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ABSTRACT A new method for predicting internal coding
exons in genomic DNA sequences has been developed. This
method is based on a prediction algorithm that uses the
quadratic discriminant function for multivariate statistical
pattern recognition. Substantial improvements have been
made (with only 9 discriminant variables) when compared
with existing methods: HEXON [Solovyev, V. V., Salamov, A. A.
& Lawrence, C. B. (1994) Nucleic Acids Res. 22, 5156–5163]
(based on linear discriminant analysis) and GRAIL2 [Uber-
bacher, E. C. & Mural, R. J. (1991) Proc. Natl. Acad. Sci. USA
88, 11261–11265] (based on neural networks). A computer
program called MZEF is freely available to the genome com-
munity and allows users to adjust prior probability and to
output alternative overlapping exons.

Biology has entered into a new era of genomics that has
far-reaching consequences in human medicine and health (1).
This led to speedy identification and localization of complex
disease genes (2, 3). As the Human Genome Project enters its
large-scale sequencing phase, gene identification has become
extremely important (4). Since human genes may span tens or
hundreds of kilobases, with the protein-coding regions (exons)
accounting for only a few percent of the total genomic
sequence, identifying genes within large regions of uncharac-
terized DNA is a difficult task. The more traditional ap-
proaches to gene isolation, including identification of CpG
islands and conserved sequences, as well as direct screening of
cDNA libraries, are effective but very laborious. Currently,
there are four basic proven robust approaches to rapid and
efficient transcriptional mapping of regions of more than a few
tens of kilobases of DNA (5): cDNA selection (6–8), exon
trapping (9, 10), genomic sequencing with ‘‘software trapping’’
(11, 12), and regional assignment of randomly cloned and
sequenced cDNAs (13, 14). Very soon, large-scale genomic
sequencing coupled to computer prediction and experimental
verification will become the major paradigm for human gene
identification. Current computer methods consist basically of
two types: data base similarity searches (15) and statistical
pattern recognition, the latter being either rule-based or
neural-network-based (see ref. 16 for a recent review). Un-
fortunately, systematic examination (17) of various computa-
tional methods showed that the accuracy at the nucleotide
level ranges from 0.6–0.7 as measured by the correlation
coefficient (see Methods) and the average fraction of actual
exons identified was less than 50%.
In an effort to improve the accuracy of exon prediction and

to make a new tool freely available to the genome community
in a timely fashion, I chose to use quadratic discriminant
analysis (QDA; see ref. 18, for example), a powerful statistical

multivariate pattern-recognition method, as the basis for a new
program called MZEF (Michael Zhang’s Exon Finder). QDA2
may be thought of as a direct extension of the classical linear
discriminant analysis (LDA)method pioneered by R. A. Fisher
60 years ago (19), which was used as the basis for HEXON (20).
One assumes that real exons and pseudoexons may be de-
scribed approximately by two multinormal distributions (hav-
ing different means) of some characteristic features (such as
the splice site scores, etc.). Under this model (although LDA
was originally formulated in a distribution-free manner) LDA
differs from QDA by further assuming that the two distribu-
tions have the same covariance. Graphically, viewing the two
populations as swarms of points in multidimensional (feature)
space, QDA can provide a more effective curved boundary
between two swarms that have different shapes and orienta-
tions than LDA, which could provide only a straight-line
boundary [as shown by the simple illustration in Fig. 1 (21)].
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FIG. 1. Two-variable example in which a quadratic function (solid
line) separates the two groups (3 and E) completely, while the best
linear function (dotted line) misclassifies an appreciable number of
points.
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In a recent study (22), it was shown that human internal coding
exons have distinct correlation structures for different character-
istic features, which implies that one should treat the two covari-
ances (which essentially measure the correlation structures) dif-
ferently. MZEF uses relatively less information than HEXON.
HEXON requires 70 bp of flanking region on each side of an exon,
MZEF only needs 54 bp; HEXON uses up to octanucleotide
compositions, MZEF uses no more than hexamer compositions;
and HEXONmeasures 17 variables (7 for donor discriminant, 7 for
acceptor discriminant, and 3 more for internal exon prediction),
MZEF measures 9 variables for discrimination. These 9 charac-
teristic variables measure the following (seeMethods for details):
exon length, intron–exon transition, branch-site score, 39ss score,
exon score, strand score, frame score, 59ss score, and exon–intron
transition. The addition of branch-site information (22) is a
salient feature of this program.

