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Abstract

A new method(MZEF) for predicting internalcodingexonsin genomic DNA sequenceshasbeendeveloped.This
methodis based on a prediction algorithm thatuses thequadratic discriminantfunction for multivariate statistical
pattern recognition.With improved featuremeasures, an Arabidopsis thaliana-specificimplementationof MZEF
iscompleted andmadeavailable to theplantgenomecommunity.

Marked by speedy identification and localization of
complex diseasegenes[1, 2], biologyhasenteredinto
a new era of genomicswhich hasfar reachingcon-
sequencesin our understanding of life in nature [3].
As the Human Genome Project enters its large-scale
sequencing phase, computational geneidentification
hasbecomeextremely important[4]. In an effort to
improve theaccuracy of exon predictionand to make
a new tool freely available to thegenomecommunity
locallyin atimelyfashion,anew programcalledMZEF
(Michael Zhang’s Exon Finder) was developed for
identification of protein-coding regions in the human
genome[5]. It is basedon the quadratic discriminant
analysis (QDA). Substantial improvementshave been
madewhen comparedwith existing methods: HEX-
ON [6] (based on linear discriminant analysis) and
GRAIL2 [7] (basedon neutralnetworks). In a recent
review [8], MZEF was ranked as thetop algorithm for
identificationof humaninternalcodingexons. In order
to meetthe needof the first plant genomesequencing
project[9] and to facilitateworld-wide gene-hunting
effort, I have analyzedthe statistical characteristics
of Arabidopsis thaliana genome,redesignedthe dis-
criminantmeasuresandimplementedan A. thaliana-
specificMZEFattherequestsof many plantmolecular
biologists.

QDA (seee.g. [10]) is a powerful statisticalmul-
tivariatepattern-recognitionmethod.It maybethought
of asadirectextensionof theclassicalLDA (lineardis-

criminantanalysis) methodpioneeredby R.A. Fisher
sixty yearsago[11]. Ingeneral, adiscriminantanalysis
canprovidean optimal classification rule(in thesense
of minimizingknown errors) for discrimination of one
population against another (in our case it would be
for discrimination of realexonsagainst pseudoexons).
Graphically viewing thetwo populationsasswarmsof
pointsin amultidimensional(feature)space,QDA can
provide a moreeffective (curved) boundarybetween
two swarms that have different co-variance structures
thanLDA which could only providea straight (plane)
boundary[12].

To assure the quality of data, 142 genomic
sequencesof the non-redundantdata set, which had
beencarefullycleaned[13], wasused.An internalcod-
ing exoncandidate is definedasAG+ORF+GT (with
60 bp flanking sequenceon eachside), there were
110 848 samples taken from the region betweenthe
first codingexonandthelast, which included590real
exonsand110258pseudoexons. 10 featurevariables
were chosen for the discrimination. These 10 vari-
ables measure the following: exon length, upstream-
intronscore,branch-sitescore,30ss score,exonscore,
strand score, frame score, 50ss score, downstream-
intronscoreandGCration(seeAppendix for thedefin-
itions). The first 9 feature variableshadbeenproved
to bevery effective in vertebrateexonpredictions[1].
Althoughthebranchsitesin plant intronslackastrong
consensusfoundinmetazoanandthecriteriafor branch
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Table1.

N = 22169 I II III IV V VI VII VIII IX X Mean SD

tp 107 105 101 95 107 97 103 104 105 100 102.4 4.1

fp 0 1 3 2 1 4 1 0 2 0 1.4 1.3

fn 11 13 17 23 11 21 15 14 13 18 15.6 4.1

site selection in plant was shown to be more relaxed
in somegenes[14], morerigorousstatistical analysis
did reveal a consensusWWCTRAW for A. thaliana,
this signal, albeit weak, wasstill useful for improv-
ing acceptorsite prediction(datanot shown, seealso
[18]. This is consistent with the belief that basicspli-
cing mechanism is conserved throughouteukaryotes.
The addition of the last feacturevariable, the GC
ratio betweenORF and flanking region, was motiv-
atedby theimportanceof AU-rich characterof intron
in dicots (see[14, 15] for references). The influence
of AU-richregionshasbeendemonstratedby inserting
AU-sequencesatvariousplacesin asyntheticGC-rich
introntherebyrestoringits spliceabilityin dicotplants
[16].

10 cross-validationswere doneasfollows: I ran-
domly selected20% (from eachpopulation)asa test
set and used the remaining to train QDA parameters
(meansand covariance matrix which determinethe
optimalclassificationsurface).Theresultis shown as
in the table (seeAppendix for thenotations).

This correspondsto, on average,sn = 0:87,sp =
0:99 andcc = 0:92. We see that QDA tendsto have
very high specificity. Althoughone could lower the
threshold to increase the sensitivity at the expense of
reducing the specificity, it is more desirable to have
relatively high specificity (hence, lessfalsepositives)
in practice,becauseit would allow benchscientists
design lessprobeswith higher confidence.

Most recently, a neural-network predictionsystem
(NetPlantGene) has beendevelopedand a study of
splice site prediction in A. thaliana pre-mRNA was
reported [17]. When compared with other programs,
theoverall performanceof thecoding/non-codingnet-
work ensemble of NetPlantGene on the test set was
0.76 in terms of the correlation coefficient (see the
definition in Appendix; basically it is a single stat-
istical measureachieving anoptimalbalancebetween
sensitivity and specificity, it ranges from 0 for a ran-
dom predictionto 1 for a 100%accurateprediction)
asopposedto 0.55for GeneMark[19] andit also out-
performedGenefinder[20] andGrail [7] on splicesite
predictions. AsNetPlantGeneisnotanexonprediction

program,wesuggest peopleshouldusebothNetPlant-
Geneand MZEFin parallel to achievebetter results1.

