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Although the accuracy of quantitative real-time polymerase
chain reaction (qRT-PCR) is highly dependent on the reliable
reference genes, many commonly used reference genes are not
stably expressed and as such are not suitable for quantification
and normalization of qRT-PCR data. The aim of this study
was to identify novel reliable reference genes in lung squa-
mous-cell carcinoma. We used RNA sequencing (RNA-Seq) to
survey the whole genome expression in 5 lung normal samples
and 44 lung squamous-cell carcinoma samples. We evaluated
the expression profiles of 15 commonly used reference genes
and identified five additional candidate reference genes. To
validate the RNA-Seq dataset, we used qRT-PCR to verify the
expression levels of these 20 genes in a separate set of 100
pairs of normal lung tissue and lung squamous-cell carcinoma
samples, and then analyzed these results using geNorm and
NormFinder. With respect to 14 of the 15 common reference
genes (B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1,
POLR2A, PPIA, RPLP0, TBP, TFRC, UBC, and YWHAZ), the
expression levels were either too low to be easily detected, or
exhibited a high degree of variability either between lung
normal and squamous-cell carcinoma samples, or even among
samples of the same tissue type. In contrast, 1 of the 15
common reference genes (ACTB) and the 5 additional candi-
date reference genes (EEF1A1, FAU, RPS9, RPS11, and
RPS14) were stably and constitutively expressed at high levels
in all the samples tested. ACTB, EEF1A1, FAU, RPS9, RPS11,
and RPS14 are ideal reference genes for qRT-PCR analysis
of lung squamous-cell carcinoma, while 14 commonly used
qRT-PCR reference genes are less appropriate in this context.
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Introduction

Quantitative real-time polymerase chain reaction (qRT-PCR)
is still the most common method to accurately quantify the

mRNA transcription levels. qRT-PCR is fast, economical,
and easy to use, and is especially suitable for the measure-
ment of the expression of a limited number of genes. Given
the highly quantitative nature of this technique, however, the
use of a reliable normalization control is essential for mean-
ingful comparison of the results between different samples.
Accordingly, reference genes, usually housekeeping genes,
are frequently used to normalize experimental deviation
in the qRT-PCR datasets arising from differences in RNA
quantity and quality, mRNA content, transcriptional activity,
and operational deviation, among others. Since the accuracy
of qRT-PCR is highly dependent on reliable reference
genes, the expression levels of such genes should ideally
be stably and constitutively elevated, and should not vary in
different samples, nor be affected by experimental treat-
ments. Since the expression patterns of many genes, includ-
ing housekeeping genes, varies from tissue to tissue, proper
validation of candidate reference genes is required prior to
their use in qRT-PCR studies [1–3]. RNA sequencing
(RNA-Seq) has in recent years emerged as a popular high-
throughput technology for global gene expression analysis.
In this technique, transcript levels are quantified in reads per
kilobase of exon model per million mapped reads (RPKM),
which reflects the molar concentration of a transcript normal-
ized by the total read number in the measurement [4]. This
normalization ideally avoids the experimental deviation in
the qRT-PCR referred to above and facilitates transparent com-
parison of the expression levels of different genes between
samples. As such, RNA-Seq is an ideal method to identify
stably expressed reference genes across the entire genome.

Lung cancer is the most commonly diagnosed cancer
worldwide, as well as the leading cause of cancer death [5].
Worldwide in 2008, it accounted for 13% (1.6 million) of
the total cases and 18% (1.4 million) of the deaths [5].
Squamous-cell carcinoma is one of the major histological
subtypes of lung cancer, and although a considerable
number of qRT-PCR studies have focused on this subtype,
they contain relatively few reliable reference genes.
Although reference genes such as beta-actin (ACTB),
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glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are
commonly used in this context, we found that the expression
of certain reference genes in lung squamous-cell carcinoma
is sufficiently variable to invalidate their use as internal
controls. [6–10]. To solve this problem, here, we performed
global gene expression profiling measurement in lung
normal and squamous-cell carcinoma samples by using
RNA-Seq, with the aim of identifying the most appropriate
reference genes for the qRT-PCR analysis of lung squamous-
cell carcinoma.

Materials and Methods

Ethics statement
This study was approved by Ethics Committee of Zhongshan
Hospital, Fudan University (Approval No. 2011–219(2))
(Shanghai, China). All work conforms to the provisions of
the Declaration of Helsinki. Written informed consent was
obtained from all patients participating in this research at the
time of hospitalization.

