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Abstract
Background: Gene expression microarrays allow the quantification of transcript accumulation for
many or all genes in a genome. This technology has been utilized for a range of investigations, from
assessments of gene regulation in response to genetic or environmental fluctuation to global
expression QTL (eQTL) analyses of natural variation. Current analysis techniques facilitate the
statistical querying of individual genes to evaluate the significance of a change in response, also
known as differential expression. Since genes are also known to respond as groups due to their
membership in networks, effective approaches are needed to investigate transcriptome variation
as related to gene network responses.

Results: We describe a statistical approach that is capable of assessing higher-order a priori defined
gene network response, as measured by microarrays. This analysis detected significant network
variation between two Arabidopsis thaliana accessions, Bay-0 and Shahdara. By extending this
approach, we were able to identify eQTLs controlling network responses for 18 out of 20 a priori-
defined gene networks in a recombinant inbred line population derived from accessions Bay-0 and
Shahdara.

Conclusion: This approach has the potential to be expanded to facilitate direct tests of the
relationship between phenotypic trait and transcript genetic architecture. The use of a priori
definitions for network eQTL identification has enormous potential for providing direction toward
future eQTL analyses.

Background
Many phenotypic traits, ranging from disease susceptibil-
ity to development, are quantitative in nature and are
studied in both animals and plants via quantitative trait
locus (QTL) mapping [1-3]. QTLs are regions of the

genome associated with phenotypic variation for a trait.
These regions may or may not contain genes that, when
differentially expressed, control the associated phenotypic
variation. One approach that explores the relationship of
phenotypic trait variation with transcriptome variation
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employs microarrays to survey global gene expression
across a sample of individuals from a segregating popula-
tion, and then maps expression QTLs (eQTLs) [4-7]. An
inventory of eQTLs representing a population or species
may provide the necessary information required for iden-
tifying genes that control quantitative phenotypes. Cate-
gorizing eQTLs has the potential to enable reverse
(natural variation) genetics approaches for the identifica-
tion of genes controlling quantitative traits, and may also
help to enhance the rate of QTL cloning [8].

Global eQTL analyses also allow evolutionary biologists
and geneticists a broader view of molecular complexities.
For example, what is the level of cis versus trans polymor-
phism controlling gene expression in a species, and which
is more likely to cause a phenotypic alteration? Initial
observations from global transcriptome QTL mapping
studies indicate that eQTLs are located in cis or trans rela-
tive to the gene's physical position, but neither the cis nor
trans eQTL positions have been directly linked to pheno-
typic consequences [4,9,10]. Furthermore, at what regula-
tory level in the global gene expression networks are the
trans polymorphisms typically acting? Are they upstream
in a regulatory network, and hence control large numbers
of genes in trans? Or, are they downstream in a network
and thereby affect only a limited number of genes?
Finally, how is transcript variation and heritability related
to the resulting phenotypic variation and heritability
[11]? Addressing these questions requires the classifica-
tion of eQTLs with respect to their cis and trans effects, a
quantification of the number of genes that trans eQTLs
control, and an assessment of whether the genes control-
led by a single trans eQTL are functionally related.

One goal of global eQTL analysis is to identify loci con-
trolling the expression variation of gene networks associ-
ated with various biological functions. One approach
[4,6] is to generate a mapping population, assess global
gene expression using microarrays, and identify eQTLs
controlling the expression of each gene via individual sta-
tistical analyses. The eQTL locations from these individual
analyses for all genes are then superimposed to identify
common regions that control the expression of a large
number of genes, i.e. contain 'broad effect' eQTLs. This
method is hereafter referred to as the summation approach
(Figure 1 – summation approach) [4,12]. It requires that
genes exhibit expression variation and that there is both
sufficient biological and technical replication, but it does
not require the assignment of a priori network informa-
tion. Specifically, current approaches require a posteriori
tests to assess whether the genes controlled by an identi-
fied trans eQTL regions share a common biological func-
tion (e.g., a metabolic pathway, transcriptional co-
regulation, similar gene ontology functional annotation)
[4,12-14].

An approach to test global trans eQTL regions for com-
mon biological function is Gene Set Enrichment Analysis
(GSEA) [13,14]. GSEA utilizes gene ontology (GO) anno-
tations or other descriptors to define gene sets or gene net-
works for a posteriori tests. Every gene in the transcriptome
is ranked relative to the magnitude of its differential
expression in response to a treatment. The gene networks
are then tested to assess if they demonstrate group
responses. Statistical significance is defined by empirical
methods where an enrichment score (a rank statistic) is
calculated for a randomized data set. After a large number
of randomizations, the resulting enrichment scores pro-
vide a null distribution from which the critical value for a
specified level of significance can be gained. GSEA has
been utilized for conducting a posteriori tests for non-ran-
dom association in the network membership of genes
controlled by specific QTLs [15]. As one would expect,
only those genes with sufficient replication and expres-
sion difference provide enough information to allow the
identification of eQTLs. Because GSEA is an a posteriori test
that does not directly use the gene expression value per
individual, it is not directly applicable for eQTL mapping.
However, GSEA does provide a theoretical foundation for
using defined gene networks to analyze eQTLs.

Analysis of variance (ANOVA) is a useful parametric
framework that can be used to test networks of genes for
global associations. In doing so, a single estimated net-
work expression value for each individual in the mapping
population is provided [5,16]. For these applications,
ANOVA methods are based on an additive linear model
that allows for the partitioning of the sources of variation
(e.g., genotype, array, treatment, etc.). Genes are consid-
ered nested variables that describe specific a priori-defined
gene networks (Figure 1). An estimated network expres-
sion value can also be calculated by averaging across each
individual gene's expression within a network. The use of
a priori gene network assignment permits the same net-
work to be evaluated and summarized into one value for
each individual in a mapping population. For each indi-
vidual, the resulting single (average) expression value for
the network is then used as a quantitative trait in a subse-
quent QTL analysis that directly identifies eQTLs control-
ling specific a priori-defined gene networks (network
eQTLs) (Figure 1 – network averaging approach). This
averaging approach is analogous to traditional QTL stud-
ies where the average of n individuals from the same line
or genotype is used to represent the quantitative trait
value for that line. Here, the average gene expression from
the network represents the phenotype for that network.
These networks can be defined a priori via GO annotation,
or they can be defined in other ways, such as co-regulation
observed in other microarray experiments.
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Network analysis of microarray dataFigure 1
Network analysis of microarray data. A flow-chart describing the summation approach and the network averaging 
approach. The summation approach is previously described in the literature (see references in the text). The network averag-
ing approach is the method developed and utilized in this study.
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We employ ANOVA to analyze microarray data for differ-
ential gene network expression among genotypes. We
demonstrate that it is possible to identify significant dif-
ferences in variation at the a priori-defined network level
between two parental Arabidopsis thaliana accessions. We
also identify eQTLs associated with networks of genes
using a recombinant inbred line (RIL) mapping popula-
tion derived from the same two parental accessions. Our
network averaging approach (Figure 1) for a priori-defined
network eQTL analysis in the RILs was compared with the
summation approach [4,6]. From this investigation we
discovered that network members with strong cis eQTLs
complicate our ability to identify network eQTLs, there-
fore we explored analytical methods to address this issue.
Finally, we discuss candidate transcription factors with cis-
eQTL that may control a portion of the network eQTLs
that are in trans, as well as phenotypic traits possibly con-
trolled by the network eQTLs.

