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Identification of relevant genetic alterations in
cancer using topological data analysis
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Large-scale cancer genomic studies enable the systematic identification of mutations that

lead to the genesis and progression of tumors, uncovering the underlying molecular

mechanisms and potential therapies. While some such mutations are recurrently found in

many tumors, many others exist solely within a few samples, precluding detection by con-

ventional recurrence-based statistical approaches. Integrated analysis of somatic mutations

and RNA expression data across 12 tumor types reveals that mutations of cancer genes are

usually accompanied by substantial changes in expression. We use topological data analysis

to leverage this observation and uncover 38 elusive candidate cancer-associated genes,

including inactivating mutations of the metalloproteinase ADAMTS12 in lung adenocarci-

noma. We show that ADAMTS12−/− mice have a five-fold increase in the susceptibility to

develop lung tumors, confirming the role of ADAMTS12 as a tumor suppressor gene. Our

results demonstrate that data integration through topological techniques can increase our

ability to identify previously unreported cancer-related alterations.
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A
critical foundation for targeted cancer therapies is the
identification of molecular mechanisms that are necessary
for tumor development and maintenance. Large-scale

cross-sectional cancer molecular studies, such as The Cancer
Genome Atlas (TCGA) and the International Cancer Genome
Consortium, enable this identification by systematically compil-
ing genetic alterations across many tumors1,2. Tumors that pre-
sent recurrently altered genes or pathways are suspected to be
driven by common molecular mechanisms. By leveraging com-
putational approaches that seek signatures of positive selection3,
these studies have produced extensive catalogues of frequently-
mutated, cancer-associated genes4. These studies have also
revealed that most cancer mutations occur at low frequencies
(<10% of samples), including potentially actionable therapeutic
targets4.

The identification of low-prevalence cancer-associated muta-
tions using recurrence-based methods is challenging because of
the large number of samples needed to achieve statistical power
and the inherent complexity in modeling the background muta-
tion rates. The rate of neutral mutations within a cancer type can
dramatically differ among patients, genomic regions, or mutation
types3, limiting the power of recurrence-based methods. It is
estimated that for the current size of ongoing cross-sectional
studies (typically consisting of less than 1000 patients) only
cancer-associated mutations that occur at intermediate or high
frequencies (>15%) are fully accessible to recurrence-based
methods4. This is consistent with the observation that patients
in these studies often completely lack mutations in known cancer-
associated genes5. These results highlight the need of recurrence-
based methods that can model rare events6,7 or, alternatively,
methods for the identification of cancer-associated genes that are
not based on recurrence.

An approach to the identification of cancer-associated genes
that is not based on modeling the mutation rate is the integration
of other types of data from the tumor8,9. If a mutation is
accompanied by consistent changes in copy number, gene
expression, and/or methylation, it is possible to leverage these
changes to relate the mutation event to cancer progression. Sev-
eral studies have utilized changes in the copy number, expression,
or methylation of the mutated gene (cis-effects) to identify novel
cancer-associated mutations10–12. However, the identification of
cancer-associated mutations based on changes in genes other
than the mutated gene (trans-effects) is more challenging and
usually requires providing information about known gene–gene
relationships to reduce the number of false positives. DriverNet13,
OncoIMPACT14, CaMoDi15, and Xseq16 utilize trans-effects in
gene expression to identify cancer-associated mutations. To limit
the dimensionality of the expression space, these methods use
expression modules (sets of co-expressed genes, functionally
related genes, or gene networks). However, an approach that fully
takes into account the complexity of the expression space is
currently lacking.

Current approaches for the identification of cancer-associated
mutations using expression data are sensitive to several con-
founding effects. Genomic regions with open chromatin can be
more easily accessed by DNA repair enzymes, leading to antic-
orrelations between gene expression levels and mutation rates3.
Furthermore, tumors with different expression signatures, such as
genomically unstable tumors, can have different mutation
rates17,18. These effects lead to spurious correlations between
mutations and expression signatures and are a source of false
positives for current algorithms.

To address these problems, we devise an approach to identify
cancer-associated mutated genes using expression data from
multiple tumors. Our approach makes use of topological data
analysis19,20 (TDA) to reconstruct the structure of the expression

space, and takes into account the above spurious effects when
assessing the significance of a mutated gene. Its application to
mutation and expression data of 4476 patients from 12 tumor
types leads to the identification of 95 mutated cancer genes, out of
which 38 are previously unreported low-prevalence genes (aver-
age prevalence within the same tumor cohort= 5%). We hence
propose a complementary approach to recurrence-based meth-
ods, enabling the identification of elusive, but potentially clini-
cally-relevant, mutated cancer genes.

