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Abstract

Background: Protein complexes play an important role in biological processes. Recent developments in

experiments have resulted in the publication of many high-quality, large-scale protein-protein interaction (PPI)

datasets, which provide abundant data for computational approaches to the prediction of protein complexes.

However, the precision of protein complex prediction still needs to be improved due to the incompletion and

noise in PPI networks.

Results: There exist complex and diverse relationships among proteins after integrating multiple sources of biological

information. Considering that the influences of different types of interactions are not the same weight for protein

complex prediction, we construct a multi-relationship protein interaction network (MPIN) by integrating PPI network

topology with gene ontology annotation information. Then, we design a novel algorithm named MINE (identifying

protein complexes based on Multi-relationship protein Interaction NEtwork) to predict protein complexes with high

cohesion and low coupling from MPIN.

Conclusions: The experiments on yeast data show that MINE outperforms the current methods in terms of both

accuracy and statistical significance.

Background

With the completion of the sequencing of the human gen-

ome, proteomic research becomes one of the most import-

ant areas in the life science. One important task in

proteomics is to detect protein complexes based on

protein-protein interaction (PPI) data generated by various

experimental technologies, e.g., yeast-two-hybrid [1], tan-

dem affinity purification [2], and mass spectrometry [3].

Protein complexes are molecular aggregations of proteins

assembled by PPIs, which play critical roles in biological

processes. Many proteins are functional only when they are

assembled into a protein complex and interact with other

proteins in this complex. Protein complexes are key mo-

lecular entities to perform cellular functions. Even in the

relatively simple model organism Saccharomyces cerevisiae,

these complexes are comprised of many subunits that work

in a coherent fashion. Besides applications of PPI networks,

such as protein function predictions [4] and essential pro-

tein discoveries [5–11], prediction of protein complexes

is another active topic. Actually, protein complexes

are of great importance for understanding the principles

of cellular organization and function.

Many computational methods for predicting protein

complexes from PPI networks have been developed. Pair-

wise protein interactions can be modelled as a graph or

network, where vertices are proteins and edges are PPIs.

Since proteins in the same complex are highly interactive

with each other, protein complexes generally correspond

to dense subgraphs in the PPI network and many previous

studies have been proposed based on this observation,

such as MCODE (Molecular Complex detection) [12],

MCL (Markov Cluster algorithm) [13], R-MCL (Regu-

larized MCL) [14], CMC (Maximal Clique algorithm)

[15], RRW (Repeated Random Walks) [16], SPICi

(Speed and Performance in Clustering algorithm) [17],

HC-PIN (Hierarchical Clustering based on Protein-Protein

Interaction Network) [18], IPC-MCE (Identifying Protein
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Complexes based on Maximal Clique Extension) [19], and

IPCA (Identification of Protein Complexes Algorithm) [20].

Nepusz et al. [21] proposed an algorithm to find over-

lapping protein complexes from PPI networks, named

ClusterONE (Clustering with Overlapping Neighborhood

Expansion). For the convenience of researchers, MCODE,

ClusterONE, etc. have been designed as plus-in for protein

complex prediction and biological network analysis. Clus-

terViz [22] is such a Cytoscape APP to complete this work.

However, these abovementioned approaches for extract-

ing dense subgraphs fail to take into account the inherent

organization. Recent analysis of experimentally detected

protein complexes [23] has revealed that a complex

consists of a core component and attachments. Core pro-

teins are highly co-expressed and share high functional

similarity, and each attachment protein binds to a subset

of core proteins to form a biological complex. Based on

the core-attachment concept, some algorithms have been

proposed, including COACH (Core-Attachment-based

method) [24], CORE [25], MCL-Caw [26], DCU (Detect-

ing Complex based on Uncertain graph model) [27], and

WPNCA (a Weighted PageRank-Nibble algorithm with

Core-Attachment structure) [28].

