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Abstract

In this paper, we develop and validate a method to identify computationally efficient site- and

patient-specific models of ultrasound thermal therapies from MR thermal images. The models of

the specific absorption rate of the transduced energy and the temperature response of the therapy

target are identified in the reduced basis of proper orthogonal decomposition of thermal images,

acquired in response to a mild thermal test excitation. The method permits dynamic

reidentification of the treatment models during the therapy by recursively utilizing newly acquired

images. Such adaptation is particularly important during high-temperature therapies, which are

known to substantially and rapidly change tissue properties and blood perfusion. The developed

theory was validated for the case of focused ultrasound heating of a tissue phantom. The

experimental and computational results indicate that the developed approach produces accurate

low-dimensional treatment models despite temporal and spatial noises in MR images and slow

image acquisition rate.

Index Terms

Magnetic resonance imaging (MRI); thermal therapies; tissue modeling; ultrasound specific

absorption rate

I. Introduction

Thermal therapies, such as focused ultrasound surgery [1], adjuvant heating [2], [3],

thermally triggered targeted drug delivery [4], and standard hyperthermia [3], are

increasingly planned, optimized, and controlled with the help of treatment models. Such

models describe the deposition and dissipation of thermal energy in tissues. The deposition

process is usually described as specific absorption rate (SAR) by a treatment-specific means,

such as ultrasound, laser, or microwave radiation, while the heat conduction and convection

by blood perfusion are the primary mechanisms of heat dissipation. With the available

patient- and site-specific heat deposition and dissipation models (collectively, treatment

model), the optimization of the treatment plan becomes possible and may include the
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selection of appropriate applicators, their spatial positioning, and the configuration of the

temperature monitoring system. Model-based automatic treatment control systems can

provide such advanced functionality as minimization of the treatment time without

exceeding the maximum allowable temperature in the normal tissues [5], [6].

The identification of the patient-specific treatment models is a challenging task that has yet

to become routine. Models based on first principals, describing physical processes of heat

deposition and dissipation, depend on a priori unknown tissue characteristics, such as blood

perfusion and SAR, which vary substantially between patients and different treatment sites.

By identifying the value of these and other parameters using experimental data, accurate

first-principal models may be obtained. Typically, the data are collected during pretreatment

experiments that involve low-intensity subtherapeutic heating, applied to the target by the

same transducer or applicators that will later be used to administer the therapy, and the

measurements of the corresponding temperature response obtained with either catheterized

thermal probes or noninvasively, using MRI thermometry. The standard identification

techniques [7] are then used to identify patient-specific model parameters, such as perfusion

and the SAR of tissues, that give the best agreement between the model predictions and the

experimental data. The computer implementation of the customized first-principal models

require their discretization using finite differences, elements or volumes, or other

discretization methods. The result is a high-dimensional, computationally intensive model

that cannot be used to perform time-sensitive tasks, such as intraoperative model-based

evaluation of treatment progression [8] and automatic treatment control using model-

predictive and optimizing techniques [9]–[11].

An alternative approach is to use entirely data driven, empirical modeling methods, without

first postulating an appropriate first principle model for the therapy. It this case, the model

structure (such as ARX or Box-Jenkins models [7]) is selected simply to capture correlation

between inputs (heating) and outputs (temperature measurements) and the identified model

parameters give no physical insight into the problem. The data-drive approach is especially

appealing when temperature measurements are obtained using the MRI thermometry which

provides noninvasively acquired detailed temperature maps anywhere in the target. Note,

however, that the high dimensionality of MRI measurements (e.g., dimension of the

temperature measurement vector, corresponding to 512×512 voxels of a thermal image, is

262 174 elements) may result in the identified treatment model that is equally high-

dimension when the traditional identification methods are used.

In this paper, we develop a novel approach to empirical modeling of thermal therapies that

produce accurate low-dimensional models based on high-dimensional MR imaging data.

The starting point of the approach is the proper orthogonal decomposition (POD) of images

acquired during a pretreatment experiment in order to reduce the dimensionality of the data

without significant loss of information. Fundamentally, such reduction is possible because

the imaging data, when viewed as an independent collection of pixels, are highly correlated

in time and space. The spatial correlation of MR thermal image voxels reflects the

dependence of temperature distribution on the specific absorption rate of the transduced

energy (e.g., electromagnetic, ultrasound) and the heat dissipation by conduction and

convection. Temporal correlation of sequential images reflects causal dependence of

temperatures on the heating history and temperatures at the preceding times. We identify the

basis functions of proper orthogonal decomposition to capture spatial collection in images,

which then allows us to express the imaging data parsimoniously and filter out measurement

noises. The temporal correlation is then captured by identifying, in the POD basis, a

dynamic model relating an external heating to temperature response. Using the example of

the Pennes’ bioheat transfer equation [12], we then show that the identified data-driven
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model can also be used to extract the information about the site-specific parameters of the

first-principle models of the therapy.