Results
Network analysis of parental accession variation
We identified 20 gene expression networks a priori (Table
1). A network was defined as an interconnected system of
genes. These networks have been shown to be either the
transcriptional response to plant/biotic signals or
involved in the production of plant defense compounds;
the 20 networks include 239 genes. Statistically significant
network expression variation between accessions Bay-0
and Shahdara was detected in eight of the 20 networks
tested (Figure 2, Table 2 and data not shown). Four net-
works were expressed at higher levels in Bay-0 and four
networks were expressed at higher levels in Sha (Figure 2).
An ANOVA with log2 normalized expression values
showed that the variation due to differential gene expres-
sion was approximately the same as that controlled by dif-
ferential network expression. However, the network ×
accession interaction was only a small source of variation,
about 6% of the gene (network) × accession variation
(Table 2).

Network analysis of glucosinolate gene expression
The well-studied glucosinolate gene network (GS) was
used to test the feasibility of an a priori-defined gene net-
work approach to map network eQTLs in 148 Bay-0 × Sha
RILs, and to compare the network eQTLs to the eQTLs for
individual genes. Glucosinolates are metabolites in the
Brassicaceae that are believed to control plant responses
to insects and pathogens [17]. This a suitable candidate
network for testing the network averaging approach since
most of the genes in the glucosinolate biosynthetic path-
way have been identified and shown to be co-regulated in
response to several stimuli [18-20].

The GS network's expression value per RIL was deter-
mined using the mean log2 expression across the 20 GS

genes in each RIL (meanlog2). A large difference in the
average log2 expression values for individual genes was
evident; the more highly expressed genes contributed a
greater proportion to the mean network expression value
(Figure 3). The meanlog2 for the GS gene network identi-
fied five network eQTLs (Figure 4A). For four of these net-
work eQTLs, the Bay-0 allele had a negative effect on the
network's expression value, while for one network eQTL
the Bay-0 allele had a positive effect (Figure 4B).

Previous studies have shown that cis expression polymor-
phisms control glucosinolate gene activity and/or expres-
sion in other mapping populations [21-23]. Genes with
predominant cis effects have the potential to contribute
disproportionately to the overall expression variation of a
network. Therefore, we expect this cis effect when estimat-
ing the GS network expression variation. We mapped
eQTLs controlling each of the 20 GS genes (Figure 4C)
and identified six transcripts where a cis eQTL controlled
> 50% of the phenotypic variation (UGT74B1, ESP, AOP3,
AOP2, MAM1 and MAML) (Figure 4C). All except the
UGT74B1 transcript was previously known to have cis-
controlled expression variation [21-24]. The cis eQTL for
ESP, AOP3, AOP2, MAM1 and MAML overlapped with
three network eQTLs identified using the meanlog2 net-
work expression estimate, suggesting that the cis-eQTL for
these highly expressed genes may be generating network
eQTL with this network expression average.

Large cis-eQTLs would likely mask the network level con-
trol on an individual gene's expression due to the cis pol-
ymorphism's high level of expression variation, thus
dominating the network average and obscuring the trans
effects. To remove the impact of large cis-eQTLs on the GS
gene expression network, we estimated the GS network
log2 mean expression value based on a filtered dataset that
eliminated the six genes exhibiting large cis effect eQTL
(mean-cis). A comparison of mean to median estimates in
the presence and absence of the cis affected genes showed
that removing them from the pathway brought the two
measures in closer alignment (data not shown). A com-
parison of eQTLs detected with meanlog2 versus mean-cis

showed that two of the network eQTLs, in the middle of
chromosomes I and V, disappeared; these were likely due
solely to the effect of the ESP, MAM1 and MAML cis-eQTLs
(Figure 4). In contrast, three other network eQTLs were
reproducible. The network eQTL at the top of chromo-
some II had a slightly shifted position. Without cloning of
the underlying polymorphism, it is not possible to deter-
mine if this is a significant change in peak position or due
to the use of an altered gene list for the network. An addi-
tional small network eQTL was identified with mean-cis at
the bottom of chromosome V (Figure 4).
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A wide range of log2 expression values for individual genes
in a network (Figure 3) may also affect network eQTL
identification. To evaluate the effect of rescaling gene
expression data, the mean expression value for the GS net-
work was estimated using the standardized z-values for all
20 genes in each RIL (meanz). The mean and median for
the pathway values were very similar for z-scaled gene
expression values (data not shown). An analysis of the GS
network based on the meanz estimate identified nearly all
the same network eQTLs as the meanlog2 estimate, except
that the putative cis-eQTL from ESP, MAM1 and MAML
disappeared (Figure 4A). As expected, the network eQTL
plots generated in the absence of the six genes that domi-
nated the network (mean-cis) were comparable to the
results based on the meanz estimates since the normaliza-
tion procedure scaled the six genes exhibiting large effects
(Figure 4A).

