lindberger [54], [55] has discussed problems related te the identifi-
cation of closed loop systems. In principle the case with unmeasurable
disturbances in the feedback loop is treated. Lindberger uses indirect
identification according te our nction. He alad propoees a strategy in
order to try to achieve identifiability by succeasgively increasing the
complexity of the regulator end performing one experiment with each re-
gulator until a reasonable model is obtained.

Panich and Trachevskii [36] derive identifiability conditions in the

case of a linear noisefree feedback without any extra input assuming
special structures of the system and of the regulator making least
squares identification applicable. Necessary conditions turn out to be
that the lag of the svstem is large enough or that the controller is
complex enocugh. Simulations illustrate what happens for different number
of delays iun the system and for different controllers.

Vorchik et al [57] consider the identificacion of a closed loop sys-

tem with disturbances in the feedback loop which may be correlated with
the system disturbances. The disturbances are assumed to be uncorrela-
ced in time. Conditions on the signals and the regulator are derived
andetr which the pavameters of the system and/or the regulator converge
to the true valuss and under what conditions the estimates are efficient.
These results are axtended in Vorchik [34] to cases where the structure

of the disturbances are more complex. ldentifiability conditions axe



also given for the case when there is no disturbance source in the feed-
back loop.

Rddder [20], [21] gives conditions on which signals that must exist
and which sigaals that have to be measured to be able to determine the
open loop characteristics from closed loop experiments by correlation
(spectral) analysis. In general cases the regulator has to be known.
Also estimates of the obtained accuracies are given. '

Phadke and Wu [58] present a procedure for the identification of a

miltivariable system described by a vector difference equation model
which is similar to the one proposed by  Caines and Chan [1].
The procedure comsists of two steps, First a multivariate time series
model is fitted to the input and output series. The open loop characte-
+istice can then be determined from this model. The conditioms are that
there is a disturbance source in the feedback loop and that the plant
(or feedback) has at least one lag. The procedure is applied to the
identification of a multivariable model of a blast furnace.

Thtm and Krebs [22] compare correlation anslveis and paremeter esti-

mation when applied to the identification of closed loop systems. They
discuss the possibilities to use correlation snalysis and conclude that
e g generalised least squares and maximum 1ikelihood methods are pre-
ferable.

Kurz and Isermann [59] consider saveral different closed loop confi~

gurations and discuss under what conditions the open loop characteris-
tics are identifiable. A two-stage (on-line) ldentification procedure is
used. In the first step correlation analysis ig performed. The obtained
estimates of the correlation functions are then used in a least squares
parameter estimation. The different cases are illustrated by simulations
trying to show the achievable accuracy in the different cases.

Box_and MacGregor [35] study the effects on the estimation of charac-

teristics of systems operating in closed loop of optimality and subopti-
mality of the regulator, of the influence or an additional input signal
and of lage in the systems. In particular, they consider two problems,
the estimation of parameters in the dynamic and stochastic parts of the
system and the estimation of only those functions of these parameters
which occur in the control equation. Identifiability conditions are
given showing that the conditions for the latter case are much weaker.

Caines and Chan [1] and especially [2] give a very complete treat-

ment of the problem with feedback in the input signal. They present a
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definition of feedback between an ordered pair of multivariable pro-
cesses. It provides statistical criteria for ths detection of feedback.
The proposed identification procedure starts with a multivarieble time
series, modelling the input and cutput. It is assumed that there is a
disturbance in the feedback loop and that there is at least one lag
either in the system or in the regulator. From the obtained model the
system and regulator characteristics can pe derived. The papers in-
cludes an application to economic model huilding. An application to
power systems identification is described in [2] and further developed
in Caines and Sinha [61].

Graupe [62] considers the identification of closed loop feedback
systems of different configurations aud discussed congistency of the
obtained parameter estimates.

Wellstead send Edmunds [63) consider the identifiability problem in

the case when the system has uncorrelated disturbances. They also dig~
cuss the case when there is no lag either in the system or in the re-
gulator. It is proposed that the identification in thie case can be
performed using an instrumental variable method.

So far the papers reviewed have mainly been concerned with the iden-
tificarion of the open loop dynamics from closed loop experiments with
constant regulators. ldentifiability problems for closed loop systems
appear also naturally in many adaptive control situations. For such
problems the feedback is generally timevarying in a very subtle way.
Some papers have discussed such problems, 2 g Turtle and Phillipson [64],
Saridie and Lobbia [16], Lobbia and Saridis [65], Balakrishnan [66],

Liung and Wittemmark [67].

Captions to Tables 4.1 and 5.3

Parantheses indicate that only a short discussien is given.

Feedback cases

EI: Extra input, the signal vy in Fig 2.1 is non-zero.

NR: Noise in the regulator, the signal v, in Fig 2.1 is non-zero.
LTI: Linear, time-invariant, ncizefree ragulator without exura input.
NiL: Non-—linear regulator.

1LTV: Linear time-varying regulator.

Identification method (cf Section 2.1)

D Direct identification
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Table 4.1 Classification of some papers deal

aspects of identification of closed loop systems.
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Phadke-Wu [58] x X X % X x

Priestly [19] x x X x x x % x
Rédder [20],[211 x x x X x x x
Saridis-Lobbia [16] X x % x x

Schulze [49] x x x x (O] = x

Schwalb {70] x X x x x
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S5derstcdm et al [6] X x x x x x x x x W (%) x (x} | (x)
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ID: Indirect identification
JI10: Joint input-output identification
PE: Prediction error identification method (e g ML or LS)

COR: Correlation or spectral analysis

System
$I1S0: Single input single output

MIMO: Multiple input multiple output

Model structures

SSP: State space model
DE: Difference equation model
IR: Impulse response model

FR: Frequency response model

5. APPLICATIONS

In this section two applications of identification of processes ope-
rating in closed loop during the experiments will be described. Other
applications found in the literature will be surveyed in the second part

of this section.