Results
Topological representation of low grade glioma expression.
The expression profile of a tumor can be mathematically
described as a point in a high-dimensional expression space,
where each dimension represents the mRNA level of a gene and
the dimensionality of the space is given by the number of
expressed genes. Points that lie close to each other in this space
correspond to tumors with similar expression profiles. The set of
all possible tumors of a cancer type spans a subspace of the
expression space. Measuring the expression profiles of individual
tumors in a cross-sectional study is equivalent to sampling a finite
set of points from this subspace.

We considered 513 primary low grade glioma (LGG) tumors
from TCGA for which both RNA-seq and whole-exome DNA-
seq data were available21. To infer the structure of the expression
space of LGG from this RNA-seq data, we used a topological
approach19,20. Topology is the mathematical field that studies
how different parts of a space are connected to each other. TDA
generalizes some of the notions of topology to sets of points and
pairwise distances. Thus, TDA aims to infer and summarize the
topological structure of a space given only a finite sample of
points. TDA has been recently used to study viral reassortment22,
human recombination23,24, cell differentiation25, breast cancer26,
and other complex genetic diseases27.

We used the TDA algorithm Mapper28 to build a low-
dimensional representation of the expression space of LGG using
the expression data of the TCGA cohort (Fig. 1a). Mapper
generates a network representation of the expression space, in
which each node corresponds to a set of tumors with similar
expression profile. A given tumor can appear in more than one
node, and if two nodes have one or more tumors in common they
are connected by an edge. Contrary to other methods for
dimensionality reduction, such as principal component analysis
and multidimensional scaling29, the topological representations
produced by Mapper preserve local relationships of the high-
dimensional expression space. Any two tumors close to each
other in the topological representation (as measured by the
number of edges contained in the shortest path that connects the
two tumors) are ensured to be close to each other in the original
high-dimensional expression space. We used Pearson’s correla-
tion as a measure of similarity between the expression profiles of
individual tumors. The topological representation of the LGG
expression space consisted of three regions (Fig. 1a), consistent
with the expression subtypes found in clustering analyses21.
These regions, however, were bridged by thin structures in the
topological representation, indicating that some tumors have an
expression profile characteristic of multiple expression subtypes
(Fig. 1a).

Identification of cancer-associated genes in LGG. We hypo-
thesized that if a mutated gene appears localized in the expression
space, it is associated with consistent global expression patterns
across a subset of tumors, and is therefore a candidate driver of
tumor progression (Fig. 1b). On the other hand, if mutations of a
gene are clonally expanded as a result of being in the same
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genome as a positively-selected mutation, but are not cancer-
related, they will appear randomly scattered in the expression
subspace (Fig. 1b).

To test this hypothesis, we implemented a computational
approach that assesses the localization of nonsynonymous
somatic mutations in the expression space of tumors (Methods).
To control for the presence of spurious correlations between the
mutation rate and the tumor expression profile, we assessed the
localization of the mutational tumor burden (defined as the total
number of somatic mutations in each tumor) in the reconstructed
expression space (Supplementary Fig. 1a, Methods). Based on this
analysis, we subsampled mutations in two hypermutated tumors
(nmut > 102.5) that were present in the LGG cohort. In addition,
we assessed the similarity between the expression and the
mutation profile of each individual gene in the reconstructed
expression space (Methods). After correcting for these spurious
correlations, 16 mutated genes were significantly localized in the
reconstructed expression space of LGG (Fig. 1c, q-value < 0.15,
Benjamini–Hochberg procedure). These included well-known
high-prevalence (>15%) driver genes, like IDH1, TP53, ATRX,

and CIC, in addition to several low-prevalence mutated genes,
like NIPBL (mutated in 4% of the tumors) and ZNF292 (mutated
in 3% of the tumors), which have been recently reported in a
larger cohort of gliomas21. In total, 15 out of the 16 significant
mutated genes were previously reported21,30, with SYNE1
(mutated in 2% of the tumors) the only new candidate. We did
not observe a significant correlation between the significance and
prevalence of statistically significant genes (Pearson’s correlation
coefficient between prevalence and q-value, r=−0.34, p-value=
0.19). In particular, some of the most significant genes according
to our approach, like FUBP1, NOTCH1, PTEN, EGFR, and NF1,
were mutated in less than 10% of the patients within that tumor
type (Fig. 1c), indicating that mutations in these genes are
strongly associated with global changes in expression. These
results were stable across the parameter space of the Mapper
algorithm (Fig. 1c, Supplementary Fig. 1b, Methods).