The paper has the following organization. The theoretical development of the proposed

approach is described in the next section. Unlike the traditional POD approach, in which the

orthogonal decomposition is used to reduce the order of a known model, in our approach the

POD is used to identify an unknown low-dimensional model that accurately predicts heat

deposition and dissipation during thermal therapies. After describing the identification

method, the theory section is concluded by establishing the relationship between the

identified empirical and the postulated PDE models. The next section describes the

validation results of the developed method in computer simulations and phantom

experiments. The results show that the identified low-dimensional SAR and thermal

response models give an accurate prediction of temperature response during noninvasive

focused ultrasound (FUS) heating. The summary of the method and its discussion conclude

the paper.

II. Theory

A. POD Background

The proper orthogonal decomposition is a technique often used to extract a set of basis

functions for an approximate, modal-like representation of distributed parameter systems

(DPS). In a typical application of the POD, a high-dimensional numerical solution of a

known distributed parameter model is used as an input to the POD algorithm. The identi-fied

reduced-order POD basis is then used with Galerkin or other projection methods to obtain a

computationally efficient finite-dimensional approximation of the original infinite-

dimensional DPS model. Reference [13] gives a representative example of applying this

traditional approach applied to reduced-order modeling of electromagnetic phased-array

tissue heating to achieve hyperthermia-range temperatures.

In this paper, the POD is used to identify an orthonormal basis of an unknown infinite-

dimensional system based on the measurements of its dynamic response in the form of a

time series of images. The fundamentals of the POD in the context of our objectives are

briefly outlined as follows, with further details available in [14]–[18].

Consider a series of N images (or snapshots) Ui taken consecutively at arbitrary instants of

time to characterize the evolution of a DPS defined in the spatial domain r ∈ Ω. The problem

is to obtain a function φ(r), which is best at capturing spatial correlations in the ensemble S =

{Ui(r):1 ≤ i ≤ N, r ∈ Ω}. Mathematically, the problem is to find φ(r) such that the projections

of all snapshots onto the function φ(r) have, on average, the maximum possible value

(1)

where 〈 f, g 〉 = ∫Ω f(r)g(r)dr is the inner product of square integrable functions f(r), g(r) ∈
L2 defined on Ω. The normalization condition 〈 φ, φ 〉 = 1 is imposed to ensure uniqueness of

the solution. If we define a correlation function

(2)

and an operator
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(3)

then the right-hand side of (1) can be expressed compactly as

(4)

Comparison of (1) and (4) shows that the maximization problem (1) is equivalent to the

following eigenvalue problem:

(5)

Therefore, the solution of (1) is the eigenfunction φ of the eigen-problem (5) corresponding

to the largest eigenvalue λ. The symmetry of K implies the symmetry of R. Therefore, all

eigenvalues in (5) are real and nonnegative. Assuming that all eigenvalues are ordered (λ1 ≥

λ2 ≥ … ≥ λN), the eigenfunction φ1, corresponding to λ1, is the desired solution of the

maximization problem (1).

The general solution of the eigenproblem (5) is difficult to obtain. The problem is simplified

if, following [19], we seek the solution of (5) under an additional assumption that φ(r) can be

expressed as a linear combination of snapshots

(6)

With this additional assumption, (5) is written as

(7)

The N solutions of the eigenvalue-eigenfunction problem (7) can now be expressed as

(8)

where the coefficients  are to be determined. We introduce a covariance matrix C of all

available snapshots

(9)

The N solutions of (5) under the assumption (6) are given by (8), where the coefficients 

are the components of eigenvectors , j = 1, … N, found from the following

matrix eigenproblem:
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(10)

Because C is the Hermitian matrix, eigenvectors Wj, corresponding to distinct eigenvalues,

are orthogonal. The orthonormality of basis functions (〈 φj, φj 〉 = 1) can be enforced by the

following normalization of eigenvectors:

(11)

The normalized eigenfunctions  form an orthonormal basis of

snapshots S

(12)

The amount of information captured by the projection of S on the ith eigenfunction is

characterized by the corresponding eigenvalue λi. Consequently, φ1 is the best at explaining

spatial correlations in S, followed φ2 by as the next most informative direction, and so on.

If we now define an average energy of an ensemble S as

(13)

then it is easy to show that

(14)

Therefore, the eigenvalues can be used to guide the selection of the reduced-order POD

basis, , M < N. For instance, we can select M to capture a predetermined fraction e of

the total energy of the ensemble S. Specifically, we may wish to select the smallest M such

that

(15)

where e is the value selected by a user as a tradeoff between complexity and accuracy. For

higher M’s the information in the ensemble  is captured more accurately at an expense of

using a larger number of basis functions.

B. Identification of Reduced Basis From Experimental Data

Consider a set of N thermal images Tm(r, t), where r = (x, y) or, in the case of three-

dimensional imaging, r = (x, y, z). For certainty, a two-dimensional imaging is assumed;
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extension to the 3-D case is trivial. Throughout the paper, all temperatures are assumed to be

in the deviation form (specified as the elevation above equilibrium value), unless noted

otherwise. Each image Tm(r, ti), collected at time ti to characterize temperature distribution

in the spatial domain of interest r ∈ Ω, plays a role of a snapshot Ui. The series of N

consecutive images forms an ensemble S used to identify the POD basis .