Currently, thegenomedatabaseisarapidly moving
target. It goeswithoutsaying that any statistical rule-
basedmethodwill dependonthetrainingdatasetavail-
ableat the time. The presentdatasetmay be biased,
dueto thewayit hasbeengenerated(towardsthegenes
whichwerethemost abundant, themost expressed,the
most easy to isolateorthemost studied),amorerepres-
entativesamplewill certainlybenecessaryin orderto
incorporatenovel geneinformation.As moredetailed
understanding of splicing mechanism becomeavail-
able, betterfeaturesvariableswill alsobe discovered.
We plan to work closely with branch-scientists and
with the genomicsequencinggroupsin orderto fur-
therimprovetheaccuracy.

MZEF is available at the anonymous ftp site
phage.cshl.org in the directory pub/science/mzef (the
author may be contacted at mzhang@cshl.org). It is
also availablethroughtheWorldWideWeb at theURL
of http://www.cshl.org/genefinder. The default para-
metersaresetsothatthey optimizedthetotalprediction
at thebase-pairlevel (SN = 0:95,SP = 0:99,CC =
0:941,which correspondto sn = 0:88 andsp = 0:92
at the exon level). One is referredto the README
file and [1] for moretechnical descriptions. For con-
venience,the URLs for the other programsare also
listed: http//www.cbs.dtu.dk/NetPlantGene.html for
NetPlantGene, http: //compbio.ornl.gov/Grail-1.3/ for
GRAIL, http://CCR-081.mit.edu/GENSCAN.html for

1As it took more than a year for this communication to be
reviewed, therehave beenmore plantgene-findingprograms avail-
able. Most recently, Parnell et al. reportedtheir analysis of the
success of differentgenepredictionprograms in identifying exons
in theA. thaliana genome [21]. Hereis a quotefrom their compar-
isons: ‘The genomic copiesof 25 cDNA identified by sequencing
over 2Mbof theA. thalianagenomeserved asstandardsto judgethe
ability of five differentgenepredictionprograms to identify exons.
MZEF,GRAIL, [7] andGenScan[22] identifiedover 70%of thepos-
sible exons, with MZEF scoring thehighest success rate,FGENEA
andFEXA [23] were lesssuccessful (Success rate:MZEF= 79.6%,
GRAIL = 74.4%, GenScan= 72.2%, FGENEA = 54.9% and
FEXA= 40.5%).In practice,using at least threeprograms ishighly
recommended.
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GeneScanandhttp://dot.imgen.bcm.tmc.edu:9331/gene-
finder/gf.html/for FGENEAand FEXA.
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Appendix

The10 featurevariableswereselectedby experiments
to achieve a reasonable prediction. They aredefined
asfollows: If fA is somefrequency foundin groupA,
we definethe preferencefor A vs. B (say, exonsvs.
pseudoexons) as theratio fA=(fA + fB) [6]. Thefirst
9 featurevariablesaredefinedasfollows(where< � >

meansanaverage,andsplicesiteboundaryisdefinedas
(�1,1)):(1) exon-length,x1 = log10 (actual length in
bp);(2)exon-introntransition,x2 =< (intronhexamer
frequency preferencein the54 bp window to the left
of the 30ss)> � < (exon hexamerfrequency pref-
erencein the 54 bp window to the right of the 30ss)
>; (3) branch-sitescorex3 = maximumbranchscore
(measuredby the putative log-likelihoodscore[18] in
the window (�54,�3); (4) 30ssscore, x4 = position
dependenttriplet frequency preferencefor true30ssvs.
pseudo-30ss in the window (�24,3); (5) exon score,
x5 =< (hexamerfrequency preferencefor exon vs.
intron)>; (6)strandscore,x6 =< (hexamerfrequency
preferencefor theforwardstrandvs.thereversestrand)
>: (7) framescore,x7 = maxi=1;2;3 (framespecific
hexamerfrequency preferencefor exon vs. intron in
frame i); (8) 50ss score, x8 = positional dependent
triplet frequency preferencefor true 50ss vs. pseudo-
50ssin the window (�3,8); (9) intron-exon transition,
x9 =< (exon hexamer frequency preferencein the
54 bp window to the left of the 50ss)> � < (intron
hexamerfrequency preferencein the54bpwindow to
the right of the 50ss>. The last is the GC ratio meas-
ure, x10 = (GC contents in the ORF)/GCcontent in
theflankingregions).

Table2. Theperformancemeasuresare thestandard [1]:

Predictedpositives Predictednegatives

Actual positives truepositives (TP) false negatives (FN)

Actual negatives false positives (FP) truenegatives (TN)

Sensitivity SN =

TP

TP+FN

Specificity SP =
TP

TP+FP

Correlationcoefficient CC = (TP )(TN)�(FP )(FN)p
(PP )(PN)(AP )(AN)

Theexon-level measuresarein lower case and the
base-pair-level measuresarein uppercase.Namely, tp
is thenumberof realexonsin the predictedexons, TP
is thenumberof nucleotidesin theoverlappingregion
betweenthe realexonsandthepredicted exons; fp is
thenumberof falseexonsin thepredictedexons, FP is
the numberof nucleotidesin the predictedexonsthat
donotoverlapwith therealexons; fn is thenumberof
the missed exons, FN is the number of nucleotidesin
themissedexonsthatdonotoverlapwith any predicted
exons. Thestatistic: sensitivity, specificity andcorrela-
tion arewidely usedin many statisticalvalidation test.