METHODS

In previous work (22), we extracted, classified, and character-
ized all human exons and their f lanking regions in GenBank
release 87.0 (23). The 3440 coding exons were used for
computing various frequency matrices (24, 25). These matrices
were computed separately for locus G1C content less than
0.48 or otherwise (22). The test set contains 43 completely
sequenced genes as indicated in the tables below. They were
selected randomly from the genomic DNA data that contain
‘‘complete cds’’ in the title (after homologs and pseudogenes
were eliminated). Other sequences were used to build a
training set, which had 1879 true exons and 184,217 pseudo-
exons [defined as an open reading frame flanked by the
putative splice sites, denoted 39ss and 59ss (20)]. ALLSEQ data
and the app gene were described in ref. 17 and p, respectively.
If fA is some frequency found in group A, we define the

preference for A vs. B (say, exons vs. pseudoexons) as the ratio
fAy( fA 1 fB) (20). The 9 feature variables are defined as follows
[where ^ z &means an average, and splice site boundary is defined
as (21, 1)]: 1, exon length, x1 5 log10(actual length in bp); 2,
exon–intron transition, x2 5 ^(intron hexamer frequency prefer-
ence in the 54-bp window to the left of the 39ss)& 2 ^(exon
hexamer frequency preference in the 54-bp window to the right
of the 39ss)&; 3, branch-site score, x3 5 maximum branch score
[measured by the log-likelihood score (22)] in the window (254,
23); 4, 39ss score, x4 5 position-dependent triplet frequency
preference for true 39ss vs. pseudo-39ss in the window (224, 3);
5, exon score, x5 5 ^(hexamer frequency preference for exon vs.
intron)&; 6, strand score, x65 ^(hexamer frequency preference for
the forward strand vs. the reverse strand)&; 7, frame score, x7 5
maxi51,2,3 (frame-specific hexamer frequency preference for exon
vs. intron in frame i); 8, 59ss score, x8 5 positional-dependent
triplet frequency preference for true 59ss vs. pseudo-59ss in the
window (23, 8); and 9, intron–exon transition, x9 5 ^(exon
hexamer frequency preference in the 54-bp window to the left of
the 59ss)& 2 ^(intron hexamer frequency preference in the 54-bp
window to the right of the 59ss)&.
We applied the technique of QDA to relate the given region

to one of the two alternative groups, G1 (exons) or G2
(pseudoexons) (18). The log-ratio of posterior probabilities
that a sequence with feature x belongs to group G1 is given by

j 5 log
p1
p2

5 log
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p02

2
d1 2 d2

2
2
1
2
log

uO1u

uO2u
,

where p0i denotes the prior probability for the group Gi, di 5
(x 2 mi)9Si21(x 2 mi) is the squared Mahalanobis distance

between x and mi with respect to Si, uSu is the determinant of
S, and mi and Si are the group mean and covariance matrix,
respectively (computed from the training set). The optimal, or
Bayes rule assigns the sequence with feature x 5 (x1, x2, . . . ,
x9) to exons if j . 0.
The performance measures are the standard (see ref. 17 or

ref. 26, for example):

To test for internal coding exons, only the genomic region
between the end of the first coding exon and the beginning of
the last coding exon in each gene was considered.

RESULTS AND DISCUSSION

The detailed results on a test set of 43 genes (containing 332
internal coding exons) of known organization are shown in
Table 1, where MZEF is compared with GRAIL2 (27) and HEXON
(20) programs for internal coding exon predictions.
For a better comparison, we increased the threshold for