Network eQTL analysis
We implemented the a priori network eQTL approach to
identify network eQTLs for all 20 a priori defined gene
expression networks (Table 1) used for the comparison of
the Bay-0 and Sha parental accessions. Statistically signif-
icant network eQTLs were detected in the 148 Bay-0 × Sha

RILs for 18 out of 20 networks (Figure 5). The analyses
based on the mean-cis and meanz estimates generated very
similar network eQTL plots for each of the 18 networks
(Figure 5A and 5B). Multiple networks identified the net-
work eQTLs at the top of chromosome II and the bottom
of chromosome V, suggesting that these regions contain
large global-effect network eQTLs, but these regions did
not affect all expression networks in the same way. The
presence of the Bay-0 allele at the network eQTL on the
top of chromosome II up-regulated the LG, WC, NS, ND,
CM, TP and MTB networks, while the same allele down-
regulated the GS, MT, WNM, LGB, CL and IC networks
(Figure 5). Interestingly, the Bay-0 allele at the network
eQTL on the bottom of chromosome V had the reverse
effect on these same networks. Network eQTLs located at
the bottom of chromosome I and III also affected multiple
gene expression networks, albeit not as many as the afore-
mentioned regions. While most network eQTLs appeared
to be associated with multiple networks, there were net-
work eQTLs associated with only a single network, such as
the network eQTL on chromosome I for the LG network.

To determine if physical clustering of genes in the same
network affected the identification of network eQTLs, we

Table 1: A Priori-Defined Gene Networks.

Abbreviationa Network Biological Description # Genesb # Cis QTLc Referenced

BD Genes down regulated by Botrytis 6 0 Unpublished (Kliebenstein)
BU Genes up regulated by Botrytis 10 0 Unpublished (Kliebenstein)
CM Camalexin biosynthetic pathway 7 1 [55]
CL Genes involved in Photosynthesis 27 1 ABRC
FV Flavonoid biosynthetic pathway 15 1 [19, 56]
FVTFe Transcription Factors for FV 6 3 [57]
GS Glucosinolate biosynthetic pathway 20 6 [18, 19]
LG Lignin Production 43 11 [58] and this work
LGB Lignin Production 9 1 [58] and this work
MT Methionine biosynthetic pathway 5 0 ABRC and this work
MTB Methionine biosynthetic pathway 5 1 ABRC and this work
PH Phenylalanine biosynthetic pathway 11 5 ABRC
SN Sinapate biosynthetic pathway 3 0 [59]
TP Tryptophan biosynthetic pathway 9 2 [60]
WC Wound-inducible genes controlled by COI1 7 1 [33] Net. C
WNM Wound-inducible genes, no MeJA 4 0 [33] Net. G
WNC Wound-inducible genes, not controlled by COI1 8 1 [33] Net. D
IC Insect-inducible genes controlled by COI1 14 1 [33] Net. A
INC Insect-inducible genes, not controlled by COI1 13 0 [33] Net. B
ND SA-inducible genes controlled by NPR1 7 0 [34]
NS SA-inducible secretory genes controlled by NPR1 16 3 [34]

aAbbreviation for each gene network used in our study.
b Genes shows the number of gene members in a given network.
c Cis QTL is the number of the genes within the network that contain a cis eQTL controlling > 50% of the phenotypic variation per gene.
d Reference indicates the reference source for the genes included in the network. Genes are listed in Additional file 1. ABRC refers to the use of 
functional network assignments as provided by the Arabidopsis Biological Resource Center [37]. The abbreviations Net. A, B, C, D and G refer to 
the network description provided by Reymond et al. (2004).
e FVTF is not defined here as a network per se; this is a group of transcription factors that are known to affect the FV gene network. See Materials & 
Methods.
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plotted the genomic position of each gene within a net-
work and compared it to the position of the network
eQTLs detected with the meanz expression values (data
not shown). In the LG network, 20% of the genes are
present in a single tandemly duplicated gene cluster on
the top of chromosome I that co-localizes with a small

effect network eQTL, suggesting that this network eQTL
may be due to the sum of small cis-acting QTLs (data not
shown). However, within our collection of 20 networks
and 239 genes, there was no other instance of genomic
clustering of network genes. Thus, the vast majority of net-
work eQTLs cannot be explained by the additive effects of
small cis-effect eQTLs for tandemly duplicated genes, and
are likely trans-acting network eQTLs controlling the spe-
cific network in question.

Summation analysis of eQTLs
One approach to identifying trans-eQTLs that affect the
expression of multiple genes is to identify the eQTLs for
each individual gene and conduct a sliding window, or
binning analysis, that scans the genome and adds together
(i.e., sums) the number of eQTLs in each region [4,12].
Permutation thresholds provide the ability to identify
genomic regions that contain a significant enrichment for
the number of genes with an eQTL in that region (i.e., an
eQTL 'hotspot'). We identified network eQTLs using the
summation approach and compared the results to those
identified by our a priori network averaging approach (Fig-
ure 1). We used the 705 eQTLs controlling the expression
of the 245 genes in this study (239 genes in 20 networks,
plus six transcription factors affecting the FV network;
Table 1). This yielded an average of 2.9 eQTLs per gene
(ranging from 0 to 7 eQTLs), with only 15 genes having
no identifiable eQTL (Additional file 2). Thirty-eight of
the 245 genes had a cis-eQTL controlling > 50% of the
phenotypic variance. The eQTLs for all of the genes were
then used for the summation approach to global eQTL
analysis (Figure 1) [6]. Three genomic regions, on the top
and middle of chromosome II and the bottom of chromo-
some V, showed a significant enhancement in eQTL den-
sity above the 0.05 significance threshold (Figure 6). The
top of chromosome II and the bottom of chromosome V
were also associated with network eQTLs using the meanz

and mean-cis analysis (Figure 5 and 6). Three other
regions, the top and bottom of chromosome I and the
bottom of chromosome III, were suggestive in that they
were barely above the 0.05 significance threshold (Figure
6).

Phenotypic QTL clustering
Genomic regions containing trans-acting network eQTLs
may be more likely to control phenotypic trait variation.
We combined 62 physiological, biochemical and mor-
phological trait QTLs detected in other studies of the Bay-
0 × Sha RIL population, and conducted the summation
approach to search for genomic hotspots associated with
an enriched number of phenotypic QTLs. Based on a per-
mutation threshold, no statistically significant grouping
of phenotypic QTLs was identified (Figure 7). It is possi-
ble that these particular phenotypic traits are not control-
led by the network eQTLs identified in our study.