For snapshots continuously changing in Ω with r, the covariance matrix C is defined by (9).

When the values of snapshots are measured in discrete locations, C must be calculated based

on the pixelated values of the acquired temperature distribution. For example, in 2-D cases,

the covariance coefficients

(16)

may be approximated using voxel values of temperature distribution Tm according to a

selected numerical integration method, such as the trapezoidal rule.

After calculating the covariance matrix according to (16), the orthonormal POD basis 

is found according to the following steps: 1) First, eigenvalue problem (10) is solved to find

the coefficients . 2) The result is then normalized according to (11). 3) Finally the basis

functions φj(r) are formed according to (8). In the sequel, we will assume that the identified

discrete values of φj(r) are arranged in a Nvox-dimensional vector

(17)

where r1, r2, … are voxel locations and Nvox is the total number of voxels.

Using the identified full-order basis , the exact representation of a given image Tm(r,

ti) in S is given by the following decomposition:

(18)

This last expression defines the image projection operator  which established the

relationship between thermal images Tm(r, ti) and their projections  onto the manifold

of basis function φj(r).

We can now select the reduced basis M of elements, , in order to achieve a tradeoff

between the accuracy of image approximation and the complexity of the model. The

subsequent validation results indicate that even for high-accuracy approximations, M ≪ N,

where M is also much smaller than the number of voxels in each image Nvox. This

observation confirms that MR thermometry of thermal therapies produces highly correlated

data.

Without a formalized criteria for the order selection, a subjective judgment in selecting M is

unavoidable. In general, if M is too small, the identified model will provide an incomplete

representation of the underlying process. By using a larger number of basis elements, the

image data set used in model identification will be more accurately described with the
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identified higher dimensional model. However, a larger than necessary number of basis

elements will result in an overparameterized model which overfits the data and captures

noise. Overparameterized models are also more likely to produce spurious results when

compared to validation data, i.e., the data not used for model identification.

A more systematic approach requires that the model order is selected to satisfy a formal

selection criterion. Equation (15) is an example of a criterion that quantifies the discussed

tradeoff, with many other choices found in the literature (see, for example, [20] which

discusses the order selection problem in the context of principle component analysis).

C. Thermal Model in Projection Form

In the reduced-order basis  of the first M elements of the full-order basis , the

temperature distribution T(r, t), inside the patient, of which an image Tm(r, t) is the

measurement, may be approximated as Tp(r, t)

(19)

where T̂ = [T̂1(t) T̂2(t) … T̂m(t)]T is the M-dimensional vector of projections of temperature

distribution T(r, t) into the reduced basis and  is the operator projecting T(r, t) into the

basis . The columns of the Nvox × M matrix Φ(r) = [φ1 ··· φj ··· φm] are the values of

the identified eigenfunctions in all pixel locations, (17). The vector T(̂t) gives the complete

description of the temperature distribution at time t to the specified accuracy e and defines

the approximation Tp(r, t) in the identified reduced-order basis.

We will assume that the same reduced basis can be used to adequately capture the shape of

the power deposition Q(r, t) (in W/m3) in the tissue, which causes the temperature increase.

This is a reasonable assumption because of the causal dependence of T(r, t) on Q(r, t). Then,

similarly to (19), we obtain the approximation

(20)

where the vector û(t) is the projection of the power deposition into the manifold defined by

the reduced basis . With known tissue density, the specific absorption rate (in W/kg)

is related to the power deposition as

(21)

Our objective is to identify a linear continuous-time dynamic model that relates the

temperature projections T(̂t) to the projections of the power deposition û(t)

(22)
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where M × M matrices A and B, and M-dimensional projection vector û are unknown.

Hence, the problem is to identify A, B and û such that when T,̂ predicted by (22), is used in

(19), the resulting Tp(r, t) gives the best possible agreement with the acquired images Tm(r,

t). Note that the affine term Bû describes the effect of power deposition on the evolution of

the projected temperatures T̂(t). With nonzero initial conditions and û = 0, the projection

model (22) describes the decay of temperature projections to thermal equilibrium T ̂= 0.

Therefore, the system matrix characterizes the heat dissipation by convection and diffusion.

The dissipative behavior implies that (22) must be stable (all eigenvalues of the identified

must lie to the left of the imaginary axis).

The problem of identifying the treatment model in the discrete-time form was considered in

[18].

D. Identification of Treatment Model in Projection Form

1) Identification of A—The power deposition pattern of a given transducer is patient- and

site-specific and, therefore, a priori unknown. The model identification with an unknown

input is an unusual problem. To decouple the problems of identifying A, B and û, we first

identify the system matrix based only on temperature measurements acquired during tissue

cooling, with zero power input. The projection model (22) in this case takes the simplified,

input-independent form

(23)

with the initial conditions T̂0 calculated as the least squares solution of the following

equation:

(24)

where Tm(r, t0) is the measured temperature distribution at the initial cooling time t0. To

simplify the notation, we assume that t0 = 0.

We wish to identify A such that during tissue cooling the quadratic errors between all

measured temperatures and the corresponding model predictions are minimized

(25)

where Tp is calculated from (19) using T(̂t) predicted by model (23).