The location of significant genes in the reconstructed
expression space of LGG was consistent with the known
molecular subtypes of adult diffuse gliomas21 (Fig. 1d, Supple-
mentary Fig. 2). Of particular note, IDH2-mutant tumors were
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localized within the expression space of oligodendrogliomas,
indicating a distinct expression profile from that of IDH1-mutant
oligodendrogliomas (Fig. 1d, Supplementary Fig. 2a). This
observation is consistent with a recent study based on genomic
variations31.

Neuronal marker expression has been reported in malignant
(grade III/IV) gliomas other than classical anaplastic
gangliogliomas32,33. In our cohort, tumors expressing canonical
neuronal markers like neurofilament (NEFL, NEFM, and NEFH)
and synaptophysin (SYP) were significantly localized within the
expression space of oligodendrogliomas (q-value < 0.015, Supple-
mentary Fig. 3). These tumors harbored frequent deletions of the
chromosome arm 19q, in addition to molecular alterations
characteristic of astrocytic gliomas, such as TP53 and ATRX
mutations (Fisher’s exact test p-value < 0.01, Supplementary
Fig. 3). Although the average estimated tumor purity34 in this
group was significantly lower than for the rest of the
oligodendroglioma expression group (Mann–Whitney U-test p-
value= 0.001, average estimated tumor purities= 92 and 96%,
respectively), the estimated tumor content was in many cases (n
= 7) above 98%, suggesting that the expression of neuronal
markers is not due to a poor tumor purity.

Computational benchmarking. To assess the number of cancer-
associated genes identified by our approach as a function of the
size of the cohort, we repeated the same analysis in smaller
cohorts generated by randomly sampling patients from the ori-
ginal LGG cohort (Fig. 1e). We also assessed the number of false
positives by generating randomized datasets, where we permuted
the labels of the patients in the expression data. We observed that
our approach requires a minimum cohort size of ~100 tumors.
For larger cohorts, the expected number of false positives was
between 1 and 2 (Fig. 1e).

Next, we sought to compare our results against current
algorithms for the identification of cancer-associated genes using
expression data. To that end, we analyzed the same LGG cohort
using the recently published algorithm Xseq16 (Methods). Xseq
implements a hierarchical Bayes statistical model to quantify the
impact of somatic mutations on expression profiles using a
precomputed ‘influence graph’ that encodes whether two genes
are known to be functionally related. The analysis of the LGG
cohort with Xseq led to only two significant genes (posterior

probability, P(D) > 0.80), of which only one (PTEN) has been
previously reported in LGG. These results reveal the high
sensitivity of our topological approach compared to state-of-
the-art algorithms.

In addition to Xseq, we compared the results of our integrative
topological approach to those produced by MutSig2CV on the
same cohort (Fig. 1f). MutSig2CV models the neutral background
mutation rate, taking into account genomic variations due to
differences in expression level and replication time3. We observed
a significant overlap between the results of MutSig2CV and those
of our approach, with 15 out of 23 mutated genes that were
significant (q-value < 0.15) according to MutSig2CV, being also
significant according to our approach (65% overlap, Fisher’s exact
test p-value= 10−42). Some of the most significant cancer genes
identified by MutSig2CV based on recurrence, such as PIK3R1
(mutated in 4% of the tumors), were not selected by our
expression-based approach, highlighting the independence of
recurrence- and expression-based approaches. Combining the
results of MutSig2CV with those of our integrative topological
approach (Fig. 1f) singled out new low-prevalence mutated genes,
such as NOTCH2, as potential drivers of tumor progression
in LGG.