Network level variation between Bay-0 and ShaFigure 2
Network level variation between Bay-0 and Sha. The 
eight networks showing significantly differential expression 
between Arabidopsis thaliana accessions Bay-0 and Sha at P = 
0.05 using Tukey's HSD are illustrated. Network abbrevia-
tions are as described in Table 1. Black bars show the aver-
age network expression value for Sha while light grey is for 
Bay-0. Networks not shown did not show a statistically sig-
nificant difference in the eight Affymetrix ATH1 GeneChips 
utilized (four Bay-0 and four Sha).
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Candidate transcription factor identification
Trans-acting network eQTLs are hypothesized to be regu-
lated by transcription factor (TF) variation. To determine
if we could identify TFs with cis-acting eQTLs that may
control the trans-acting network eQTLs, we used the FV
(flavonol) gene expression network since it is transcrip-
tionally regulated by at least six transcription factors [25-
28]. Mapping of eQTLs for six TFs known to control the FV
network showed that three TFs, PAP1, TTG1 and TTG2,
were associated with large effect cis-eQTLs (Figure 8). Of
these, only the PAP1 cis-eQTL co-localized with a FV net-
work eQTL (Figure 8). Interestingly, PAP1 also showed
trans-acting eQTL in the same regions of chromosome II
as the FV network. Thus, a priori information can be used
to identify potential candidate transcription factor varia-
tion controlling expression networks. Furthermore, the a
priori information was helpful for only one of the FV net-
work eQTLs, suggesting that studying natural variation for
polymorphic gene expression patterns is likely to identify
unknown factors regulating expression networks.

Discussion
The use of the network averaging approach based on a pri-
ori defined gene networks was effective in identifying net-
work eQTLs (Figures 1, 4 and 5). We located a number of
trans-acting network eQTLs that controlled the expression
of varying numbers of gene networks (Figures 4 and 5).
These network eQTLs were detected in similar genomic

regions as those identified via the summation eQTL
approach (Figures 5 versus 6). Thus, the use of a priori net-
works in combination with an efficient statistical analysis
can serve to identify trans-acting regulatory eQTLs.

The use of a priori networks in conjunction with an
ANOVA successfully identified network expression differ-
ences between two parental accessions, and indicated that
about half of the 20 networks considered exhibited basal
expression level differences between Bay-0 and Sha. These
differences were split equally between Bay-0 and Sha.
Since these networks represent groups of genes, these
results suggest that there is genetic variation that coordi-
nately impacts the expression of these genes. The presence
of network-level variation affects comparisons of the
expression of specific genes across accessions such that if
gene expression networks are differentially expressed
between two accessions, then the genes within those net-
works will be subjected to different regulatory patterns. In
this case, understanding network-level variation among
genotypes will help elucidate how individual genes
respond to a signal in comparison to their network
response.

Because the network averaging approach depends on a pri-
ori network information, it is only as robust as the defined
gene networks. If the prior experiments were not properly
designed, replicated, conducted and analyzed, then the

Table 2: Analysis of Variance for Network Analysis of Bay-0 Versus Sha.

Sourcea DFb SSc F Valued Pr > Fe

Model 739 8796.0 81.70 < .0001
Error 220 32.0
Total 959 8828.1

R-Square Coeffient of Variation (%)
0.996369 4.009452

Source DF Type III SS F Value Pr > F

NETWORK 19 4028.9 1455.4 < .0001
GENE(NETWORK) 220 4435.0 138.4 < .0001
ACCESSION 1 0.2 1.8 0.1816
REPLICATE 1 0.1 1.2 0.2688
NETWORK × ACCESSION 19 15.7 5.7 < .0001
GENE(NETWORK) × ACCESSION 220 259.6 8.1 < .0001
ACCESSION × REPLICATE 1 0.2 1.2 0.2719
NETWORK × REPLICATE 19 4.3 1.6 0.0667
GENE(NETWORK) × REPLICATE 220 49.2 1.5 0.0008
NETWORK × ACCESSION × REPLICATE 19 3.1 1.1 0.3409

a Source of Variation in linear additive model.
b DF = degrees of freedom.
c SS = Sums of squares obtained from ANOVA.
d F Value obtained from ANOVA.
e Pr > F = the probability that the F value is equal to the value shown. A probability less than 0.05 indicates that the F value is significant.
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networks defined by those experiments will not be relia-
ble nor yield biologically meaningful eQTL results. Bio-
logical sources of error are relevant to the underlying
assumption that the variation utilized to generate the a
priori networks is related to the variation being studied in
the new experiment. For example, the use of a priori-
defined networks identified by comparing gene expres-
sion in different tissues may not be appropriate for query-
ing a new experiment focused on a single tissue's response
to pathogen attack. Instead, the use of networks defined
by responses of a similar tissue challenged by a different
pathogen would be more appropriate for a priori network
analysis.

Comparison of global eQTL approaches
We compared the results from an analysis based on the
summation approach [4,6] with the results from our net-
work averaging approach analyses (Figure 1) using
meanlog2, mean-cis and meanz for a priori-defined net-
works. Both approaches identified two genetic regions
with broad effects on gene expression, located on top of
chromosome II and the bottom of chromosome V (Fig-
ures 5 and 6). The a priori-defined network approach also
identified several regions that were detected as suggestive

in that they were just above the permutation threshold for
significance based on the summation approach. Our com-
parison suggests that the summation approach is likely
biased towards detecting global eQTLs that have broad
impacts on gene expression. In contrast, network averag-
ing allows sub-classification of the genes prior to eQTL
analysis, which can help identify underlying patterns
associated with the global view obtained by the summa-
tion approach. In addition, an analysis based on network
averaging with mean-cis and meanz estimates can be used
to remove or reduce the effect of large cis-acting genes to
reveal trans-acting eQTLs and identify global regulatory
eQTLs. Therefore, our results suggest that the summation
and network averaging approaches should be viewed as
complementary methods that in combination provide a
more complete assessment of the genetic architecture of
global transcriptome variation and the underlying com-
plexity of gene networks.