To solve the posed problem, assume that the model predictions are perfect. Then an acquired

image Tm(r, tk) must satisfy (23) and its analytical solution

(26)

where eAtk is the matrix exponential. Differentiation of (26) yields

(27)
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where Tt(r, tk) is the time derivative of temperature measurements and ψ is equal to the

pseudo-inverse of ΦTΦ. After obvious manipulations, we arrive at the following system of

linear equations, which must be solved in the least squares sense to find an unknown A:

(28)

The solution of (28) depends on a single image Tm(r, tk), which makes the identified A

sensitive to temporal measurement noises. In order to obtain an accurate and robust

estimation, all available images, acquired during tissue cooling, must contribute to the

identification of A. We accomplish this by assembling (28), repeated for all acquired

images, into the following single matrix equation:

(29)

and solving it, in the least squares sense, for an unknown A. Here, Tm = [Tm(r, t1) ··· Tm(r,

tN)] and Tt = [Tt(r, t1) ··· Tt(r, tN)] are the matrices which collect all available images and

their derivatives. The derivatives must be calculated numerically, in our implementation,

using the Savitsky-Golay method [21] to reduce the effect of measurement noises.

2) SAR Identification—The patient- and site-specific SAR for a given transducer is

traditionally identified using the initial slope of a temperature response to the step change in

transducer power [22]. With straightforward modifications, the slope method can be used to

identify the power projection vector û in the projection model (22). However, an accurate

estimation of the initial slope is strongly influenced by measurement noises and slow

sampling rate. Therefore, our objective is to develop an alternative SAR identification

method that is: 1) robust in the presence of measurement noises; 2) less affected by slow

sampling rate of MRI thermometry; and 3) can be used to identify low-dimensional

description of the SAR distribution. The formal problem statement is to identify the

projections û(t) of Q(r, t) such that the difference between all measured and predicted

temperatures is minimized

(30)

where temperature predications Tp are given by (19) calculated using T̂ predicted by the

model (22) with the identified system matrix A. As shown in Section II-E, matrix B only

depends on such tissue parameters as density ρ and heat capacity Ct, which we assume to be

known in the sequel. Such an assumption is common since ρ and Ct are known for different

tissue types and relatively constant with temperature. If this assumption does not hold, then

only the product Bû can be uniquely identified by solving the minimization problem (30).

Note that, unlike the initial slope method, it is not necessary that the power is applied as a

step change. However, since the solution of the optimization problem (30) is simplified in

such a case, the following assumes time invariant Q(r).

Suppose that Tm(r, t) is the measured temperature increase in response to a step change in

the transducer power. The corresponding prediction of temperature projections T ̂is given by

the following analytical solution of (22):

(31)
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where T̂o is the projection of the initial temperature distribution. By rearranging (31) and

multiplying it by the matrix Φ, we obtain that the minimal (zero) error in predicting an

acquired thermal image Tm(r, tk) is obtained if û satisfies the following equation:

(32)

Next, we assemble (32), written for all images acquired at t1, t2, …, tN during the step test,

into the following single system of equations:

(33)

where the matrix pseudo-inverse should be used if A is not invertible. This last equation is

simplified if the domain is initially at thermal equilibrium, which corresponds to the case of

Tô = 0.

The least squares solution of the assembled system of equations gives the identified power

projection vector û. Compared to the slope method, which estimates the SAR based only on

the initial temperature response, the proposed approach utilizes all available temperature

measurements, which reduces the sensitivity of the identified û to slow sampling and

measurement noises. As the number of images is increased, the sensitivity of û to temporal

noises is further reduced. The effect of spatial noises is reduced by using the following

projection form of (33):

(34)

where the vectors of measurement projections Tm̂(ti), i = 1, …, N are found as the least

square solutions of equation

(35)

The identified û(t), found by solving (33) or (34), is then used in (20) and (21) to estimate

the power deposition Q(r, t) and the corresponding SAR during the step test. If SAR scales

linearly with the applied transducer power, as is often the case in low-intensity therapies,

then the SAR for an arbitrary power is obtained by scaling the step test results.

E. Relationship Between Projection and PDE Models

The first-principle model of heat transfer in tissues is given by convection-diffusion partial

differential equation, which depends on tissue vascularization, the blood flow rates, and

other model parameters that are difficult to measure directly. The following Pennes’ bioheat

transfer equation (BHTE) [12]:

(36)

does not require detailed information on tissue vascularity or blood flow and uses an

empirical blood perfusion-related parameter Wb(kg/m3s) instead, which made the BHTE a
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widely used heat transfer model. In (36), T′ (°C) is the tissue temperature, Q(W/m3) is the

applied power distribution, ρ (kg/m3) and k(W/m°C) are the tissue density and thermal

conductivity Ct (Cb) is the specific heat of tissue in J/kg°C, and Ta is the arterial (or

equilibrium) temperature.

We use the bioheat equation to demonstrate the relationship between the PDE and the

identified projection models of thermal therapies. The following development, specific to

Pennes’ model, can be used as a guidance in establishing the connection between the

projection models (22) and other types of the PDE models of thermal therapies, such as the

convection-diffusion model.