HEXON so that its sensitivity at the nucleotide level was the
same as MZEF. We used the default threshold for GRAIL2, as its
sensitivity was already lower than that of MZEF. The statistical
summary of tests both at the exon level (sn and sp) and at the
base-pair level (SN, SP, and CC) is shown in Table 2. These
results show that, on average, MZEF has higher accuracy
measured by the correlation coefficient. Furthermore, MZEF
tends to have higher specificity (i.e., fewer false positives). The
improvement is more dramatic at the exon level.
As a second test, I obtained the ALLSEQ data (GenBank

release 85.0) used in the recent evaluation of gene structure
prediction programs (17) and their results for GRAIL2 and
FGENEH. FGENEH is HEXON plus dynamic programming gene
assembly, which can substantially increase the accuracy by
requiring frame compatibility and distance constraint among
exons (20). Since the statistics in that evaluation included the
first and the last coding exons, I recomputed the statistics of
the 1509 internal coding exons in 473 genes of ALLSEQ. The
comparison of this test is summarized in Table 3. Again MZEF
performed better on average. I should point out the training
set for MZEF does overlap with ALLSEQ.
As a final test, I used a new sequence (about 301 kb, kindly

provided by K. Murakami before publication) which includes
the amyloid precursor protein gene, app. In a recent workshop,
Murakami and Tsukuni reported that HEXON was more sen-
sitive, but less specific than GRAIL2* when used to predict the
app gene structure. The statistical evaluation of internal exon
predictions from GRAIL2, HEXON, and MZEF is shown in Table
4. For a better comparison, the threshold for GRAIL2 was
increased so that GRAIL2 and MZEF had the same sensitivity at
the nucleotide level. For HEXON, I used its default threshold,
as its sensitivity was already lower than that of MZEF. Again
MZEF had a better performance, especially at the exon level,
and it is more specific (fewer false positives).
MZEF is available at the anonymous ftp site phage.cshl.org in

the directory pubyscienceymzef (the author may be contacted
at mzhang@cshl.org). It is also available through the World

*Murakami, K. & Tsukuni, S., Workshop on Gene-Finding and Gene
Structure Prediction, Oct. 13–14, 1995, University of Pennsylvania,
Philadelphia.

Predicted positives Predicted negatives

Actual positives True positives
(TP)

False negatives
(FN)

Actual negatives False positives
(FP)

True negatives
(TN)

Sensitivity SN 5
TP

TP 1 FN

Specificity SP 5
TP

TP 1 FP

Correlation coefficient CC 5
(TP)(TN) 2 (FP)(FN)
Î(PP)(PN)(AP)(AN)
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Wide Web at the URL of http://www.cshl.orgygenefinder.
Users can set a prior probability parameter p0, (for example,
set p05 0.04 for higher specificity in gene-poor loci, or set p05
0.08 for higher sensitivity in gene-rich loci, or set p05 0.02 for
a cosmid). Users can also choose the overlapping parameter
ovlp other than 0 (for example, set ovlp 5 2 to get up to two
more overlapping exons ranked by posterior probabilities).
This is important because sometimes the true exon may lie in
the top few of the overlapping exon list, or these overlapping
exons may represent alternatively spliced isoforms. As the
program also outputs separate frame scores, 39ss score, exon

Table 1. Test results

Acc.
no.