Transgressive expression variation
Twenty networks containing 239 genes identified several
broad-effect network eQTLs in the Bay-0 × Sha RIL popu-
lation. Interestingly, two of these network eQTLs (at the
top of chromosome II and the bottom of chromosome V)

Variation in gene expression for the Glucosinolate (GS) gene network in Bay-0 × Sha RILsFigure 3
Variation in gene expression for the Glucosinolate (GS) gene network in Bay-0 × Sha RILs. Box plot showing the 
average (+/- one) standard deviation range of log2 gene expression in the 148 Bay-0 × Sha RILs for each of the 20 gene mem-
bers of the GS network. Vertical lines represent the position of the minimal and maximal average gene expression value among 
the GeneChips corresponding to two biological replicates of each of 148 Bay-0 × Sha RILs.
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eQTLs controlling the Glucosinolate (GS) network gene expressionFigure 4
eQTLs controlling the Glucosinolate (GS) network gene expression. The vertical lines separate the genome into 
chromosomes I-V (labeled at the top) with cM progressing left to right along the x axis. The length of each chromosome in cM 
is indicated at the end of each chromosome. A. Network eQTLs detected (LOD profiles) for the glucosinolate network gene 
expression estimated as the average of the log2 expression across all glucosinolate genes (meanlog2 = red profile), average the 
log2 expression across only the glucosinolate genes minus those with a large cis effect eQTL (mean-cis = blue profile) and the 
average normalized expression across all glucosinolate genes (meanz = black profile). The threshold for declaring a QTL signifi-
cant at α = 0.05 is LOD > 2.8. B. Allele effect trace for the glucosinolate network gene expression estimates shown in A. The 
y axis is in either log2 or z units, depending upon the profile. The effect shown is in terms of the Bay-0 allele. A positive value 
indicates that the Bay-0 allele has a positive effect on the trait. A negative value indicates that the Bay-0 allele has a negative 
effect while the Sha allele has a positive effect on the trait. C. eQTLs controlling the log2 expression of the individual genes in 
the glucosinolate network. The color schematic at the bottom shows the LOD score scale with the directionality of effect indi-
cated by the color. Only significant QTLs are shown. An eQTL for which the Bay-0 allele has a positive effect is shown by dif-
fering shades of yellow and red, and darker intensity indicates a greater LOD score at that genetic position. An eQTL where 
the Bay-0 allele has a negative effect is shown by differing shades of blue, again with darker intensity indicating a greater LOD 
score. Gene names in red indicate those with a cis-eQTL that controls > 50% of the phenotypic variation for that gene.
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show opposite allelic effects both with respect to each
other and with respect to their impacts on the networks.
The opposite allelic effects observed for these two network
eQTLs suggests that this RIL population has transgressive
segregation affecting gene expression network values such
that Bay-0 has a +/- allele combination and Sha has a -/+

combination which negate each other. This agrees well
with the relatively small differences we detected in gene
network expression for the Bay-0 and Sha parental acces-
sions. In contrast, some of the RILs have recombinant
(non-parental) +/+ and -/- allele combinations at these
network eQTLs, which is not unexpected in a segregating
population.

Network eQTLs versus phenotypic trait QTLs
We did not observe a significant enrichment of pheno-
typic QTLs within regions showing broad-effect network
eQTLs (Figures 5, 6 and 7). This lack of association sug-
gests that these network eQTL regions do not have detect-
able effects on these particular traits. However, two shoot
growth QTLs (DM10.3 and DM10.8) [29] with opposite
allelic effects co-localize with our two main network
eQTLs, suggesting that it may be more informative to
examine network specific-eQTLs and the phenotypic con-
sequences expected from the predicted biological func-
tion of the networks. The use of a priori-defined gene
expression networks allows generation of specific hypoth-
eses about the phenotypic effect of network eQTLs. The
GS and CL networks are known to be repressed by oxida-
tive stress and salicylic acid, while the NS, ND, CM and TP
networks are known to be induced by these two factors,
suggesting that the network eQTLs associated with these
networks may involve some facet of oxidative stress and/
or salicylic acid homeostasis within the RIL population.
Validating this hypothesis and determining network asso-

Broad effect eQTL regions detected via the summation approachFigure 6
Broad effect eQTL regions detected via the summa-
tion approach. The number of genes showing eQTLs 
within a 5 cM sliding window is shown. The P = 0.05 cutoff 
for significant enhancement (horizontal line) is equal to 27 
genes with an eQTL within a 5 cM sliding window. A total of 
245 genes were used for mapping eQTLs. The five chromo-
somes lie along the x axis and begin at the corresponding 
number such that 1 is the start of chromosome I, etc. All five 
chromosomes are < 100 cM in this sample of 148 RILs of the 
Bay-0 × Sha population.
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Network eQTL controlling a priori defined gene expression networksFigure 5
Network eQTL controlling a priori defined gene 
expression networks. The vertical lines separate the 
genome into chromosomes I-V (labeled at the top) with cM 
progressing left to right along the x axis, and the length of 
each chromosome in cM is at the end of each chromosome. 
The color schematic shows the LOD plot for each gene with 
the directionality of effect indicated by the color. Only signif-
icant QTLs are shown. A network eQTL where the Bay-0 
allele has a positive effect is shown by differing shades of yel-
low and red, and darker intensity indicates a greater LOD 
score at that genetic position. A QTL where the Bay-0 allele 
has a negative effect is shown by differing shades of blue, 
again with darker intensity indicating a greater LOD score. 
The networks are ordered using median centered Spearman 
rank clustering of the effect traces along the genome; as a 
result, networks showing similar network eQTLs and effect 
directionality are located adjacent to each other. A. Network 
eQTL for gene expression networks obtained using mean-cis. 
B. Network eQTL for gene expression networks obtained 
using meanz.
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ciations will require the cloning and characterization of
the underlying genetic polymorphisms.

Network-specific eQTLs
Our predominant interests in Arabidopsis involve plant/
pathogen and plant/pest interactions which are control-
led by a variety of characterized transcriptional and meta-
bolic response networks [17,30-33]. The NS, ND, CM and
TP networks are involved in plant/pathogen responses
and are known to be co-regulated in response to biotic
attack (See Table 1 for references). This agrees well with
our observation that these networks are typically associ-
ated with similar genomic locations of network eQTLs
(Figures 4 and 5). Interestingly, one network eQTL at the
bottom of chromosome III is specific to these networks,
suggesting that it may specifically influence variation in
plant/pathogen interactions in this population.

