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Abstract

A new method(MZEF) for predcting internalcoding exonsin genome DNA sequenceblasbeendeveloped.This
methodis basd on a predction agorithm thatuses the quadraitc discriminantfunction for multivariate statistical
patern recogniion. With improved featire measires an Arabidopss thaliana-specificimplementatiorof MZEF
is compkted and madeavailable to the plantgenomecommunty.

Marked by speedy identification and localizatian of
comple diseasggeneqd1, 2], biology hasenteredinto
a new eraof genomicswhich hasfar reachingcon-
sequencesn our undersanding of life in nature [3].
As the Human Gerome Project ertersits large-scale
sequencing phag, computtonal geneidentficaion
hasbecomeextremelyimportant[4]. In an effort to
improve the accurag of exon predictionand to make
a new tool freely available to the genomecommunty
locallyin atimelyfashon, anew programcalledMZEF
(Michael zhangs Exon Finder) was developed for
idertification of protein-coding regions in the human
genomg5]. It is based on the quadraitc discriminant
anaysis (QDA). Subgantial improvemens have been
madewhen comparedwith existing methods HEX-
ON [6] (basd on linear discriminant anaysis) and
GRAIL2 [7] (basedon neutralnetworks). In a recent
review [8], MZEF was ranked as thetop algorithm for
idenificaion of humaninternalcodingexons Inorder
to meetthe needof the first plant genomesequenaig
project[9] and to facilitate world-wide gene-hunting
effort, | have analyzedthe statistical characteristics
of Arabidopss thaliana genome redesgnedthe dis-
criminantmeasureandimplementecdan A. thaliana-
specificMZEF attherequest®f mary plantmolecular
biologists.
QDA (seee.g. [10]) is a powerful statistical mul-

tivariatepattern-recognitiomethod It maybethought
of asadirectextensiorof theclassical DA (lineardis-

criminantanalysis) method pioneeredoy R.A. Fisher
sixty yearsago[11]. Ingeneraladiscriminantanalysis
canprovide an optimal classificatio rule (in the serse
of minimizingknown errorg for discrimination of one
popuhtion against anoher (in our ca® it would be
for discrimination of realexonsagang pseudoecons.
Graphtally viewing thetwo popuhltionsasswarmsof
pointsin amultidimensiona(feature)spaceQDA can
provide a more effective (curved) boundarybetveen
two swarmsthat have differert co-variarce structures
thanLDA which could only providea straight (plane)
boundanyf12].

To asswe the quality of data, 142 genomic
sequencesof the non-redundantlata set, which had
beercarefullycleaned13], wasused Aninternalcod-
ing exon canddatkis defnedasAG+ORF+GT (with
60 bp flanking sequenceon eachside), there were
110 848 samples taken from the region betwveenthe
first codingexonandthelast, whichincluded590real
exonsand110258 pseudo&ons 10 featre variables
were chosen for the discriminaion. Thee 10 vari-
ables meawire the following: exon length, upgream-
intron score branch-sitescore 3'ss score, exon score,
strand scae, frame scae, 5'ss scae, downstream
intronscoreand GC ration (see Appendk for the defin-
itiong. Thefirst 9 feaure variableshadbeenproved
to bevery effective in vertebrake exon predctions[1].
Althoughthe branchsitesin plantintronslackastrong
conensusfoundinmetazoarardthecriteriafor branch
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Tablel.
N =22169 | 1 1l v Vv VI vIE VI IX X Mean SD
tp 107 105 101 95 107 97 103 104 105 100 1024 41
fp 0 1 3 2 1 4 1 0 2 0 14 13
fn 11 13 17 23 11 21 15 14 13 18 156 4.1

site selectim in plant was shown to be more relaxed

in some geneq14], morerigorousstatistical anaysis
did reveal a consensusdWWCTRAW for A. thaliana,

this signal, albeit weak wasstill useful for improv-

ing acceptorsite prediction(datanot shavn, seeaso
[18]. Thisis consistert with the belief that basicsgi-

cing mecharsm is conserved throughouteukaryoes

The addition of the last feacturevariable, the GC

ratio betveen ORF and flanking region, was motiv-

atedby theimportanceof AU-rich characteof intron
in dicots (see[14, 15] for referencep The influence
of AU-richregionshasbeendemongratedby inserting

AU-sequenceatvariousplacedn asyntheticGC-rich

introntherebyrestoringits spliceabilityin dicot plants
[16].

10 cross-validatonswere doneasfollows: | ran-
domly selected20% (from eachpopulation)asa tes
set and used the remaning to train QDA paramedrs
(meansand covariance matrix which determinethe
optimal classificationsurface).The resultis shovn as
in the table (see Appendk for the notations.

This correpondsto, on average,sn = 0.87,sp =
0.99 andcec = 0.92. We see that QDA tendsto have
very high specfficity. Althoughone could lower the
threshold to increas the sengtivity at the expen® of
reducing the specificity, it is more desiralte to have
relatively high specificity (herce, lessfalse positives)
in practice,becausdt would alow benchscientists
design lessprobes with higher confidence.

Mostrecently a neural-netwrk predictionsystem
(NetPlantGene) has beendeveloped and a study of
spice site predction in A. thaliana pre-mRNA was
reported [17]. When compared with other programs,
the overall performancef the codingihon-codhgnet
work ersemlte of NetPlariGere on the test set was
0.76 in terms of the correktion coefficient (see the
definition in Appendix; basically it is a single stat-
istical measureachiezing an optimal balancebetween
sersitivity and specificity, it ranges from O for aran
dom predictionto 1 for a 100% accurateprediction)
asoppodto 0.55for GeneMark{19] andit also out-
performedGenefinder[20] andGrall [7] on splice site
predctions AsNetPlantGeneisnotanexonpredition

programwe sugges peopk should use both NetPlant
Gereand MZEFin parallel to actieve better resuts®.