5,1 Applications to ship dynamics and to 2 lyboratory process

EXAMPLE 5.1

This epplication is concerned with the identification of ship dyna-
mics. A model of the ship dynamics is veeded for example when designing
autopilots or for simulation. In this case it 18 valuable to be able to
use data from closed loop experiments for the modelling, since the ship
then can operate under fairly normal conditions even while the experi-
ments are carried out.

Two expetiments with a fully loaded 255 000 tdw supertanker, T/T Sea
Swift, are compared. The ship is 329 m long and has a maximum speed of
16 knots. The measurements were made in the Indian Ocean. The weather
conditions, the trim of the ship and the water depth were about the
came in the two experiments. The dynamics from requested rudder angle
to the ship’s heading angle was determined. The first experiment was
performed in open loop, the second one im closed loop with a proportio-

nal regulator and with an additive rudder disturbance in order to
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secure the identifiability. The open loop experiment lasted 78 minutes,
the closed loop one 59 minutes. The sampling interval was chosen to 10
seconds. The variance of the input signal was approximatively 4 times
larger in the closed loop experiment. On the other hand the variance of
the heading angle for the closed loop experiment was ca one fourth of
the corresponding variance for the open loop experiment. In Fig 5.1 the
inputs and outputs are shown for the two experiments. The experiments
are described in more detail in K&llstrdm [71].

The dynamics from the requested rudder angle to the differenced
heading angle was determined in a model form 1ike (4.11) using the maxi-
mum likelihood method. (The reason for using the differenced heading
angle as the output instead of the angle itself, is that due to the
physical knowledge of the process it is koown that there is a pure in-
tegrator in the process, when mo wind is present, viz. the heading

angle is the integrated angular velocity of the ship [72].)

Smp's Haoding Angfe {Degrees!
Regurated Fugder Angie {Dagiush

P35 - e e et

iDegr et

ime [min)

. A A hr !'[
| ¥yl W

Ship's Headmg Angle 1Degrees)

Pequesied Huider Angle

Fig 5.1 a) Requested rudder angle and heading angle for the open loop

experiment. b) Same for the closed loop experiment.

For both experiments statistical tests indicated that a third order

model was appropriate., Also cross correlation functions between the
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residuals and the input indicated a third order model. The parameters
of the models are given in Table 5.1 together with the estimated accura-

cies of the parameters.

Open loop experiment | Closed loop experiment

4y -2.031 % 0.051 -2,012 # 0.073
4, 1.322 £ 0.074 1.337 £ 0.088
8, -0.297 + 0.037 -0.330 £ 0.034
61 -0.649 £ 0,110 -0.526 = 0.132
6, -1.381 & 0.230 -2.146 * 0.248
B4 1.355 £ 0,196 1.702 £ 0.273
&1 -1.426 = 0.058 -1.284 % 0.088
co 0.603 + 0.041 0.484 % 0.057
A 0.078 0.095

Table 5.1 The estimated parameters of the third order
difference equation models of the ship dynamics. The

b-parameters are scaled with a scale factor 100,

The models do not differ very much. The zeros and the poles of the

corresponding continuous models are given in Table 5.2.

Open loop experiment | Closed loop experiment

-0.031 0,038
EeEqE 0.31 0.25
boles 0.0020 0.0015
-0.062 + 0.036 i ~0.056 & 0.051 i

Table 5.2 Poles and zeros of the continuous models of

the ship dynamics.

There is one unstable mode in the model. This is not unexpected
since it was known in advance that the ship might be unstable under
certain loading conditions. Furthermore & pair of complex poles occur.
These modes may be due to nonlinear effects in the ship dynamics.
Another explanation may possibly be the dynamics of the rudder servo.

In conclusion we may say that the two experiments are quite com~
parable both regarding results and accuracies. However during the

closed loop experiments the variance of the output was considerably
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less. The disturbances in the course of the ship would be quite accept-

able for longer experiments, when the control loop is closed.

EXAMPLE 5.2

In this case a laboratory process, a bar with a rolling ball is iden-
tified. The angle of the bar and the position of the ball can be mea-
sured. The control variable is the voltage of the motor driving the bar

around.

Fig 5.2 The process: A bar, which can be rotated with a motor around
a horisontal axis, applied in its midpoint. A metal ball rolls freely

along the bar.

In this case we were interested in the dynamics from the angle ¢ to
the position x. It is clear from basic physical laws that this dynamics
is a double integrator: G(s) =1/s2, Obviously, the identification ex-
periment cannot be performed in open loop. With no control, the ball
will very quickly roll off the bar. A simple PD-controller feeding back
x to the voltage of the motor was used. A disturbance was added to the
setpoint of this controller, so that the ball was made to roll from one
end of the bar to the other. Inputs () and outputs (x) are shown in
Fig 5.3,

The sampling interval was 0.04 s and the experiment lasted 20 sec.
The parameters of a second order difference model (4.11) were determined
using the maximum likelihood method. The model was converted to conti-
nuous time, and an amplitude Bede plot was drawn, Fig 5.4. It is seen
that in a wide frequency range the model gives a good description of

the system 1/52. The "“bad" behaviour for very low frequencies is
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Fig 5.3 1Inputs () and outputs (x) for the identification experiment.
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Fig 5.4 Amplitude Bode-plot of the frequency response of the obtained

model, converted to continuous time.