Seeking a more systematic comparison with existing methods,
we performed a similar study to that of Bertrand et al.35 across
multiple tumor types (Methods). We estimated the precision,
recall, and F1 score of our integrative topological approach, Xseq,
MutSig2CV, OncodriveFML36, and 20/20+37 based on the
overlap of their top 15 predictions with a gold-standard list of
cancer-associated genes35. In addition to the LGG cohort, we
analyzed two cohorts of 208 colorectal adenocarcinoma (COAD)
and 930 breast invasive carcinoma (BRCA) tumors from TCGA,
respectively. In each of the three cohorts, the precision, recall, and
F1 score of our integrative topological approach were the highest
or second highest among the 5 algorithms (Supplementary
Table 1), highlighting its utility for the identification of mutated
cancer-associated genes.

Identification of cancer-associated genes across 12 cancers.
Based on the above results, we decided to extend our analysis to
other tumor types. We considered 12 tumor types from TCGA
for which there were sufficient samples (n > 140) with RNA-seq
and whole-exome data available (Table 1). The complete results

Fig. 1 Identification of mutated cancer genes in LGG using an integrative topological approach. a Topological representation of the expression space of
LGG based on the expression data of 513 tumors. Each node represents a set of tumors with similar global expression patterns. The size of each node
represents the number of tumors in the set. Edges connect nodes that share at least one tumor. Three large expression groups are clearly visible in the
representation. b The localization of each mutated gene in the topological representation is assessed statistically. Mutated genes significantly localized in
the expression space are candidate drivers of tumor progression. The topological representation of the expression space of LGG labeled by the frequency of
somatic mutations of the CIC (top) and TTN (bottom) genes is displayed as an example. CIC mutations are significantly localized in the expression space of
LGG (permutation test p-value < 10−3, n= 103 permutations), consistently with being a driver of tumor progression. c List of significantly (permutation test,
Benjamini–Hochberg q-value < 0.15 n= 104 permutations) localized mutated genes in the reconstructed expression space of LGG. The prevalence of
mutations in the cohort and the distribution of the statistical significance across the parameter space of the topological representation are also displayed.
Box-plot elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. d The topological
representation of the expression space of LGG is labeled according to the prevalence of some of the significantly localized mutations. The three large
expression groups in the topological representation are identified with oligodendrogliomas (enriched for CIC and IDH2 mutations), IDH1-mutant
astrocytomas (enriched for TP53 mutations), and IDH1-wild-type astrocytomas (enriched for EGFR mutations). IDH1-mutant astrocytomas with a low G–C
island methylation phenotype (G-CIMP low) form a flare of IDH1-wild-type astrocytomas. e Number of significant mutated genes as a function of the
cohort size, for the original (red) and a randomized (blue) version of the LGG cohort. Our integrative topological approach produces significant results for
tumor cohorts above ~100 patients. f Comparison of the results of the integrative topological approach with those of MutSig2CV on the same cohort.
Represented is the rank of each gene according to their significance in the topological (horizontal axis) and MutSig2CV (vertical axis) analyses in
logarithmic scale. Genes that are significant (q-value < 0.15) according to our topological approach are marked in red. Genes below the red dashed line are
significant (q-value < 0.15) according to the MutSig2CV analysis. Horizontal bars indicate the 16 and 84% percentiles of the ranks across the parameter
space of the topological representation. Besides being radically different approaches, the results of our topological approach and MutSig2CV display a large
degree of consistency, with most cancer-associated mutated genes sitting across the diagonal.
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of our analysis can be accessed through an online database
(Methods). In total, our approach identified 95 mutated cancer
genes (q-value < 0.15), out of which 16 genes were significant in
two or more tumor types (Fig. 2a, Supplementary Figs. 4–15, and
Supplementary Data 1). Some of the most common genes were
TP53, KRAS, HRAS, PIK3CA, ATRX, EGFR, and NF1. The
number of significant genes in each tumor type was correlated
with the size of the cohort (Fig. 2b, Spearman’s correlation
coefficient r= 0.67, p-value= 0.02), consistently with the results
of the computational benchmarking. We observed a large degree
of consistency between the list of significant genes and curated
databases of cancer genes. Specifically, 61% of the significant genes
in our analysis were present in the Cancer Gene Census38 or
OncoKB39 databases (Fig. 2c, Fisher’s exact test p-value < 10−50

for each database). Overall, 75% of the patients carried a mutation
in a significant gene, out of which 24% carried mutations in
actionable genes with approved drugs35 (Supplementary Table 2).