Tissue samples
Samples were obtained from patients with lung squamous-
cell carcinoma who underwent surgical resection between
July 2012 and December 2012 at Zhongshan Hospital,
Fudan University. Normal lung specimens were resected at
least 3 cm away from tumor margin, while tumor samples
were carefully removed from the center of squamous-cell
carcinoma. All samples were quickly frozen in liquid nitro-
gen after removal and then stored at 2808C. A portion of
each sample was paraffin embedded, HE stained, and then
checked by an experienced pathologist to ensure that no
cancer cell existed in the normal tissues, and that .80%
cells in every tumor sample were squamous carcinoma cells.
Finally, 5 normal tissue samples and 44 lung squamous-cell
carcinoma tissues were obtained for use in the RNA-Seq
analysis. One hundred additional pairs of normal tissue
samples and lung squamous-cell carcinoma tissues were
used for qRT-PCR validation.

RNA preparation
Total RNA was extracted from each sample with Trizol
(Invitrogen, Carlsbad, USA), then re-dissolved in diethypyro-
carbonate-treated water, quantified using NanoVue Plus
spectrophotometry (GE Healthcare, Fairfield, USA), and
integrity-evaluated using agarose gel electrophoresis. DNA
contamination was eliminated using gDNA Eraser (TaKaRa,
Tokyo, Japan) according to the manufacturer’s guidelines.

RNA-Seq
mRNA in total RNA was converted into a library of tem-
plate molecules suitable for subsequent sequencing using
a TruSeqwRNA Sample Preparation Kit v2 (Illumina,
SanDiego, USA) according to the manufacturer’s guidelines.

These steps involved mRNA purification and fragmentation,
first and second strand cDNA synthesis, end repair, 30-end
adenylation, ligation of adapters, and PCR amplification
of cDNA libraries procedure, among others. Sequencing
was then performed using Genome Analyzer II (Illumina)
according to the manufacturer’s recommendation. Sequence
analysis was performed using the software Galaxy (http://
galaxyproject.org) to calculate the RPKM of every tran-
script. RPKM values for all the transcripts of a given gene
were summed to generate a measure of the expression of that
gene. Each sample was sequenced twice and the average of
the RPKM value of each gene was taken to reflect its actual
expression level.

qRT-PCR analysis
cDNA synthesis was performed using the PrimeScriptTM RT
Master Mix (Perfect Real Time) (TaKaRa) according to the
manufacturer’s guidelines. qPCR reactions for each treatment
were carried out in triplicate by the Mastercycler epgradient S
realplex (Eppendorf, Hamburg, Germany) and SYBRw

Premix Ex TaqTM (Tli RNaseH Plus II) (TaKaRa) using the
following PCR procedure, 1 cycle of 5 s at 958C, 40 cycles of
5 s at 958C, 30 s at 558C, 30 s at 728C. Primers were designed
according to sequences common to all transcripts of a given
gene, avoided all single nucleotide polymorphisms (SNPs) or
mutations reported in NCBI dbSNP database.

Statistical analysis
The RPKM data from RNA-Seq were analyzed using IBM
SPSS for windows, version 20 (Armonk, USA). The mean
RPKM value was used to evaluate the expression level of a
gene while the CV [coefficient of variance, equal to standard
deviation (SD) divided by mean] of RPKM was used to
assess the stability of their expression.

Two different statistical algorithms, geNorm and
NormFinder, both of which provide a stability value for
each gene in a pool of genes were applied to analyze the
qRT-PCR data [11,12]. The stability value was then used to
validate the outcome of the RPKM data analysis.

Results

Expression profiles of commonly used reference genes in
RNA-Seq data
Our criteria for appropriate reference genes were: constitu-
tively elevated expression for easy detection; and stable,
comparable expression levels in both normal lung tissues
and lung squamous-cell carcinomas. A total of 15 commonly
used reference genes were evaluated against these criteria,
namely: ACTB, beta-2-microglobulin (B2M), GAPDH, beta-
glucuronidase (GUSB), hydroxymethylbilane synthase (HMBS),
hypoxanthine phosphoribosyltransferase 1 (HPRT1), importin
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8 (IPO8), phosphoglycerate kinase 1 (PGK1), polymerase
RNA II DNA directed polypeptide A 220 kDa (POLR2A),
peptidylprolyl isomerase A (PPIA), ribosomal protein
large P0 (RPLP0), TATA box binding protein (TBP), trans-
ferrin receptor (TFRC), ubiquitin C (UBC), and tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation
protein zeta polypeptide (YWHAZ) (Fig. 1 and Table 1)
[13–21]. The full name, NCBI Gene ID, function, and loca-
tion of these genes can be found in Supplementary Table S1.