The FV, GS and IC networks are induced by both methyl
jasmonate (MeJA) and insect herbivory. While these net-
works did not show complete agreement in the location
of their network eQTLs, they were all affected by a net-
work eQTL at the bottom of chromosome I which
appeared to be specific for these three networks. Interest-
ingly, this region also influenced the ND and CM net-
works, albeit with opposite parental allele effects on the
FV, GS and IC networks. The ND and CM networks are
known to be MeJA-repressed. Thus, the observed opposite
parental allele effects on MeJA-inducible and MeJA-
repressible gene networks suggests that this region may be
controlling MeJA homeostasis and/or signaling.

The bottom regions of chromosomes I and III exhibited a
slightly significant enrichment for eQTLs using the sum-
mation approach. This slight significance would typically
lead to these QTLs being noted but not necessarily pur-
sued. However, the a priori network averaging analysis
suggested that these regions may be specific for defined
regulatory networks involved in plant/biotic pest interac-
tions. This defined regulatory role will limit the number of
transcripts that can be controlled by variation in these
regions and minimize the ability to detect an eQTL enrich-
ment signal on a global regulatory analysis with the sum-
mation approach. Thus, by utilizing a priori information
to sub-categorize the global gene expression network, it is
possible to identify network-specific eQTLs that might
otherwise be overlooked.

Conclusion
The a priori network averaging approach uses a novel sta-
tistic to summarize each individual's (defined) network in
the mapping population. The actual statistical analyses
are based on well-established statistical methods for iden-
tifying QTLs. In this application, the identified QTLs are
controlling genes sharing a common biological function,
and thus are referred to as network eQTLs. This approach
has the major advantage of allowing researchers to apply
their biological knowledge of gene associations from pre-
vious work to the analysis of network eQTLs. The a priori
network averaging approach is also complementary to
other methods, such as the summation approach and
GSEA, and as presented here provides a framework within
which transcriptome data can be analyzed for the purpose
of addressing hypothesis-driven questions. For example,
one could define the networks based on genes expressed
in specific cell types (e.g., trichomes versus stomates) to
identify eQTLs potentially controlling the development of
these tissues. Since it is likely that each gene is a member
of multiple semi-independent networks, grouping genes
into multiple different networks with subsequent eQTL
analysis may enhance our understanding of how gene net-
works interact and control phenotypic outputs.

Two major questions that remain to be addressed are:
what is the relationship between the quantitative trait
phenotype and gene expression values, and what is the
relationship between phenotypic trait QTLs and eQTLs?
Using a priori network definitions, it may be possible to
directly identify network eQTLs for defined metabolic
pathways or trait phenotypes such as pathogen resistance.
Thus, by mapping QTLs for the specific metabolites and/
or pathogen resistance in the same population under the
same conditions that are used for global gene expression
analysis, it may be possible to directly compare the genetic
architecture of eQTLs controlling the transcripts to the
resulting measurable phenotype. The use of a priori defini-
tions for network eQTL identification has enormous

Summation approach to phenotype QTL clusteringFigure 7
Summation approach to phenotype QTL clustering. 
The number of physiological traits showing a QTL within a 5 
cM sliding window is shown. One thousand permutations of 
this data showed that the P = 0.05 threshold for significant 
enhancement is 12 traits with a QTL per sliding window 
(horizontal line). QTLs for 62 phenotypic traits were used 
for this analysis. The five chromosomes begin at the corre-
sponding number such that 1 is the start of chromosome I, 
etc.
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potential for providing direction toward future transcrip-
tomics eQTL analyses, as it facilitates a direct test of the
relationship between phenotypic trait and transcript
genetic architecture.

Methods
Plant material and experimental conditions
Seeds for Arabidopsis thaliana accessions Bayreuth (Bay-0),
Shahdara (Sha), and a Bay-0 × Sha recombinant inbred
line (RIL) population [34] were obtained from TAIR
(stock #CS57920)[35]. The RIL F8 plants and parental
accessions were grown in a growth chamber at UC-Davis,
allowed to self-pollinate, and seed was harvested from

individual plants to produce sufficient seed for each
homozygous F9 line for our replicated experiments.

Replicated factorial experiments were conducted with
Bay-0 and Sha plants grown on three separate dates in a
growth chamber at UC-Davis under short day conditions
(8 hr light at 100–120 μEi, 20°C day/20°C night) to delay
flowering and maintain plants in the vegetative phase. At
six weeks post-germination these plants were sprayed to
run-off with 0.02% Silwet L77, a surfactant (Lehle Seeds,
Round Rock, TX, USA)[36] as the control treatment for a
larger factorial experiment (to be described elsewhere). All
rosette leaves of three plants per genotype-time point

Flavonol (FV) biosynthetic gene expression network eQTLs versus transcription factor eQTLsFigure 8
Flavonol (FV) biosynthetic gene expression network eQTLs versus transcription factor eQTLs. The vertical lines 
separate the genome into chromosomes I-V (as labeled at the top) with cM progressing left to right along the x axis and the 
length of each chromosome in cM at the end of each chromosome. Only chromosomes I, II and V were included in the figure 
since chromosomes III and IV did not contain eQTLs for any of the traits described. A) Network eQTLs controlling the 
expression of flavonol biosynthetic genes. The solid black line is the mean FV network expression utilizing the log2 normalized 
gene expression. The dashed black line is the mean network expression utilizing the z score gene expression. B) eQTLs con-
trolling the expression of transcription factors known to regulate the flavonol biosynthetic gene expression. TTG1 
(AT5G24520), TTG2 (AT2G37260) and PAP1 (AT1G56650) detected eQTLs, while TT2 (AT5G35550), TT16 (AT5G23260) and 
TT8 (AT4G09820) did not. The arrows show the genomic position of the TTG1, TTG2 and PAP1 genes.

TTG2
TTG1

23.0

18.4

13.8

9.2

4.6

0.0

LO
D

14.0

11.2

8.4

5.6

2.8

0.0

LO
D

Chr I Chr II Chr V

Chr I Chr II Chr V

0 96 69 96
cM

0 96 69 96
cM

A)

B)

PAP1



BMC Bioinformatics 2006, 7:308 http://www.biomedcentral.com/1471-2105/7/308

Page 13 of 17
(page number not for citation purposes)

combination were bulk harvested 4, 28, or 52 hrs post-Sil-
wet-treatment and quick-frozen in liquid nitrogen.