The BHTE, written in terms of the deviation temperature T = T′ − Ta, can be approximated

in the reduced-order POD basis as

(37)

where we used decompositions (19) and (20) to approximate temperature and power

distributions. The weak Galerkin formulation of the Pennes’ model is obtained by taking the

inner product of (37) with the elements φi(r) of the reduced basis, yielding the following

system of ordinary differential equations:

(38)

where α(r) = k/ρCt, β(r) = WbCb/ρCt, γ(r) = 1/ρCt. The vector-matrix form of the M-

dimensional projection model (38) is (22) with matrices A = {aij}, B = {bij}, where

(39)

(40)

and i, j = 1, …, M. Note that with spatially invariant tissue density and heat capacity, B is a

diagonal matrix γIM×M.

Consider the case of the BHTE with known model parameters and power deposition. Then

the low-dimensional projection model (22), obtained by calculating û, aij and bij according

to (20), (39) and (40), is the computationally efficient approximation of the fully defined

Pennes’ model. On the other hand, if the parameters of a PDE model are not known, they

can be estimated using the projection model, directly identified from the imaging data. For

example, once A is identified, (39) gives M2 expressions from which the parameters of the

BHTE can be estimated.

III. Validation

A. Computer Simulations

The 3-D inhomogeneous tissue model was used in simulations. Fig. 1 shows a 2 × 2 × 2 cm

tumor in the center of the 16 × 16 × 16 cm domain. A single plane of interest (POI) z = 0 is

used to visualize the results. The tumor is sonicated using a single focused ultrasound

transducer with the following Gaussian power deposition:

Niu and Skliar Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 July 08.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(41)

where I (in Watts) is the applied power, and μr and σr are the mean and standard deviation

of the SAR pattern in the directions r = (x, y, z). The results were obtained with μr = 0, σr =

0.01m, and the maximum of Q fixed in the center of the domain r = (0,0,0).

The bioheat transfer model with ρ = 1000 kg/m3, k = 0.5 W/m°C, Ct = Cb = 4000.0 J/kg°C

[23] was used to describe the temperature response to the applied power distribution Q. The

blood perfusion-related parameter Wb was set to 0.5 kg/m3s in the tumor and 1\kg/m3s in the

surrounding normal tissue. Both values are in the range of muscle perfusion. At the initial

time t = 0 when the domain was in thermal equilibrium, a step increase in power from zero

to I = 4 W was applied. The sonication continued until t = 1350 s when the power was

switched off. The tissue cooling was modeled for 1350 < t ≤ 1920 s. The spatial

approximation of the Pennes’ model was obtained with Δr = 0.0286 cm in −2 ≤ r ≤ 2 and Δr

= 0.30 cm in the rest of the domain for a total of ~6 million computational nodes. The

temporal derivatives were approximated using Δt = 1s. The obtained computer model

played the role of a virtual patient. The MRI thermometry measurements in this patient were

modeled by assuming that the temperature distribution was measured every 10 s with the

same spatial resolution as the numerical solution of (36). Though the developed approach

can be used with images taken in multiple planes and with 3-D measurements, we assumed

that thermal imaging of a single plane of interest (POI, Fig. 1) was available, mirroring the

situation during MRI phantom experiments, described as follows.

A series of ~200 thermal images of the POI, 181 × 181 pixels each, collected in response to

a step change in Q(r, t), was used to identify empirical eigenfunctions according to the

method described in Section II-B. Fig. 2 shows the first four identified eigenfunctions and

the corresponding eigenvalues in descending order. Using the criterion (15), the first

eigenfunction captures 99.34% of the information in all images, while φ2(r) captures 0.66%;

the contribution of higher order basis functions is negligible.

Fig, 3(a) shows the temperature distribution in the POI at t = 1350 s. The shape of the

temperature distribution is near Gaussian with the highest temperature rise of approximately

20°C observed in the center of the domain. Comparing the temperature distributions in Fig.

3(a) with the shape of the first basis function [Fig. 2(a)], the similarity is evident and

expected φ1 since was identified to maximize the explained spatial variation in thermal

images.

Using the reduced basis  of either a single or two leading eigenfunctions (M = 1 or 2),

the system matrix A was identified by solving (29). Matrix B was calculated from (40)

assuming ρ and Ct are known. The projection û of the power deposition Q was identified

following the method of Section II-D2. The results are summarized in Table I. The

projection model (22) for M = 1 and 2 was then integrated using the fourth-order Runge-

Kutta method to predict the evolution of T.̂ The corresponding prediction of the temperature

distribution Tp(r, t)was calculated using (19). Fig. 3(b) and (c) shows the prediction error for

the two models (M = 1 and 2) at t = 1350 s when temperatures are the highest. The

maximum prediction error with a single-state model is ~0.15°C, compared to ~0.13°C error

when the state vector T(̂t) has two components. Further examination of Fig. 3(b) and (c)

shows that the two-state model predictions are clearly more accurate despite comparable

maximum prediction errors.
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The identified projections û were used in (20) to estimate the power deposition. The

corresponding SAR was then compared with the known SAR given by (41) and plotted in

Fig. 3(d). The SAR identification errors are shown in Fig. 3(e) and (f). The maximum

absolute error is 64.3 W/kg with M = 1 (an ~25% error), compared to 10.6 W/kg (a 4.2%

error) achieved when Q is identified using two basis functions (M = 2). The maximum error

in both cases is at r = (0, 0, 0) where the SAR has its peak. For both SAR models, the

average identification error is substantially lower than the maximum error.