In spite of the advances in computational approaches

and related fields, accurate identification protein com-

plexes are still a bottleneck. One of the most important

reasons is that the PPI network contains a lot of false

positives which greatly reduce the complex detection

accuracy. To address this problem, biological informa-

tion other than PPIs has been integrated with network

topology to improve the precision of protein complex

detection methods. Wu et al. proposed a method called

CACHET to discover protein complexes with core-

attachment structures from tandem affinity purification

(TAP) data [29]. Tang et al. [30] constructed time course

PPI networks by incorporating gene expression into PPI

networks and applied it successfully to the identification

of function modules. Wang et al. [31] proposed a three-

sigma method to identify active time points of each pro-

tein in a cellular cycle, where three-sigma principle is

used to compute an active threshold for each gene ac-

cording to the characteristics of its expression curve. A

dynamic PPI network (DPIN) is constructed for the de-

tection of protein complexes. Li et al. proposed novel al-

gorithms, such as TSN-PCD [32] and DPC [33], to

identify dynamic protein complexes by integrating PPI

data and dynamic gene expression profiles. Zhao et al.

[34] reconstructed a weighted PPI network by using dy-

namic gene expression data and developed a novel pro-

tein complex identification algorithm, named PCIA-

GeCo.

There exist complex and diverse relationships among

proteins after integrating multiple sources of biological

information. However, comparing PPI data is difficult

because they are often diverse and play different roles

under different conditions. Current existing approaches

failed to take into account and combined the interac-

tions with different natures into one interaction effect-

ively. Taking into account the influences of different

types of interactions are not the same weight for protein

complex prediction, we construct a multi-relationship

protein interaction network (MPIN) by integrating PPI

network topology with gene ontology (GO) annotation

information. Then, a new method named MINE (identify

protein complexes based on Multi-relationship protein

Interaction NEtwork) is proposed. We have conducted

an experiment on yeast data. Experimental results show

that MINE outperforms the existing methods in terms

of both accuracy and p value.

Methods

Multi-relationship protein interaction network

Complex networks have now been a new research

focus because of surging networks in various fields

such as engineering, social science, and life science. In

reality, connections among nodes in complex net-

works are diversified. Multi-relationship means that

there is more than one connection between two nodes

and each of them has its own property. For instance,

in social networks [35], persons contact with each

other via emails, telephones, MSN, etc. and hence

make up a complex multi-relationship network. Si-

milarly, in biological networks, there are diverse links

among proteins like physical interaction, co-expression,

and co-annotation. However, multi-relationship net-

works are much more difficult to analyze than

single-relationship networks. Multi-relationship net-

works are also essential in better reflecting the real

world.

Definition 1 Multi-relationship network

Consider a PPI network G = (V, E), where V = {v1, v2,…, vn}

represents a set of proteins and E = {e1, e2,…, em} repre-

sents a set of interactions. A multi-relationship network is

defined as MG= (V, E∪E’, T), where T(ei) = ti (i = 1, 2…m)

is the interaction type of ei. E’ is the set of new generated

interactions.

In a multi-relationship network, a pair of proteins may

be connected by more than one type of links. If there

are two or more links between a pair of proteins, they

are called parallel interactions. Figure 1 illustrates a

typical multi-relationship network. From Fig. 1, we can

see that proteins A and B have physical interaction in

the PPI network and at the same time, A and B are also

co-expression based on gene expression profiles and co-

annotations based on gene ontology annotation informa-

tion. In the multi-relationship network, multiple connec-

tions between A and B are kept.
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Researches [27, 36] show that PPI data obtained

through high-throughput biological experiments con-

tains relatively high rates of false positives and false

negatives. False positives become obstacle to the preci-

sion of prediction algorithm. False negatives lead to

the loss of interaction data and continue to inhibit the

increase of the number of protein complexes correctly

matched. To overcome these problems, researches

have begun to integrate the PPI network and other

biological information, such as gene expression pro-

files, essential proteins, and GO annotation infor-

mation. Due to the similar biological properties of

protein complexes, GO annotation is a valuable addition

to PPI data for protein complex prediction. Therefore, in

this study we construct a multi-relationship protein inter-

action network by integrating PPI network topology and

GO annotation information.

The GO database consists of three separate categories

of annotations, namely molecular function (MF), bio-

logical process (BP), and cellular component (CC). MF

describes activities, such as catalytic or binding activities,

at the molecular level. BP describes biological goals

accomplished by one or more ordered assemblies of

molecular functions. CC describes locations, at the levels

of subcellular structures and macromolecular complexes.