Subsequently, the Bay-0 × Sha RIL experiment was con-
ducted, during which five plants per biological replicate
for each of 148 RILs, plus parental controls Bay-0 and Sha,
were grown in growth chambers under identical short day
conditions (8 hr light at 100–120 μEi, 20°C day/20°C
night) for six weeks. At six weeks post-germination, the
plants were sprayed to run-off with 0.02% Silwet as the
control treatment for a larger experiment involving sali-
cylic acid response (to be described elsewhere); plants
were harvested 28 hours post treatment. All rosette leaves
from three plants per genotype were bulk harvested and
quick-frozen in liquid nitrogen. Due to limitations in
growth chamber space, the two biological replications of
148 RILs plus parental controls were grown sequentially,
one complete replication at a time.

RNA isolation and microarray hybridization
Total RNA was extracted with TRIzol (Invitrogen,
Carlsbad, CA, USA), purified on RNeasy columns (Qia-
gen, Valencia, CA, USA), then used as a template for cDNA
synthesis, as recommended by the GeneChip manufac-
turer (Affymetrix, Santa Clara, CA, USA, http://
www.affymetrix.com). Biotinylated cRNA was synthe-
sized, and hybridized according to the manufacturer's
guidelines to Affymetrix ATH1 GeneChips representing
22,810 A. thaliana genes. GeneChips were scanned on an
Affymetrix GeneArray Scanner using GCOS software
(Affymetrix, Santa Clara, CA, USA). In total, two sets of
Gene Chip data from independent experiments were gen-
erated: Bay-0 and Sha parental data from the factorial
(time point × accession) experiment, and a RIL data set
consisting of two biological replicates of 148 RILs plus
Bay-0 and Sha parental controls. The microarray data used
for this study is available at ArrayExpress under accession
numbers E-TABM-61 and E-TABM-62 and at
elp.ucdavis.edu.

In order to allow comparisons of gene expression values
across GeneChips, global scaling was used to adjust the
trimmed mean signal of each GeneChip probe array to a
target signal value of 600 (Affymetrix GeneChip Operat-
ing Software User's Guide, Version 1.3, http://
www.affymetrix.com/support/technical/index.affx).
Scaled gene expression values were obtained for all probe
sets for each GeneChip and used for all subsequent data
analyses. We did not remove genes that contained single
feature polymorphisms (SFPs). Previous work has shown
that one or a few SFPs per gene does not lead to a signifi-
cant change in the overall gene expression estimate [37].

Microarray quality control
The scanned image of each GeneChip was visually
inspected for artifacts, and routine quality control param-
eters were checked in accordance with the manufacturer's
recommendations (GeneChip Expression Analysis Data
Analysis Fundamentals P/N 701190)[38]. In addition, the
parental and RIL assignment for each GeneChip was con-
firmed by examining the expression levels of 192 genes
identified as diagnostic, and then clustering the microar-
rays based on genotype to ensure that biological replicates
per genotype clustered together. The biological replicates
for each of the 148 RILs were appropriately clustered. In
addition, the RIL haplotypes obtained from SFPs scored as
markers from these same GeneChips [39] were consistent
with those determined previously by microsatellite analy-
sis of genomic DNA (Loudet et al. 2002).

A priori-defined networks
Gene expression networks listed in Table 1 were identified
using multiple sources of information. Published studies
using ATH1 GeneChips were used to group genes into net-
works based on coordinated expression [19,31,32] to
identify the FV, GS, WC, WNM, WNC, IC, INC, ND, and
NS networks (Table 1). Unpublished experiments focused
on the rapid (12 hour) induction of gene expression in
response to Botrytis cinerea infections were utilized to
define members of the BD and BU networks (Kliebenstein
et al. unpublished data). Published studies on multiple
biosynthetic pathways in Arabidopsis showing coordinate
regulation of genes in response to a variety of stimuli
[19,40,41] were used to define the putative gene expres-
sion networks CM, CL, FV, GS and TP (Table 1). To test the
relationship between biosynthetic pathway membership
and coordinated gene expression, we identified an addi-
tional set of biosynthetic pathways and their genes to
delimit putative gene expression networks LG, LGB, MT,
MTB, PH, and SN [42,43]. The lignin and methionine bio-
synthetic pathways were further divided into two sub-net-
works (LG and LGB; MT and MTB) based on which genes
were either positively or negatively correlated with the CL
network (P < 0.05 using Tukey's HSD test). The gene
members of each network are listed in Additional file 1.
FTF includes six known transcription factors that may reg-
ulate the FT network. FTF is not defined as an actual gene
expression network per se; it is included in our study to
permit an analysis of co-localization of transcription fac-
tors and trans-acting network eQTLs.

To test the similarity of gene co-expression within these
networks (Table 1) in other datasets, we obtained tran-
script expression values for all network genes from 2,391
publicly available ATH1 GeneChips (affymetrix.arabidop-
sis.info) and conducted a Pearson correlation analysis of
all pairwise combinations of genes using Excel. This
microarray dataset represents a broad sampling of treat-

http://www.affymetrix.com
http://www.affymetrix.com
http://www.affymetrix.com/support/technical/index.affx
http://www.affymetrix.com/support/technical/index.affx
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ments, growth conditions, developmental stages, tissues
and genotypes (affymetrix.arabidopsis.info). The average
Pearson correlation of transcript expression values for
genes within the same network was r = 0.228 compared to
an average of r = 0.016 for random pairs of genes from dif-
ferent networks. The higher r value for genes within the
same network suggests that they are likely to be co-
expressed, supporting our use of the network definitions
listed in Table 1.

Bay-0 versus Shahdara parental network analysis
Gene expression values from multiple ATH1 GeneChips
for the parental accessions, Bay-0 and Sha (four per acces-
sion) were used to test differential expression at the net-
work level using a priori network definitions. To simplify
the analysis, we only utilized the 28 hour post-Silwet
treatment GeneChips.