The results were largely consistent with those of MutSig2CV on
the same TCGA cohorts (Fig. 2a, Supplementary Fig. 16, and
Table 1), adding further support to some of the cancer genes
identified in our analysis. Out of the 95 significant genes in the
integrative topological analysis, 38 genes were not significant
according to MutSig2CV (Fig. 2a, q-value < 0.15). However, these
putative elusive cancer genes did often displayed a tendency
towards significance in the MutSig2CV analysis, likely reflecting a
limitation of the cohort size (Supplementary Fig. 16). They also
had a significant overlap with the Cancer Gene Census (eight out of
38 genes, Fisher’s exact test p-value= 2 × 10−5, Fig. 2d) and OncoKB
(six out of 38 genes, Fisher’s exact test p-value= 3 × 10−4, Fig. 2d)
databases, as well as with genes involved in developmental processes
(27 out of 38 genes, g:SCS q-value= 10−3). Elusive genes included
NOTCH2 mutations in breast invasive carcinoma (mutated in 2%
of the tumors), which have been recently reported by manual
inspection40; inactivating mutations of the tumor-suppressor
genes KMT2A41 (also known as MLL1) and CUX142 in head
and neck squamous cell carcinoma (each present in 1% of the
tumors); inactivating mutations of the tumor-suppressor gene
ADAMTS1243 in lung adenocarcinoma (present in 4% of the
tumors); mutations in the kinase domain of CHEK2 in thyroid
carcinoma (present in 1% of the tumors), which have been
associated with increased susceptibility to this cancer type44;
inactivating mutations of the putative tumor-suppressor gene
USP9X in thyroid carcinoma (present in 1% of the tumors), which
codes for a deubiquitinase regulating the TGFβ45 and hippo
signaling pathways46; and inactivating mutations of ATRX in
pheochromocytoma and paraganglioma47 (present in 2% of the
tumors). These genes, except CHEK2, encode long proteins

(>1500 amino acids) and are expected to contain numerous
passenger mutations, complicating the identification of low-
prevalence cancer-associated mutations using recurrence-based
methods.

Additionally, the combination of the results of our analysis
with those of MutSig2CV allowed us to prioritize the study of
mutated genes in colon adenocarcinoma, where the number of
significant genes according to MutSig2CV is too large (n= 1698
genes, q-value < 0.15) (Supplementary Fig. 16). In particular, our
analysis highlighted ARHGAP5 and ARFGEF1 as previously
unreported putative driver genes of tumor progression in this
cancer type.

Truncating mutations of ADAMTS12 in lung adenocarcinoma.
Using TCGA survival data we found that, among the previously
unreported cancer-associated genes, inactivating mutations of
ADAMTS12 were associated with poor survival (Fig. 3a).
ADAMTS12 is a metalloproteinase with thrombospondin motif
that can block the activation of the Ras-MAPK signaling path-
way43. Immunodeficient mice injected with A549 lung adeno-
carcinoma (LUAD) cells overexpressing ADAMTS12 had a
deficiency of tumor growth in comparison with tumors formed
from parental A549 cells43. The ADAMTS12 gene is in chro-
mosomal arm 5p, which is entirely amplified in over 60% of lung
adenocarcinoma tumors48. It has been suggested that the TERT
gene, coding for the telomerase catalytic subunit, may be the
target of this amplification48. Consistent with the suggested
antitumorgenic properties of ADAMTS12, we observed that
LUAD patients with chromosome 5p amplification and unaltered
ADAMTS12 gene have better overall survival than those without
chromosome 5p amplification (Fig. 3a, median overall survival
4.2 years versus 3.4 years, respectively, Kaplan–Meier p-value=
0.05). To the contrary, patients with chromosome 5p amplifica-
tion and truncating mutations in ADAMTS12 have a reduced
survival with respect to patients that harbor the amplification
without mutations in ADAMTS12 (Fig. 3a, median overall sur-
vival 2.4 years, Kaplan–Meier p-value= 0.015). Additionally,
truncating mutations in ADAMTS12 tend to co-occur with
chromosome 5p amplification (Fig. 3a, one-tailed Fisher’s exact
test p-value= 2 × 10−3).

To validate ADAMTS12 inactivation as a driver of progression
in lung carcinoma, we investigated the effect of silencing
ADAMTS12 in the lung carcinoma cell line LL/2-luc-M38 using
a shRNA plasmid. In vitro proliferation and invasion assays
revealed a significant increase in the proliferative and invasive
potential of the cells that were transfected with the shRNA

Table 1 Number of patients in each of the cohorts analyzed using topological (TDA) and recurrence-based (MutSig2CV)

approaches.