As shown in Fig. 1 and Table 1, several genes (GUSB,
HMBS, HPRT1, IPO8, POLR2A, TBP, and TFRC) had very
low RPKM values, and were expressed at such low levels
that they would likely not be routinely detectable. Some
common reference genes had widely varying expression
levels between lung normal and squamous-cell carcinoma
samples. These genes included B2M, GAPDH, HMBS,
HPRT1, PGK1, POLR2A, PPIA, TBP, TFRC, UBC, and
YWHAZ. GAPDH, for example, one of the most commonly
used reference genes, had an average expression in lung
squamous-cell carcinoma that was five folds more than that
in normal lung tissues. And finally, the expression levels of
several common reference genes (B2M, GAPDH, HMBS,
HPRT1, PGK1, TFRC, and YWHAZ) varied considerably
among samples in the same tissue type (normal or tumor).
Of the 14 common reference genes tested, only ACTB met
the criteria for elevated constitutive expression levels that
were comparable between normal lung and squamous-cell
carcinoma samples.

Identification of other candidate reference genes
in RNA-Seq data
Currently, there is no existing method available, so we took
the following steps to identify genes with consistent expres-
sion between normal lung and squamous-cell carcinoma
tissues.

First, the genes with a ,1 Mean(A) were excluded due to
the possibility that RNA-Seq might be less robust at such
low RPKM values [4]. Secondly, genes were excluded if
Mean(N)/Mean(T) were ,0.8 or .1.2, or if their expression
levels were significantly different between normal and
squamous-cell carcinoma samples (P , 0.05). Of the initial
.20,000 genes, 3276 genes which met the criteria above
were drawn in a scatter plot, with CV(A) as the X-axis and
Mean(A) as the Y-axis (Fig. 2).

Here, Mean(A) denotes the mean of RPKM value of the
gene in all samples. Mean(N) and Mean(T) denote the mean
of RPKM value of the gene in lung normal samples and
squamous-cell carcinoma samples, respectively. CV(A) denotes
the CV of RPKM value of the gene in all the samples.

Finally, we selected six candidate reference genes from the
top-left of Fig. 2: ACTB, eukaryotic translation elongation
factor 1 alpha 1 (EEF1A1), Finkel-Biskis-Reilly murine
sarcoma virus ubiquitously expressed (FAU), ribosomal
protein S9 (RPS9), ribosomal protein S11 (RPS11), and ribo-
somal protein S14 (RPS14). The expression profiles of these
six genes were displayed in Fig. 3 and Table 2. The full name,
NCBI Gene ID, function, and location of these genes can also
be found in Supplementary Table S1. Our RNA-Seq data
indicated that these six genes were consistently and robustly
expressed, with the average RPKM values in excess of 1000,
and the average CV values of no more than 0.3. These data
indicated that these genes were the most highly and stably
expressed genes in both lung normal and squamous-cell car-
cinoma samples. Interestingly, it is noteworthy that all six of
these genes are considered ‘housekeeping’ genes [22].

Validation of candidate reference genes by qRT-PCR
Next, we used qRT-PCR to measure the expression levels of
all 20 genes (the 15 common reference genes and the five
novel candidate reference genes that we identified) in 100

Figure 1. Expression profiling of 15 common reference genes in RNA-Seq data The expression of each gene in 5 lung normal samples and 44 lung

squamous-cell carcinoma samples.
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pairs of normal lung and squamous-cell carcinoma samples.
The primer sequences and melting temperature (Tm) used in
our research and the product length, PCR efficiency, and
correlation with dilution series (R2) can be found in
Supplementary Table S2. qRT-PCR data were then ana-
lyzed by both geNorm and NormFinder to evaluate the sta-
bility of these genes [11,12].

As shown in Fig. 4, the raw cycle threshold (CT) values of
B2M, GAPDH, HMBS, HPRT1, PGK1, RPLP0, TFRC, and
YWHAZ varied considerably between lung normal tissues and
squamous-cell carcinoma samples, to an extent greater than
that which could be explained by experimental errors. In con-
trast, the CT values of ACTB and the five novel candidate ref-
erence genes were sufficiently low to allow for routine
detection. Moreover, the CT values of these six genes were
comparable between normal lung and squamous-cell carcin-
oma tissues. Collectively, the results of qRT-PCR analysis
were in broad agreement with those in the RNA-Seq dataset.

As shown in Table 3, analysis of the raw CT data using
geNorm and NormFinder, indicated that ACTB and the five
novel candidate reference genes were stable with very high
rank of stability values. Of these six genes, EEF1A1 was
ranked by both analyses as the most stably expressed gene.
In summary, the results of these analyses broadly validated
the results of RNA-Seq analysis.