A mixed linear model ANOVA was used to analyze the
log2 gene expression values. This model partitioned the
sources of variation (e.g., genotype, network, gene, repli-
cate and their various interaction terms) to improve accu-
racy and enhance experimental interpretation of
differential expression [5]. Statistically significant gene
network expression differences between Bay-0 and Sha
were tested using a split-plot mixed linear model with a
random array effect. The expression level of gene k from
network j, measured from the parental accession i for the
chip replication r is denoted as yijkr. The ANOVA model for
the log-transformed expression is:

log2(yijkr) = μ + Pi + Nj + G(N)jk + Rr + PNij + PG(N)ijk + PRir
+ NRjr + RG(N)rjk + PRNijr + εijkr

where i = 1, 2, j = 1, ...,20, k = 1, ..., 239 (the six flavonol
TFs were not included in this analysis as they are not a
gene network) and r = 1, 2. The main effects are denoted
as P, N, G and R and represent parental accession, a priori
defined network, gene, and replication, respectively. The
sub-plot error, εijkgr, is assumed to be normally distributed
with mean 0 and variance σε

2. Average network expression
values were estimated for each accession utilizing SAS ver-
sion 9.1 with the above ANOVA model (SAS Institute,
Cary, NC, USA). Significant network expression differ-
ences between Bay-0 and Sha were tested at α = 0.05 using
the mean network expression levels and the type I family-
wise error controlled utilizing Tukey's HSD test.

Network averaging approach to eQTL identification
We investigated three different approaches for estimating
the average network expression value for each RIL to iden-
tify network eQTLs (Figure 1 – network averaging
approach). The first approach used the log2 of each gene's
expression value obtained from the GeneChip. The log
transformed data were approximately normally distrib-

uted with decreased magnitude differences between the
highest and lowest expressed genes within a network. The
expression values for all genes within a network were used
to estimate the network mean expression value individu-
ally for each RIL, and are denoted as meani 

log2 (i =
1,...,148). Our second approach estimated the network
mean expression value in each RIL after eliminating all
genes with a cis-eQTL that accounted for most of that
gene's expression variation. Genes with a cis polymor-
phism that cause large variation in expression between
alleles inordinately skew the network's mean expression
value and limit the identification of trans-acting network
eQTLs. These cis-influenced genes, identified as described
in a following section, were removed and then the net-
work mean expression value (meani

-cis) was estimated for
each individual (i = 1,...,148) using the log2 expression of
the remaining genes within each network. Our third
approach employed a standard normal (z) distribution,
N(0,1), to standardize each gene's expression across the
RILs. The expression value for each gene for each RIL was
transformed to the corresponding z score by subtracting
the average and dividing by the standard deviation (i.e.,
using the standard function in Excel). All genes were
included and the standardized values for all genes within
a network were then used to calculate a network mean
expression value (meani 

z) for all i = 1,...,148. In order to
understand and evaluate the benefits of each network
averaging approach (Figure 1), all three estimates
(meanlog2, mean-cis and meanz) were used as unique quan-
titative traits in the subsequent network eQTL analyses.
All averaging approaches assume that the expression
across the RILs for the different genes exhibit a linear and
independent relationship among genes within a network.

Network eQTL mapping
A high-density SFP-based marker linkage map for the 148
Bay-0 × Sha RILs was obtained [39] and used to map net-
work eQTLs for the network averaging estimates
(meanlog2, mean-cis and meanz). Furthermore, within the a
priori-defined network, individual gene log2 expression
values for each RIL were used to map eQTLs. All data were
analyzed with QTL Cartographer v3.0 [1,44]. Composite
interval mapping was conducted using Zmap (Model 6)
with a 10 cM window and an interval mapping increment
of 2 cM. Forward regression was used to identify five
cofactors per gene (quantitative trait). The declaration of
statistically significant eQTL is based on permutation-
derived empirical thresholds. One thousand permuta-
tions were employed for each gene (quantitative trait)
[45,46]. To summarize and display eQTLs for individual
genes and networks, TKlife was used to generate heat plots
[47].
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Identification of cis-effect for individual gene eQTLs
Log2 expression values for each transcript for 245 genes
(which includes the six flavonol TFs) were employed to
map gene-specific eQTLs in the RILs. The flavonol TFs are
included for a later analysis of transcription factor co-
localization with trans network eQTLs for the FV network.
This analysis identified 705 eQTLs, and QTL Cartographer
was used to estimate the percent phenotypic effect of each
eQTL for each gene. The results were then sorted to iden-
tify genes that had a cis-localized eQTL. Any eQTL located
within 2 cM of the genomic position of the gene encoding
the transcript was identified as a cis-localized eQTL. The
genes with a cis-eQTL controlling > 50% of the gene's
expression variation were classified as genes with major
cis-acting eQTL. These genes were not included in the
mean-cis method to estimate network expression.

Sliding window analysis of QTL position for individual gene 
eQTLs
To identify genomic regions containing a greater number
of eQTLs than expected by chance, we conducted a sliding
window analysis (Figure 1 – Summation Approach). The
genetic positions of all 705 eQTLs identified for the 245
genes were estimated with QTL Cartographer, and the
number of eQTLs per chromosome was determined
within a 5 cM sliding window, starting at the top of each
chromosome and progressing down the chromosome in 1
cM steps.

To estimate the threshold limit at significance level of 0.05
for the frequency of genes with an eQTL within a 5 cM
sliding window, the positions of the 705 eQTLs were per-
muted across the genome 1000 times. The sliding window
analysis was repeated for each permutation, and the max-
imum number of eQTLs per sliding window per permuta-
tion was obtained. Using the distribution of the
maximum number of eQTLs, the 0.05 threshold provides
the criterion for declaration of significant results (21
eQTLs/5 cM window). The bounds on this empirical dis-
tribution were 27 and 15 eQTLs/5 cM window, respec-
tively.

Sliding window analysis of QTL positions for phenotypic 
traits
To investigate whether genomic regions containing more
phenotypic QTLs per region than expected by chance are
associated with the network eQTLs, we conducted a slid-
ing window analysis and compared the results (Figure 1 –
Summation Approach, using Phenotypic QTL instead of
eQTL). A diverse range of 62 biochemical, morphological
and plant/biotic interactions traits were included (Addi-
tional file 3) [29,30,34,48-52]. The 62 traits identified
281 phenotypic QTLs based on the 38 microsatellite
marker map for 411 Bay-0 × Sha RILs [34], resulting in an
average of 4.5 QTLs per trait. Because these data were

measured on all 411 RILs, we used the highest-resolution
map available for this RIL collection. The empirical
threshold for a significance level of 0.05 for the frequency
of traits with a phenotypic QTL per 5 cM sliding window
was estimated as described above.
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Additional File 2
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described. Unpublished QTL data are either from the Loudet or Klieben-
stein laboratories.
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