B. Experimental Validation

1) MR Thermometry and Experimental Setup—The experiments were performed

with a 11 × 11 × 11 cm cubic agar phantom, prepared according to the recipe of Madsen et

al. [24]. The power deposition field was created by a single, spherically focused, air backed

ultrasound transducer with aperture diameter of 10 cm and radius of curvature of

approximately 18 cm, which was operated at 1.5 MHz. The transducer was placed in the

bath of degassed and deionized water inside the MR-compatible ultrasound positioning

system [25]. After initial alignment, the transducer position remained fixed throughout the

experiments. The transducer was driven by an amplified output of a function generator. The

electrical impedance of the transducer was matched to the output impendence of the

amplifier using an external LC matching circuit. The electrical power applied to the

transducer was measured by a power meter.

The MR thermometry of the phantom was performed using the Siemens Trio 3T MRI

scanner according to the PRF method. The water PRF shift is temperature dependent,

allowing us to measure the temperature change from the phase difference of two gradient-

echo images [26]. In our implementation, the temperature change ΔTm was measured using

the phase difference δφ between two consecutive complex images Sm(r, tk) and Sm(r, tk+1)

(42)

where α = −0.01 ppm/°C is the temperature-dependent coefficient of PRF shift for aqueous

tissue [27], γg is the gyromagnetic ratio, B0 is the strength of the main magnetic field, and

TE is the echo time; δφ(r, tk+1) was calculated as the phase of the product

, where * denotes the complex conjugate operator. An improved temporal

and spatial resolution of the acquired images was achieved by using a custom, receive-only

surface coil, which created a localized sensitivity pattern thus minimizing interferences and

improving signal-to-noise ratio. Gradient-echo sequence with the following acquisition

parameters was used to obtain temperature measurements: repetition time TR = 30 ms, echo

time TE = 10 ms, field-of-view FOV = 25.6 × 25.6 cm and flip angle = 25°. The voxel size

of each thermal image was 2 × 2 × 3 mm. The scan time was 2.45 s with the phase

resolution of 50% to increase the sampling rate. The overall image size was 128 × 64 and

the k-space data were zero-filled to form a 128 × 128 data matrix of Nvox = 16384 voxels.

A representative temperature image in the transducer’s coronal plane is shown in Fig. 4. The

gradient scale is in °C, and the actual (rather than deviation) temperatures are shown. The

phantom appears as a rectangular object above the ultrasound positioning system containing

a clearly visible 45° ultrasound mirror. The region of interest (ROI) is the region of an

appreciable temperature elevation. It has pixel coordinates 50 ≤ x ≤ 62 and 20 ≤ y ≤ 60 (a

total of 13 × 41 = 533 voxels) and the physical dimension of 2.6 × 8.2 cm. As expected, the

maximum temperature is observed on the line of the focal symmetry of the FUS transducer x

= 56.
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The phantom was sonicated by applying a step test from zero to either 3.5, 4.8 or 6.5 W of

total electrical power. The phantom was allowed to thermally equilibrate before proceeding

to the next experiment. Most of the results are shown for the case of 6.5 W of applied power,

which was kept constant for the first 773 s of the experiment. The other two step-tests were

used to examine the effect of the applied power on the shape of the SAR distribution; except

for the applied power, they were identical to the 6.5 W step test.

A total of 499 MR thermal images, collected every 2.45 s, were acquired to characterize

temperature evolution during each power step test. The images collected for 773 < t ≤ 1225

characterize tissue cooling after the power was switched off. Fig. 5(a) shows the measured

temperature elevation within the ROI at t = 773 s when the temperature reached its peak

value. The evolution of temperatures in selected locations on the line of ultrasound beam

symmetry is shown in Fig. 5(b). The highest temperature increase of ~ 17.5°C was observed

at (x, y) = (56, 54). Location (56, 60) at the phantom-water bath interface is characterized by

higher thermal losses, measurement noises, and artifacts.

2) Identification of Reduced Basis—Following the method of Section II-B, all

available MR thermal images for the step test of 6.5 W were used to identify the

orthonormal basis of eigenfunctions φj. The first four eigenfunctions in the ROI are shown

in Fig, 6 with the corresponding and rapidly decaying values of λj. The first eigenfunction

captures approximately 97.32% of the spatial correlation in the collection of 499 images,

while φ2(r) captures only 2.46, which suggests that a sufficiently accurate approximation of

thermal images can be achieved with the reduced basis  of one or two eigenfunctions

(M = 1 or 2). The shape of φ1 is similar to the shape of temperature distribution, as expected

and previously seen in simulation results.