Discussion

In this study, we carried out RNA-Seq global expression pro-
filing of normal lung and squamous-cell carcinoma to identify

candidate reference genes for qRT-PCR. To our knowledge,
this is the first description of the use of RNA-Seq to identify
candidate reference genes for qRT-PCR. We found that
ACTB, EEF1A1, FAU, RPS9, RPS11, and RPS14, were
highly and stably expressed in both tissue types and, as such,
are suitable reference genes for qRT-PCR-based studies of
lung squamous-cell carcinoma. In contrast, 14 commonly
used reference genes (B2M, GAPDH, GUSB, HMBS, HPRT1,
IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC,
and YWHAZ) failed to meet our selection criteria and should

Table 1. The expression profile of 15 commonly used reference genes

Gene Mean(N) CV(N) Mean(T) CV(T) Mean(N)/Mean(T) Mean(A) CV(A)

ACTB 2795 0.1951 2928 0.2948 0.9546 2915 0.2858

B2M 3941 0.3195 2140 0.5821 1.8416 2324 0.5815

GAPDH 808.4 0.1687 4988 0.5240 0.1621 4562 0.6105

GUSB 37.13 0.0951 34.46 0.3585 1.0775 34.73 0.3387

HMBS 6.582 0.1525 18.89 0.3541 0.3484 17.64 0.4180

HPRT1 7.062 0.2128 23.31 0.5536 0.3030 21.66 0.6093

IPO8 7.186 0.3933 6.719 0.3738 1.0695 6.766 0.3720

PGK1 84.79 0.0934 223.8 0.4212 0.3789 209.6 0.4716

POLR2A 30.94 0.2457 44.18 0.3338 0.7003 42.83 0.3432

PPIA 274.1 0.1238 466.0 0.3621 0.5882 446.4 0.3818

RPLP0 904.1 0.2579 2128 0.3241 0.4249 2003 0.3772

TBP 5.721 0.2285 8.262 0.3469 0.6925 8.003 0.3557

TFRC 17.65 0.2915 49.34 0.8142 0.3577 46.10 0.8517

UBC 575.7 0.2117 769.1 0.2591 0.7485 749.4 0.2680

YWHAZ 85.91 0.2699 213.8 0.4971 0.4018 200.7 0.5386

(N), (T), and (A) denote lung normal samples, squamous-cell carcinoma sample, and all samples, respectively. ACTB expressed highly and stably with

high Mean(A), close to 1 Mean(N)/Mean(T), and low CV(A). Other 14 genes have either low Mean(A), Mean(N)/Mean(T) deviated to 1, or large CV(A)

values, which means they were not highly and stably expressed in these samples.

Figure 2. The distribution of Mean(A) and CV(A) of genes in
RNA-Seq data Genes with CV(A) . 1.0 were not displayed. These six

genes at the frame at the top-left of the figure (ACTB, EEF1A1, FAU, RPS9,

RPS11, and RPS14) were considered the most highly and stably expressed

genes.
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not be considered as suitable reference genes. We considered
that our results were vitally important for those researchers in-
vestigating gene expression in lung squamous-cell carcinoma.

Another commonly used reference gene, 18S rRNA, its
expression data were not included in the results of the
RNA-Seq since it could not be enriched at the mRNA purifi-
cation step. So whether or not 18S rRNA is suitable as en-
dogenous control for qRT-PCR of lung squamous-cell
carcinoma needs to be further verified.

Genes encoding ribosome proteins are universally con-
served, and most of these genes were stably expressed in our
samples. Three of our six successfully screened genes
belong to this family, and many genes in this set have been
verified in other studies to be suitable reference genes [23–
25]. We also found that the expression levels of certain ribo-
some protein-encoding genes, such as ribosomal protein S7
(RPS7), ribosomal protein S10 (RPS10), RPLP0, and riboso-
mal protein L21 (RPL21) varied widely, ranging from single
digits to tens of thousands of RPKM value. GAPDH, one
of the most frequently used reference genes, has been
widely used as a qRT-PCR reference gene in the expression
analysis of lung squamous-cell carcinoma and other tumors
[6,26–28]. However, tumor cells show various metabolic

anomalies, in which the best known are the typical high rate
of glycolysis and lactate production termed ‘Warburg effect’
[29]. How tumor cells establish this altered metabolic pheno-
type is not entirely clear, but here our RNA-Seq results
showed that the expression levels of many enzymes involv-
ing in glucose metabolism’s expression elevated many folds,
such as GAPDH, PGK1, hexokinase 2 (HK2), the M2 type
of pyruvate kinase (PKM2), and lactate dehydrogenase
(LDH), echoed lots of previous research [29–35]. So our
results indicated that GAPDH is not entirely suitable as the
reference gene of qRT-PCR in lung squamous-cell carcin-
oma or even other kinds of cancers. Moreover, the expres-
sion of GAPDH has been reported to be upregulated in many
other disorders such as inflammation, diabetes, hypoxia, and
some respiratory diseases, suggesting that it should only be
cautiously used as a reference gene in studies of these
diseases [36–40]. Indeed, in a large-scale microarray meta-
analysis, GAPDH was not recommended as a reference
gene, except in heart or muscle [23].