In this study we integrate the PPI network and three

categories of GO annotations to construct a multi-

relationship protein interaction network. In our con-

structed multi-relationship network, four kinds of

interactions at most can be considered between two

proteins, namely the interactions of the PPI network

and the interactions of sharing molecular functions,

sharing biological processes, and sharing cellular com-

ponents. Figure 2 describes the process of a multi-

relationship network construction.

In the constructed multi-relationship protein inter-

action network, two proteins are connected if they

interact with each other in the PPI network or have

common functions, including biological processes,

molecular functions, and cellular components. After

constructing a multi-relationship protein interaction net-

work, we do some further processing, such as weighting

and filtering. Studies [9, 10, 36] show that the per-

formance of prediction algorithms based on weighted

networks is generally superior to that based on un-

weighted networks. The reason is simple: weight stands

for the relative reliability/importance of interactions;

thus, weighted networks can be more valuable than un-

weighted networks in the representative of PPI networks.

For the first type of interaction in our constructed

multi-relationship network, interacting with each other

in the PPI network, we weight these interactions

through the analysis of topological features of PPI

networks. Generally speaking, for a pair of interacting

proteins, the strength of an interaction can be reflected

by the number of its common neighbors. This study uses

ECC to calculate the weight of protein pairs, which is

defined as

ECCðvi; vjÞ ¼

N i∩N j
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where Ni and Nj are the neighborhood sets of vi and

vj, respectively. To reduce the negative effect of false

positive on the protein complex prediction, we remove

interactions whose ECC values are zero.

For the rest three types of interaction, we weight inter-

actions according to the number of common functions

(including BP, MF, and CC) between two proteins. For a

pair of proteins vi and vj, BPi and BPj are sets of bio-

logical processes of vi and vj, respectively. W_BP (vi, vj)

represents the strength of sharing biological processes,

which is calculated as follows:

W BPðvi; vjÞ ¼

BPi∩BPj

�

�
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BPi �j jBPj
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In Eq. (2), BPi∩BPj denotes the set of common bio-

logical processes of vi and vj. In a similar way, W_MF

(vi, vj) and W_CC (vi, vj) denote the strengths of sharing

molecular functions and cellular components of vi and

vj, respectively. They can be calculated as follows:

Fig. 1 An example of a typical multi-relationship network. There

are three links between A and B, including physical interaction,

co-expression, and co-annotation. Solid line represents physical

interaction of PPI networks, dotted line represents co-annotation

between two nodes, and the rest line indicates co-expression
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For the three types of interactions, we perform more

stringent filter operations than the first type because they

are newly generated interactions. For a pair of function-

shared proteins, if they have only one common function

or no common neighbors in the PPI network, interactions

between them are removed. After performing the above

operations, a weighted multi-relationship protein inter-

action network is constructed.

MINE algorithm

Considering the influences of different types of interac-

tions in protein complex prediction are not the same, we

construct a multi-relationship protein interaction net-

work by integrating PPI networks and GO annotation

information. To test the effectiveness of the multi-

relationship network, we design a new method for pre-

dicting protein complexes, named MINE (based on

Multi-relationship protein Interaction NEtwork). Multi-

relationship networks have more complex attributes

than single networks. Current protein complex predic-

tion methods are mainly based on single networks. So,

converting a multi-relationship network into single net-

works is key to design the MINE algorithm. A simple

way for addressing this problem is to combine interac-

tions with different natures to one interaction effectively.

In reality, it is inappropriate for us to combine multiple

interactions between two proteins because they are often

derived under different conditions and play different

roles in protein complex prediction. Considering

that different types of interactions play different roles

in detecting protein complexes, we decompose the

multi-relationship network into several single networks,

Fig. 2 Schematic of construction of a multi-relationship protein interaction network. After inputting a PPI network and GO annotation files, MINE

algorithms output a weighted multi-relationship protein interaction network. a The original PPI network. b The GO annotation file, including BP, MF,

and CC. c The constructed multi-relationship protein interaction network by integrating PPI networks and GO annotation. d An example of a magnified

sub-network of the multi-relationship network
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including the PPI network, BPN (sharing biological pro-

cesses), MFN (sharing molecular functions) and CCN

(sharing cellular components). Figure 3 displays the

framework of multi-relationship decomposition.