3) Identification of SAR and Thermal Response Models—Thermal images,

acquired during phantom cooling after 773-s sonication at 6.5 W has ended, were used to

identify the system matrix A of the model (22), as described in Section II-C. The results for

M = 1 and 2 are shown in Table II. Equation (40) was used to calculate B, where the

handbook values of tissue density and heat capacity (ρ = 1000 kg/m3 and Ct = 4186 J/(kg°C)

[28]) were used to calculate γ(r) = 1/ρCt.

After A and B were found, thermal images acquired during sonication were used in (33) to

calculate the power projections û. The obtained û was then used in (20) to identify Q(r). The

corresponding SAR was found from (21). The identified SAR for M = 1 and 2 are plotted in

the scaled form in Fig. 7(a) and (b), respectively. Note a high degree of correlation between

the shapes of the SAR, measured temperatures and φ1(r) (Fig. 7(b), Fig. 5(a), and Fig. 6(a),

respectively), as expected for an unperfused phantom.

The linearity of the SAR as a function of the applied power was examined by comparing

specific absorption rates identified for the step tests of 3.5, 4.8, and 6.5 W. For M = 2, Fig.

7(c) and (d) shows that the maximum absolute difference between the normalized SAR1 and

SAR2, identified based on the results of 3.5 and 4.8 W step tests, and the normalized 6.5 W

SAR3 of Fig. 7(b) is 18.18 kg−1(3.12%) and 17.89 kg−1 (2.18%), respectively. Such close

agreement indicates that in our experiments, the SAR changed linearly with the applied

power.

The prediction accuracy of the identified models (Table II) was investigated next. First, the

model-predicted T ̂was compared with the projections Tm̂(ti), obtained by solving (37) for

each acquired image Tm(r, ti). Fig. 8 shows an excellent agreement between Tm̂ and T̂

(dashed line) predicted by the two-state model. The plot of T̂1(t) is similar in shape to the

temperature increase in fixed spatial positions [cf., Fig. 5(b)], which indicates that the first
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state of the projection model captures most of the slow temporal changes in the series of

thermal images. The largest predication errors are observed during rapid changes in the

applied power at t = 0 and t = 773 s when the transducer is switched on and off.

The projections T(̂t) predicted by the identified model (22) were then used in (19) to

reconstruct the temperature distribution T(r, t) in the ROI. In essence, these projections

describe temporal evolution of the coefficients in the following decomposition of the

temperature distribution T(r, t) in the identified basis: :

(43)

Using experimental results for comparison, the accuracy of thus predicted temperature

distribution T(r, t) was characterized as a function of time and space. The evolution of the

spatial mean and standard deviation (STD) of prediction errors was calculated by taking an

expectation over all pixels in the ROI at each image acquisition time. The result, shown in

Fig. 9(a) and (b), indicates a smaller mean error and STD achieved with the two-state model.

The errors are the largest following rapid changes in input power, and the two-dimensional

model is better at capturing these fast transitions. Fig. 9(c) and (d) depicts the time-averaged

prediction error in each pixel within ROI for M = 1 and 2 models. The corresponding

standard deviation is shown in Fig. 9(e) and (f). Predictions of both models agree well with

the measurements, though the two-state model is clearly more accurate. Note consistently

larger prediction errors at the interface y = 60 where the PRF-water-shift temperature

measurements are affected by a large water volume in the bath.

The history of predicted and measured temperatures in two voxels on the line of ultrasound

beam symmetry is shown in Fig. 10(a) and (b). Fig. 10(c) and (d) shows the snapshots of

predicted and measured temperatures on the line x = 56 at two different instants. The

examination of Fig. 10 shows that prediction errors are larger after rapid temporal SAR

changes and reduce gradually as temperature tends to a steady state value. The single-state

model gives reasonably good predictions, while the predictions of the two-state model agree

with measurements very closely.

IV. Discussion

The methods for the identification of low-dimensional models of thermal therapies based on

MR thermometry imaging were developed and validated. The method consists of the

following steps.

1. The identification procedure starts with pretreatment experiments to collect patient-

and site specific MR thermal images, Ui(r), , characterizing the response of

the target, the surrounding, and the intervening normal tissues to low,

subtherapeutic level of heating. The images should also be acquired during tissue

cooling back to normal value, after an external heating has been stopped.

2. The images collected during the pretreatment experiment must be used to obtain

the reduced-order basis for a parsimonious description of the specific absorption

rate and the temperature distribution inside the patient. To find the reduced basis

:

1. eigenvalue problem (10) is solved first;
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2. obtained eigenvectors Wj are normalized according to (11) to ensure

orthonormality of the basis;

3. elements of the normalized eigenvector are then used as coefficients in the

decomposition (8) to obtain the basis functions φj;

4. number of the basis functions M is selected to satisfy condition (15) or

some other appropriately selected criterion.

3. The reduced basis is then used to identify the specific ab-sorbtion rate of the

applied energy and a low-dimensional, dynamic projection model, which gives

computationally efficient predictions of the patient’s thermal response to external

heating.

1. Using only images acquired during tissue cooling, the system matrix A is

identified as a least squares solution of the linear matrix (29).