geNorm and NormFinder are two robust strategies to iden-
tify the most suitable reference gene from a given set of
genes, and have been frequently used in reference gene-
finding analyses [11,12,17,41–44]. geNorm calculates a

Figure 3. The expression profiling of six candidate reference genes in RNA-Seq data The expression of all 6 candidate genes was elevated and did not

change significantly between all 5 normal and 44 squamous-cell carcinoma samples.
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gene’s stability measured as the SD of the log2-transformed
expression ratios of each gene compared with all others
tested throughout the samples [12]. NormFinder uses a
model-based approach to estimate expression stability based
on intra- and inter-group variations for candidate genes [11].
In both the strategies, the stability value of one gene is
largely determined by its correlation with other candidate
genes, such that a low stability value will be obtained if the
expression of the given gene is highly correlated with most
other genes. And when most of the genes in the given set
express stably in all sample, both methods will efficiently
select the most stably expressed gene. In the event that most
genes are not stably expressed, however, then neither
geNorm nor NormFinder would be in a position to evaluate
stability. This is a possible explanation of why certain genes
such as PPIA, RPLP0, and TBP, which were not stable in the
RNA-Seq and raw CT datasets, ranked high with these pro-
grams, while ACTB was ranked in the middle position.
Moreover, it might also explain the differences between
RNA-Seq and qRT-PCR in identifying the best reference
genes in lung squamous-cell carcinoma [20,21]. Based on

this point, research based primarily on geNorm or
NormFinder may need further verification.

Squamous-cell carcinoma and adenocarcinoma are the most
two common histological subtypes of lung non-small-cell lung
cancer. However, these two subtypes are quite different in host
susceptibility, clonal evolution, molecular evolution, and mo-
lecular profiling [45]. Based on these caveats, in the absence
of validation, reference genes which are suitable in lung
squamous-cell carcinoma may not necessarily be directly ap-
plicable to other types of lung cancer.

Like RNA-Seq, microarray is capable of assaying
genome-wide transcript expression levels in a single sample,
and is frequently used in the screening of reference genes
[23,46,47]. However, since microarray-based gene ex-
pression measurements are derived from nucleotide hybrid-
ization, which is prone to false signals arising from
cross-hybridization, such data often require validation
[48,49]. Another inherent limitation of microarray is that
they are highly reliant upon existing knowledge about
genome sequence, such that newly discovered genes or gene
variants are often not available on a given platform [50].

Table 2. The expression profile of six candidate reference genes

Gene Mean(N) CV(N) Mean(T) CV(T) Mean(N)/Mean(T) Mean(A) CV(A)

ACTB 2795 0.1951 2928 0.2948 0.9546 2915 0.2858

EEF1A1 1701 0.1180 1695 0.2759 1.0035 1695 0.2633

FAU 1440 0.1375 1485 0.2771 0.9697 1481 0.2660

RPS9 1567 0.1286 1313 0.2371 1.1935 1339 0.2317

RPS11 2653 0.2141 3009 0.3050 0.8817 2972 0.2996

RPS14 1503 0.1244 1414 0.3129 1.0629 1423 0.2998

The expression of EEF1A1, FAU, RPS9, RPS11, and RPS14 were both highly and stably like ACTB.

Figure 4. Raw qRT-PCR CT data for 20 genes ACTB, EEF1A1, FAU, RPS9, RPS11, and RPS14 were highly and stably expressed with low and narrow

range of raw CT values.
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RNA-Seq has recently emerged as a complementary tech-
nique to microarray, bringing advantages such as low back-
ground noise, capable of detecting novel transcripts and
alternative splicing forms, exon and nucleotide resolution,
high dynamic range in detection, high precision, and high re-
producibility [51–54].

In conclusion, ACTB, EEF1A1, FAU, RPS9, RPS11, and
RPS14 are ideal reference genes in qRT-PCR research of
lung squamous-cell carcinoma, while 14 commonly used
reference genes, B2M, GAPDH, GUSB, HMBS, HPRT1,
IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC,
and YWHAZ, are less appropriate as reference genes in this
context.
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Supplementary data are available at ABBS online.
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