And then, we identify protein complexes through

mining density subgraphs from the four networks.

Intuitively, a subgraph representing a protein com-

plex should satisfy two simple structural properties:

it should contain many reliable interactions between

its subunits, and it should be well-separated from

the rest of the network [21]. Inspired by the notion,

we take into account the density of a subgraph and

connections between nodes of the subgraph and

nodes out of the subgraph. To describe MINE sim-

ply and clearly, we provide the following definitions,

firstly.

Definition 2 Weighted Density [27]

Given a weighted network G = (V, E, W). V = {v1, v2, …,

vn}, E = {e1, e2,…, em}, W = {w(e1), w(e2),…, w(em)}, w(ei) is

the weight of an edge ei. WD (G) denotes the weighted

density of G and is defined as

WD Gð Þ ¼

X

m

i¼1

p eið Þ � 2

max
1≤i≤jm

p eið Þð Þ� Vj j� Vj j−1ð Þð Þ
ð5Þ

Definition 3 Sub-network Weighted Degree [36]

Given a weighted sub-network G = (V, E, W) and a ver-

tex u, u V. V = {v1, v2, …, vn}, E = {e1, e2,…, em}, W =

{w(e1), w(e2),…, w(em)}, w(ei) is the weight of an edge ei.

SWD (u, G) denotes the weighted degree of u within G

and is defined as

SWD u;Gð Þ ¼
X

n

i¼1

w u; við Þ; u; við Þ∈E ð6Þ

Based on these definitions, we are now ready to de-

scribe our proposed MINE algorithm to detect protein

complexes. Our method visits the four single networks,

respectively, to discover density subgraphs as protein

complexes. For a selected network, MINE starts from a

randomly chosen protein vertex and add protein vertices

via a greedy procedure to form a candidate complex

Fig. 3 Decomposition of a multi-relationship protein interaction network. The multi-relationship network is broken into several single networks,

including PPI network, BPN (sharing biological process network), MFN (sharing molecular function), and CCN (sharing cellular component)
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with high cohesion and low coupling. The growth

process is repeated from all vertices to form non-

redundant complex sets. Since some vertices have simi-

lar neighborhood graphs, the candidate complexes de-

tected from their neighborhood graphs may have large

overlaps, which result in high redundancy. Hence, a

redundancy-filtering procedure is applied to quantify the

extent overlap between each pair of complexes and dis-

card the complexes with low density or small size.

MINE algorithm (Algorithm 1) describes the overall pro-

cedure to identify protein complexes. MINE algorithm pro-

cesses four single networks according to the multi-

relationship network, such as PPIN, BPN, MFN, and CCN,

in line 1. For a selected network Gk, we first generate candi-

date complexes according to neighbors of all proteins in

the network, in lines 3–8. The seed is inserted into the can-

didate set CCS, and then all neighbors of the seed are put

into CCS one by one. If the weighted density of CCS is less

than the threshold WDT, the new added neighbor node is

removed from CCS. After this process, a candidate complex

with high cohesion is formed. Then, we remove some

nodes highly connected with the neighbor subgraph to

form a candidate complex with low coupling, in lines 9–12.

Figure 4 illustrates an example of removing high-

coupling proteins. In Fig. 4, SWD(D, CCS) = 0.2,

SWD(D, NS) = 0.3 + 0.4 = 0.7, D is removed from CCS.

Finally, if CCS is not a subset of complex in the set of

protein complex SC, CCS is inserted into SC.

The second stage of our method is redundancy-filtering,

in lines 15–20. Complexes overlapping to a very high ex-

tent should be discarded. With quantifying the extent of

overlap between each pair of complexes, a complex with

small weighted density or a small number of proteins is

discarded for which overlap score of the pair is above the

threshold. In our method, the overlap threshold is

typically set as 0.8 [21, 27], where the matching score of

two complexes A and B is defined as follows [15, 24]:

MS A;Bð Þ ¼
A∩Bj j2

A �j jBj j
ð7Þ

Results and discussion

In order to evaluate the performance of our proposed al-

gorithm, we compare it with other five competing algo-

rithms, including CMC [15], RRW [16], COACH [24],

SPICi [17], and ClusterONE [21]. For all those compet-

ing algorithms, the parameters are set as recommended

by their authors. We have applied our MINE method

and other methods on two yeast PPI networks, including

DIP [37] and Krogan [38]. These PPI datasets are

Fig. 4 An example of removing high-coupling proteins. The sum of

weighted degree in CCS is 0.2, while that value in NS is 0.7, so D is

removed from CCS, due to high coupling with neighbor set NS
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available online, which varied from each other a lot. In

this section, we will first present in details the results on

DIP data. The results using Krogan data will also be

briefly presented to demonstrate the effectiveness of our

proposed method.

The DIP dataset consists of 5023 proteins and 22,570

interactions. The Krogan dataset contains 3672 proteins

and 14,317 interactions. Self-interactions and repeated

interactions are filtered out in the three PPI networks.

To evaluate the protein complexes predicted by our

method, a benchmark set is obtained from the reference

[39], which consists of 408 complexes.

To assess the quality of predicted complexes, we

employed several evaluation measures, including preci-

sion, recall, F-measure, and functional enrichment of

GO terms.

Precision, recall, and F-measure

We describe how well the predicted protein complexes

match with the benchmark complex set, firstly. A pre-

dicted protein complex is considered to match with a

benchmark complex, if its matching score MS (see Eq.

(7)) is no less than a threshold. Typically, the threshold

is set as 0.2 [24, 27]. Precision and recall are the com-

monly used measures to evaluate the performance of

protein complex prediction algorithms. Precision mea-

sures the percentage of predicted protein complexes that

match benchmark complexes in all the predicted protein

complexes. Recall is the fraction of benchmark com-

plexes that are retrieved. Mathematically, precision and

recall are defined as follows:

Precision ¼
Ncp

jPj
ð8Þ

Recall ¼
N cb

jBj
ð9Þ

where Ncp is the number of predicted complexes

matched by benchmark complexes, Ncb is the number of

benchmark complexes that are matched by predicted

complexes, P is the set of predicted protein complexes

and B is the benchmark complex set.

F-measure, as the harmonic mean of precision and re-

call, can be used to evaluate the overall performance of

the different techniques [21, 24]. Table 1 shows the basic

information about predicted complexes by various

methods on DIP data, where the best values are italized.

In Table 1, PC represents the total number of pre-

dicted complexes, while Npcp is the number of com-

plexes perfectly matching the benchmark complexes. In

other words, the matching score between a predicted

complex and a benchmark complex is 1. From Table 1,

we can see that MINE produces the largest number of cor-

rectly predicted complexes and the second-largest number

of benchmark complexes after COACH, respectively, while

PC of our method (606) is far less than COACH’s (902).

The fifth column of Table 1 shows that MINE has the abso-

lute advantage to obtain the largest number of perfectly

matched complexes. Npcp of MINE is 137.5, 26.67, 375,

171.43, and 216.67 % higher than that of CMC, COACH,

RRW, SPICi, and ClusterONE, respectively. Figure 5 shows

the overall comparison in terms of precision, recall,

and F-measure.

On DIP data, F-measure of MINE is 0.551, which is

45.05, 29.23, 41.02, 112.62, and 48.59 % higher than that

of CMC, COACH, RRW, SPICi, and ClusterONE,

respectively. Our MINE method can achieve the highest

F-measure by providing the highest precision and the

same highest recall as COACH, which shows that our

method can predict protein complexes very good.

Functional enrichment analysis

Another evaluation measure is the function enrichment

which measures the biological significance of predicted

protein complexes by various algorithms. To substanti-

ate the biological significance of our predicted com-

plexes, we calculate their p values, which represent the

probability of co-occurrence of proteins with common

functions [27]. In this wok, we employ the tool BiNGO

Table 1 The matching results of various algorithms

Algorithms PC Ncp Ncb Npcp

MINE 606 345 218 19

CMC 235 119 124 8

COACH 902 319 219 15

RRW 250 118 136 4

SPICi 574 118 143 7

ClusterONE 371 155 136 6

Fig. 5 The performance comparison for various algorithms on DIP

data. MINE achieves the highest precision, recall, and F-measure

among all the six methods

Li et al. Human Genomics 2016, 10(Suppl 2):17 Page 67 of 109



[40] to calculate p values for predicted complexes.