2. The power deposition in the projected form û(t) is identified based on

images acquired during active heating of tissues, by finding the least

square solution of the linear system of (34), or (33). Using the result in

(20) and (21) gives the estimate of the power deposition, Q(r, t), and the

corresponding SAR for the transducer used to heat the tissues. The matrix

B of the reduced order model is given by (40).

Thus, identified thermal model (22) predicts evolution of temperature projections T̂(t), from

which the temperature distribution T(r, t) is obtained using decomposition (19).

The described identification procedure is data driven and independent of the assumptions on

the underlying partial differential equations governing the heat transfer in tissues. As a

result, after the model (22) is obtained, it can be used to estimate the parameters of the

assumed governing model, such as the blood perfusion coefficient of the bioheat equation.

The identification results obtained following the developed approach are less sensitive to

temporal and spatial measurement noises in acquired images, and slow image acquisition

rate. No prior knowledge is required to identify the thermal response model. However,

independent information on tissue density and heat capacity (which define matrix B) is

required to identify the power deposition and the corresponding SAR.

Computer simulations of focused ultrasound heating of a tumor were used to demonstrate

the ability of the developed method to identify accurate treatment models of low

dimensionality. It was found that the SAR and evolving temperature distribution in a very

large number of computational nodes can be accurately represented by the identified

projection model with only two states and that the accuracy of the low-dimensional

approximation can be controlled by selecting the number of basis elements.

The developed approach was further tested in MRI experiments. The results confirm that the

low-dimensional thermal response model, identified from a sequence of MRI thermal

images, accurately describes temperature response of a tissue phantom to focused ultrasound

heating. The true SAR during the experiments was not known and thus unavailable for direct

comparison. However, when the identified SAR was used to predict the temperature

distribution, the agreement with measurements was very good. This observation together

with the consistency of the identified SAR in multiple tests provide an experimental

validation of the developed SAR identification method. Note that the SAR can only be

identified if density and heat capacity of tissues are known. If ρ(r, t) and Ct(r, t) are not

known, then only the product Bû can be identified, which is sufficient to predict the

temperature response to ultrasound heating, but not the unique SAR.
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The most computationally intensive part of the method is the solution of a high-dimensional

eigenvalue problem (10). This solution is carried out offline. Therefore, the basis  and

the treatment model, identified prior to the actual thermal therapy, do not account for the

changes in tissue and SAR properties during the treatment. To better capture changing tissue

and SAR properties it is advisable to select a larger number of eigenfunctions M than

suggested by offline analysis. Furthermore, the described method can be used without

modifications to adaptively reidentify the model (22) using images acquired in real time,

during the therapy. Such model adaptation will improve the ability to adequately capture the

effects tissue nonlinearities at high treatment temperatures needed for ablation.

The quality of the model will also be improved if the basis  is also dynamically

reidentified. However, this requires a rapid solution of a high-dimensional eigenvalue

problem, which should be possible when recursive methods, such as those described in [29],

[30], are used.

The developed approach is not limited to focused ultrasound therapies; it can be broadly

used to identify a low-dimensional model of noninvasive or invasive therapies based on

acquired thermal images. After straightforward modifications, the approach can be used with

images acquired in multiple planes and with 3-D measurements.
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Fig. 1.
Simulated target of FUS heating.
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Fig. 2.
Identified basis functions and corresponding eigenvalues.
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Fig. 3.
(a) Temperature measurements in POI at t = 1350 s. (b), (c) Temperature prediction errors of

single- and two-state projection models at t = 1350 s. (d) SAR distribution in POI. (e), (f)

SAR identification errors at t = 1350 s using reduced basis  with M = 1 and 2.
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Fig. 4.
Thermal image of agar phantom, acquired at t = 7736 s.
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Fig. 5.
(a) MRI measurements of temperature increase in ROI at t = 773 s. (b) MR-measured

temperature increase on line x = 56.
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Fig. 6.
Identified eigenfunctions.
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Fig. 7.
(a), (b) Identified SAR in scaled form for 6.5 W of applied power; results for M = 1 and M =

2, respectively. (c), (d) Relative difference in normalized SARs (in 1/kg) identified for

different applied powers and M = 2. Each distribution is scaled with the corresponding total

applied power of 3.5, 4.8, or 6.5 W.
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Fig. 8.
Comparison of model-predicted temperature projections, T̂(t), with projections of MRI

thermal images T̂m(t).
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Fig. 9.
(a), (b) Spatial mean and standard deviation of prediction errors in the ROI. (c), (d)

Temporal mean of prediction errors with M = 1 and 2. (e), (f) Temporal standard deviation

of prediction errors.
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Fig. 10.
(a), (b) Evolution of temperature elevations in two selected voxels. (c), (d) Spatial

distribution of temperatures on the line of focal symmetry at two different times.
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TABLE I

Validation Based on Computer Simulations: Identified Thermal Response Models and Sar Projections for

Reduced Basis 

M = 1 M = 2

A −0.0021

B 2.50 × 10−7

û 213.7323
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TABLE II

Experimental Validation: Identified Thermal Response Models and Sar Projections for Reduced Basis 

M = 1 M = 2

A −0.0041

B γ = 2.389 × 10−7 γI2×2

û 5.4310 × 103
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