Cancer type Cohort Samples (TDA) Samples (MutSig2CV)

Bladder urothelial carcinoma BLCA 391 395
Breast invasive carcinoma BRCA 930 978
Cervical and endocervical cancers CESC 184 194
Colon adenocarcinoma COAD 208 367
Glioblastoma multiforme GBM 142 283
Head and neck squamous cell carcinoma HNSC 501 511
Brain lower grade glioma LGG 513 516
Lung adenocarcinoma LUAD 470 533
Pheochromocytoma and paraganglioma PCPG 181 179
Stomach adenocarcinoma STAD 263 393
Testicular germ cell tumors TGCT 149 147
Thyroid carcinoma THCA 403 496
Total: 4335 4992
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plasmid compared to the control cells (Fig. 3b, c, Mann–Whitney
U-test p-value < 10−3 in both assays).

In addition to these in vitro studies, we assessed the effect of
ADAMTS12 inactivation in vivo. To that end, we generated
ADAMTS12−/− mice as previously described49 and treated
ADAMTS12-knockout and control mice with urethane (ethyl
carbamate), a carcinogen that typically induces lung adenomas
after several months of treatment50,51. After 20 weeks of
treatment, ADAMTS12-knockout mice showed a 5-fold enrich-
ment on the number of lung tumors compared to control mice
(Fig. 3d, Mann–Whitney U-test p-value= 3 × 10−5). The enrich-
ment in the number of tumors was still significant after
disaggregating tumors by their size (Supplementary Fig. 17).
We did not find a significant difference between the observed
tumor size in control and ADAMTS12-knockout mice. Immu-
nohistochemistry staining of tumor sections from these mice
revealed some level of expression of ADAMTS12 in the region

surrounding the adenoma, but not in the highly-proliferative Ki-
67+ cells (Supplementary Fig. 18). A similar pattern of
ADAMTS12 expression has been observed in human colon
adenocarcinoma52. Taken together our results suggest
ADAMTS12 has a tumor-suppressor role in lung cancer,
consistently with the results of our computational analysis.

Discussion
To identify which somatic mutations are relevant to the pro-
gression of tumors, most genomic analyses focus on the recur-
rence of mutations and define candidate cancer-associated genes
as those mutated at a higher frequency than expected under a
modeled local neutral mutation rate. This definition has proven
to be particularly powerful for commonly mutated genes. How-
ever, it is limiting for low-prevalence mutations or tumors with a
higher mutation burden. Here, we have adopted an alternative
definition for candidate cancer-associated gene based on the
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Fig. 2 Identification of mutated cancer genes across 12 tumor types using an integrative topological approach. a Significant genes (permutation test q-
value < 0.15, n= 104 permutations, Benjamini–Hochberg procedure for multiple-hypothesis testing) in the integrative topological analysis of the 12 tumor
types considered in Table 1. From top to bottom, the frequency of nonsynonymous mutations, the fraction of missense versus truncating mutations, and the
distribution of q-values across the parameter space is shown for each gene. Genes that are also significant (q-value < 0.15) based on MutSig2CV are shown
in orange. Box-plot elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. b Plot of the
number of significant genes (q-value < 0.15) against the number of tumors in the cohort, for each tumor type. A linear fit is shown, where outliers (marked
in cyan) where not taken into account in the fit (Pearson’s r= 0.94, p-value= 5 × 10−4). c Venn diagram showing the overlap between significant genes
(TDA) and the curated databases of cancer genes OncoKB (two-tailed Fisher’s exact test p-value < 10−50) and the Cancer Gene Census (two-tailed
Fisher’s exact test p-value < 10−50) over a background of 19,882 genes considered in the analysis. d Venn diagram showing the overlap between genes that
are significant in the integrative topological analysis but not in the MutSig2CV analysis (TDA only), and the curated databases of cancer genes OncoKB
(two-tailed Fisher’s exact test p-value= 3 × 10−4) and the Cancer Gene Census (two-tailed Fisher’s exact test p-value= 2 × 10−5) over a background of
19,882 genes considered in the analysis.
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assumption that mutations in these genes are accompanied by
consistent global expression patterns in the tumor. Remarkably,
these two fundamentally different definitions are in practice
highly consistent with each other, as we find that most mutations
occurring at a high frequency compared to the local neutral
mutation rate are associated with consistent global mRNA
expression patterns in the tumor. As expected, there are
numerous exceptions to this rule and utilizing our approach we
are able to identify multiple candidate cancer genes that remained
elusive to other methods. One example of such elusive cancer-
associated mutations are truncating mutations of the PEST
domain of NOTCH2 occurring in breast invasive carcinoma40.
These rare events are easily masked by the large number of
passenger mutations that this long gene accumulates. However,
we find these alterations are consistently accompanied by global
changes in the expression profile of the tumor. Although they
affect a small fraction of all breast cancer patients, the availability
of pharmacological inhibitors of the Notch signaling pathway
makes them a promising therapeutic target for the treatment of
these patients53. Among the less studied, elusive candidate
cancer-associated mutations identified with our approach, we
have studied the inactivating mutations of ADAMTS12 occurring
in lung adenocarcinoma. We have provided evidence of the