Total
real
exons

GRAIL2 HEXON MZEF

ex lt rt ol fp ex lt rt ol fp ex lt rt ol fp

J02843 7 5 5 6 6 4 6 6 6 6 0 4 4 4 4 0
J02846 4 2 2 3 3 1 2 2 4 4 3 4 4 4 4 0
J02933 7 1 2 3 4 5 6 6 6 6 4 4 4 4 4 0
J03059 9 8 8 8 8 0 9 9 9 9 1 8 8 8 8 0
J03930 9 7 8 8 9 2 8 8 8 8 0 8 8 8 8 0
J04038 6 4 5 5 6 2 4 5 5 6 1 6 6 6 6 1
J04617 5 2 2 4 5 3 5 5 5 5 0 3 4 4 5 1
J04988 9 8 8 8 8 1 8 9 8 9 1 8 8 8 8 0
J05096 21 15 18 18 21 8 0 0 0 21 22 21 21 21 21 0
J05451 20 0 1 0 20 20 18 19 18 19 1 20 20 20 20 0
K00650 2 1 1 1 1 0 2 2 2 2 0 1 1 1 1 0
K03021 11 9 9 9 9 1 11 11 11 11 4 8 8 8 8 1
L05072 7 3 5 3 6 3 6 6 7 7 1 4 4 4 4 1
L10615 4 1 1 2 2 1 1 1 2 2 2 3 3 3 3 0
L10641 10 1 2 3 5 5 6 6 7 7 4 10 10 10 10 0
L11910 25 4 4 4 4 8 17 17 18 18 15 21 21 21 21 8
L13470 2 0 0 1 1 2 1 1 2 2 1 2 2 2 2 0
L14565 7 5 5 5 5 0 6 6 6 7 1 6 6 6 6 0
L14927 4 2 3 3 4 2 3 3 4 4 1 4 4 4 4 0
M10612 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0
M11228 6 3 4 4 6 5 2 3 3 4 4 5 5 5 5 0
M12523 12 6 8 6 8 2 10 10 10 10 1 12 12 12 12 1
M13792 10 9 10 9 10 4 10 10 10 10 3 8 8 8 8 0
M15205 5 3 3 3 4 4 3 3 3 5 8 4 4 4 4 0
M15840 4 3 3 4 4 1 0 0 0 4 4 3 3 3 3 1
M16110 12 4 5 5 6 2 8 9 8 9 1 11 11 11 11 2
M17262 12 5 7 6 9 5 8 11 9 12 7 8 8 8 10 2
M19645 6 2 4 3 5 3 6 6 6 6 0 5 5 5 5 0
M20543 4 1 3 2 4 3 4 4 4 4 0 4 4 4 4 1
M24461 8 5 6 5 6 1 6 6 7 7 2 6 6 6 6 0
M24842 5 4 5 4 5 1 4 5 4 5 2 4 4 4 4 1
M26434 7 1 1 1 1 1 6 6 6 6 11 6 6 6 6 3
M31061 8 8 8 8 8 0 8 8 8 8 0 8 8 8 8 0
M34482 6 3 4 3 5 3 5 5 6 6 1 5 5 5 5 0
M63391 7 4 5 6 7 3 6 6 7 7 2 7 7 7 7 1
M69197 5 5 5 5 5 1 5 5 5 5 0 4 4 4 4 0
M85276 3 2 2 2 3 1 2 2 3 3 1 2 2 2 2 0
M91463 9 7 8 7 9 2 3 5 5 8 5 7 7 7 8 1
M94579 9 7 8 8 9 2 8 9 8 9 1 9 9 9 9 0
M96264 9 2 4 2 6 4 5 5 6 6 2 5 5 5 5 0
X05006 6 2 4 4 6 5 2 3 3 4 2 4 4 4 4 0
X63600 4 1 3 1 3 2 3 3 3 3 0 3 3 3 3 0
D00596 5 3 3 3 3 4 2 2 3 3 5 4 4 4 4 0
Total 332 168 202 196 260 128 236 249 256 298 124 280 281 281 285 25

Acc. no, accession number; ex, matched exons; lt, matched left ends; rt, matched right ends; ol, overlap matches; fp, false exons.

Table 2. Test summary

Program sn sp SN SP CC

GRAIL2 0.51 0.57 0.79 0.85 0.80
FGENEH 0.71 0.65 0.88 0.80 0.83
MZEF 0.84 0.92 0.88 0.95 0.90

See Methods for definitions. Lowercase letters indicate the exon
level; uppercase, the base-pair level.

Table 3. ALLSEQ summary

Program sn sp SN SP CC

GRAIL2 0.53 0.60 0.79 0.92 0.83
FGENEH 0.73 0.78 0.83 0.93 0.85
MZEF 0.78 0.86 0.87 0.95 0.89

Table 4. app gene summary

Method ex lt rt ol fp tl sn sp SN SP CC

GRAIL2 7 8 10 12 13 17 0.41 0.35 0.64 0.62 0.63
HEXON 9 9 10 10 38 17 0.53 0.19 0.54 0.29 0.39
MZEF 11 11 12 12 10 17 0.65 0.52 0.64 0.69 0.66

Notation as in Tables 1 and 2; tl, total real exons.
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score, and 59ss score, it can help users make their own selections
if desired. In our experience, users should use at least three
different programs. Agreement among different predictions usu-
ally ensures a higher confidence for experimental pursuit. As the
sequence data base grows very rapidly, a first scan with a
similarity-based program is also absolutely essential.
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