BiNGO is a Java-based tool to determine which GO cat-

egories are statistically overrepresented in a set of genes

or a subgraph of a biological network. BiNGO is imple-

mented as a plug-in for Cytoscape [41], which is an

open-source bioinformatics software platform for visual-

izing and integrating molecular interaction networks. A

low p value of a predicted complex indicates that those

proteins in the complex do not happen merely by

chance, so the complex has high statistical significance.

Generally, a complex is considered to be significant with

p value <0.01. In addition, the p-score is also used as an

effective evaluation measure, which is defined as

p‐score ¼
1

n

X

n

i¼1

− lg p valueið Þjp valuei < 0:01 ð10Þ

Table 2 lists comparative results of various algorithms

based on GO annotation, where the best values are ita-

lized. In Table 2, SC is the number of significant pre-

dicted complexes. That is, their p values are less than

0.01. Our MINE method achieves the highest proportion

of significantly predicted complexes and p-score values

among all algorithms. The p-score of MINE is 12.16,

18.41, 32.08, 48.38, and 20.20 % higher than that of

CMC, COACH, RRW, SPICi, and ClusterONE, respect-

ively. In addition, Table 2 indicates that RRW gets the

highest proportion of significant complexes, while

achieves a lower p-score values than ClusterONE be-

cause the p value of significant complexes predicted by

ClusterONE are lower than RRW’s. These results suggest

that the complexes predicted by MINE had the most

biological significance.

Effect of parameters on prediction performance

In MINE, we introduce a user-defined parameter WDT

(weighted density threshold) to discover density sub-

graphs with high cohesion to form candidate complexes.

To investigate the effect of parameter WDT on perform-

ance of MINE, we evaluate the prediction accuracy in

terms of precision, recall, and F-measure by setting dif-

ferent values of WDT, ranging from 0 to 1. Figure 6

shows that the performance of our method fluctuates

under various values of WDT. Figure 6 clearly indicates

that MINE gets the best performance when WDT is

assigned as 0.05.

Results using Krogan data

We also performed MINE method on the Krogan PPI

network. The precision, recall, and F-measure of each al-

gorithm based on Krogan data are shown in Fig. 7.

Figure 7 indicates that our method gets the best per-

formance among all these methods in terms of precision,

recall, and F-measure. The F-measure of our method is

0.5, which is 68.63, 33.52, 45.53, 69.71, and 47.73 %

higher than that of CMC, COACH, RRW, SPICi, and

ClusterONE, respectively.

Table 2 The comparison of various methods in terms of

function enrichment

Algorithms PC SC Proportion (%) p-score

MINE 606 499 82.34 11.9

CMC 235 187 79.57 10.61

COACH 902 676 74.94 10.05

RRW 250 191 76.40 9.01

SPICi 574 262 45.64 8.02

ClusterONE 371 235 63.34 9.9

Fig. 6 The effect of threshold WDT. It shows that the precision,

recall, and F-measure of our method fluctuate under various values

of WDT. MINE gets the best overall performance when WDT is

assigned as 0.05

Fig. 7 Precision, recall, and F-measure of various methods using

Krogan data. It shows the performance comparison for the

six methods using Krogan data. MINE still archives the best

performance among all these methods in terms of precision, recall,

and F-measure
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Conclusions

In this paper, we have constructed a multi-relationship

protein interaction network (MPIN) by integrating PPI

network topology with GO annotation information. For

a pair of proteins in the MPIN, there exists more than

one kind of interactions between them. To test the ef-

fectiveness of the MPIN, we have developed a novel

method named MINE to predict protein complexes.

MINE first decomposes the MPIN into four single rela-

tionship networks. Then, MINE visits four networks in

turn for predicting protein complexes with high cohe-

sion and low coupling. The results of experiments based

on yeast PPI networks show that not only MINE

achieves higher prediction accuracy than other existing

methods but also majority of complexes predicted by

MINE possess high biological significance. All results

have proved that the constructed MPIN is useful for pre-

dicting protein complexes.
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