tumor-suppressor role of ADAMTS12 in this cancer type both
in vitro and in vivo. Specifically, our experiments reveal that lung
carcinoma LL/2-luc-M38 cells display a higher proliferative and
invasive potential in vitro when transfected with an
ADAMTS12 shRNA. Additionally, we have shown that mice
treated with urethane have a several fold increase in the sus-
ceptibility to develop lung adenomas when ADAMTS12 is
knocked out. These results are consistent with the observation
that patients of lung adenocarcinoma with tumors harboring
truncating mutations of ADAMTS12 have poor survival. Our
work demonstrates that the combination of recurrence-based
methods with integrative approaches as we describe here can be a
valuable tool to systematically identify potentially actionable, low-
prevalence mutations that escape standard methods of detection.

Methods
Sample collection and preprocessing. We collected gene expression levels and
somatic mutation data of 12 tumor types from the TCGA repository (https://portal.
gdc.cancer.gov/) (Table 1 and Supplementary Table 3). We only considered
patients for which both types of data were available. RNA-seq expression levels
were retrieved in RSEM format54 and estimated relative abundances (x) were
transformed according to the formula r= log2(1+ 106 × x) for each gene. Curated
somatic mutations were retrieved from the Broad Institute TCGA GDAC Firehose
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Fig. 3 Truncating mutations of ADAMTS12 are associated with increased tumor susceptibility and poor survival in LUAD. a Left: Kaplan–Meier survival
curves for the LUAD cohort, where patients have been stratified according to whether their tumors have chromosome 5p amplification and absence of
truncating mutations in ADAMTS12 (red, n= 276 patients), chromosome 5p amplification and presence of truncating mutations in ADAMTS12 (blue, n= 13
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b Left: Western blot showing the expression of ADAMTS12 and β-Actin in control and shADAMTS12 LL/C-luc-M38 cells. Right: In vitro proliferation assay
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enrichment in the number of lung tumors as compared to control mice. The asterisks (***) denote two-tailed Mann–Whitney U-test p-value= 3 × 10−5.
Right: Hematoxylin-eosin stained tissue section of ADAMTS12-deficient mice treated with urethane displaying a lung adenocarcinoma tumor. Box-plot
elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. Source data are provided as a Source
Data file.
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Portal (http://gdac.broadinstitute.org/). Gene names were adapted to comply with
those in the NCBI Entrez ID database as of July 7, 2015.

Topological representations. We used the algorithm Mapper28, implemented in
the Ayasdi software (https://www.ayasdi.com/platform/), to build topological
representations of the RNA-seq data of each cancer cohort. Mapper builds upon
any dimensional reduction algorithm (also known as “filter function”) to produce a
new low-dimensional network representation on which local relationships are
preserved. To that end, Mapper covers the low-dimensional representation with
overlapping bins and performs single-linkage clustering of the points in the high-
dimensional space. The number of bins and their overlap are specified by the
“resolution” and “gain” parameters, respectively. The number of clusters in each
bin is determined by the method described in Singh et al.28. A low-dimensional
network is then built by assigning a node to each cluster, and if a sample appears in
two nodes they are connected by an edge. A more detailed description of the
Mapper algorithm for biologists can be found in the Methods section and Sup-
plementary Note of Rizvi et al.25.