Currenty, thegenomedatabagisarapidly moving
target It goeswithoutsaying that ary statistical rule-
basedmethod will depend onthetraining datasetavail-
ableat thetime. The presentdatasetmay be biased,
duetothewayit hasbeengeneratd (towardsthegenes
whichwerethemog abundantthemog expresed, the
mod eay toisolate orthemog studied),amorerepres
entatve samplewill certainlybenecessaryn orderto
incorporaé novel geneinformaton. As moredetiled
undersanding of splicing mechansm becomeavail-
alle, betterfeatuesvariableswill alsobe discovered
We plan to work closely with branch-scienists and
with the genomicsequencinggroupsin orderto fur-
therimprovetheaccurag.

MZEF is available at the anorymous ftp site
phage.cll.org in the direcory pubkciencemzef (the
auhor may be contaced at mzhang@shl.org). It is
also available throughthe World WideWeb at the URL
of http://lwww.csH.org/genefinder. The defaut para-
metersaresetsothatthey optimizedthetotal predction
atthebase-paitevel (SN = 0.95,SP = 0.99,CC =
0.941,which correpondto sn = 0.88andsp = 0.92
at the exon level). One is referredto the README
file and [1] for moretechntal desriptions For con-
venience,the URLSs for the other programsare also
listed http//www.cbs.dtu.dk/NetPlanGere.html for
NetPlanGereg, http: //compbio.ornl.gov/Grail-1.3/ for
GRAIL, http://CCR-081.mit.edW/GENSCAN.HmI for

1As it took more than a year for this communicationto be
reviewed, therehave beenmore plant gene-findingprograns avail-
able. Mog recently Pamell et al. reportedtheir analyss of the
succes of differentgenepredictionprograns in identifying exons
in the A. thalianagenone [21]. Hereis a quotefrom their conpar-
isons ‘The genonic copiesof 25 cDNA identified by sequencing
over 2 Mb of the A. thalianagenone served as standardgo judgethe
ability of five differentgenepredictionprograns to identify exons
MZEF, GRAIL, [7] andGenScarj22] identifiedover 70%o0f thepos
sible exons with MZ EF scoring the highes succes rate, FGENEA
andFEXA [23] were less succesful (Succes rate:MZEF= 79.6%,
GRAIL = 744%, GenScan= 722%, FGENEA = 549% and
FEXA = 405%).In practice,usng at leas threeprogransis highly
reconmended.



Gene&anandhttp://dotimgen.bcnmmc.aedu:9331/gene
finder/gf .html/for FGENEAand FEXA.
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Appendix

The10 featurevariableswvereselectedy experiments
to achieve a rea®nabk prediction. They are defined
asfollows: If f4 issomefrequeny foundin groupA,
we definethe preferencdor A vs. B (say, exonsvs.
pseudoeong astheratio f4/(fa + fi) [6]. Thefirst
9featurevariablesaredefinedasfollows (where< - >
meansn average andsplicesiteboundarysdefinedas
(—1,1)):(1) exon-length, z; = log 10 (acuallenghin
bp); (2) exon-introntranstion, z, =< (intronhexamer
frequeng preferencan the 54 bp window to the left
of the 3'ss) > — < (exon hexamerfrequeny pref-
erencein the 54 bp windaw to the right of the 3'ss)
>; (3) branch-ge score 3 = maximumbranchscore
(measiredby the putative log-likelihoodscore[18]in
the window (—54,-3); (4) 3'ssscae, x4 = position
dependentiplet frequeng preferencdor true3'ssvs.
pseudo-3ssin the window (—24,3); (5) exon score,
z5 =< (hexamerfrequeng preferencefor exon vs.
intron) >; (6) strandscore,zs =< (hexamerfrequeny
preferencéor theforwardstrandvs. thereversestrand)
>: (7) framescore, z7 = maz;=1.23 (framespecific
hexamerfrequeng preferencefor exon vs. intronin
framei); (8) 5'ssscae, rg = postional dependent
triplet frequeny preferenceor true 5'ss vs. pseudo-
5'ssin the window (—3,8); (9) intron-exon transtion,
r9 =< (exon hexamerfrequeng preferencein the
54 bp window to the left of the 5'ss)> — < (intron
hexamerfrequeny preferenceén the 54 bpwindow to
theright of the 5'ss>. The lastis the GC ratio meas-
ure, 10 = (GC conterts in the ORF)/GC contert in
the flanking regions.

Table2. Thepeformancemeasiresare thestandad [1]:

Predictedpostives Predictednegatives

Actual postives truepostives (TP) false negatives (FN)

Actual negatives false postives (FP) true negatives (TN)

Senstivity SN = %
Speificity SP = 7pi5p

(TP)(TN)—(FP)(FN)

Correlationcoefiicient CC =
V/(PP)(PN)(AP)(AN)

Theexon-level measiresarein lower cae and the
bas-pair-level measiresarein uppercas. Namely, tp
isthe numberof realexonsin the predictedexons TP
is the numberof nucleotidesin the overlappngregion
betwveenthe real exonsandthe predicted exons fp is
the numberof false exonsin the predictedexons FP is
the numberof nucleotidesin the predicted exonsthat
do notoverlapwith therealexons fn isthe numberof
the missed exons FN is the number of nuclectidesin
themissed exonsthatdonotoverlapwith ary predicted
exons Thestatistic: senstivity, specficity andcorrela-
tion are widely usedin mary statisticalvalidation test.