The output of Mapper is sensitive to several algorithmic choices. In our
application, the following choices were made:

Metric: We used Pearson’s correlation distance using the top 4500 genes with
highest variance as a measure of the similarity among the expression profile of
tumors. We did not observed substantial differences between using Pearson’s
and Spearman’s correlation distance in our analyses. We therefore used
Pearson’s correlation distance given its reduced computation time in large
datasets.
Filter function: We built a k= 30 nearest neighbors graph using Pearson’s
correlation distances between the samples and used a 2-dimensional embedding
of the shortest path distances on this graph as the filter function. This choice
filter function was based on the ability to capture biological proxies, such as the
separation between the expression profiles of normal and tumor samples and
the identification of known driver genes. Other choices of 2-dimensional filter
functions, such as Principal Component Analysis (PCA), Multidimensional
Scaling, or Uniform Manifold Approximation and Projection (UMAP)55 led to
consistent results. For example, Pearson’s correlation coefficient between the C
(g) scores (defined below) computed in Mapper representations of the LGG
expression space using 2-dimensional embedding of the shortest path distance
or PCA as filter functions was r= 0.88 (test for association p-value= 2 × 10−4),
whereas using UMAP as filter function was r= 0.93 (test for association p-
value= 10−5).
Resolution and gain parameters: We covered the low-dimensional representa-
tion with overlapping squared bins. We scanned across the entire resolution
and gain parameter space of the cover, as described in the paragraph
“Parameter scan and selection”, obtaining stable results. For example, the
median Pearson’s correlation coefficient between the C(g) scores computed by
varying the resolution parameter between 55 and 85 and the gain parameter
between 6 and 9 in the Mapper representation of the LGG cohort expression
space was r= 0.97 (test for association p-value < 10−15).

Statistical analysis. We used the notions of topological association introduced in
Rizvi et al.25 to identify features associated with localized regions of a phenotypic
space. Our approach is similar to the Laplacian score of He, Cai, and Niyogi56,57,
and complementary to other statistical methods for network analysis58. In our case,
the features that we tested were the somatic mutations in the tumor cohort, and the
phenotypic space was the expression space of the tumor cohort. For each mutated
gene g in the cohort, we considered the following score:

C gð Þ ¼
N

N � 1

P

i;j2Γ eiðgÞAijejðgÞ
P

k2Γ ekðgÞ
� �2 ð1Þ

where Γ denotes the set of nodes in the topological representation, Aij its adjacency
matrix, N the number of nodes in the representation, and ei(g) the average fre-
quency of nonsynonymous mutations of g for the samples in node i. The score C(g)
is therefore a sum over the edges of the network, where the contribution of each
edge is proportional to the product of the fraction of tumors that harbor the
mutated gene in each of the two nodes connected by the edge. Qualitatively, this
nonparametric score assesses the degree of similarity in gene expression for sam-
ples that carry a specific mutated gene. In our setting, it offers some advantages
compared to straight nonparametric approaches like computing the variance in
expression space for the samples that carry the mutated gene. In particular, since it
is based on the graph distance, it can be safely used with nonlinear spaces, such as
the gene expression spaces spanned by tumor cohorts. Its application to dimen-
sionally reduced network representations that reduce the sparsity of the data, such
as Mapper representations, is straightforward. Moreover, being a local approach, it
is relatively insensitive to outliers.

To be able to compare the score of mutated genes with different prevalence, we
introduced a permutation test for each gene. A null distribution was built for C(g)
by randomly permuting the patient id’s in the exome data and a p-value was
assigned to the score of each gene g according to its null distribution. We
performed 104 permutations to build the null distribution of each gene. We

controlled the false discovery rate (FDR) using the Benjamini–Hochberg (BH)
procedure59. To avoid too large corrections due to multiple-hypothesis testing, we
only considered mutated genes with a prevalence in the cohort above a given
threshold. The thresholds used in each cohort are summarized in Supplementary
Table 3. In addition, we limited the number of genes in each analysis to the 350
genes with highest ratio between nonsynonymous and total number of mutations.
These thresholds were empirically determined for each cohort by looking at the size
of the BH correction that resulted at different choices of the thresholds. For some
cancer types, avoiding a large BH correction required relatively stringent thresholds
(Supplementary Table 3), possibly reflecting noisier expression networks, e.g., due
to differences in tumor purity among patients.

Parameter scan and selection. To optimize the sensitivity of our approach at a
fixed false discovery rate and control for the stability of the results against para-
meter choices, we generated 49 topological representations for the expression data
of each tumor type by scanning over the parameter space of the Mapper algorithm.
The resolution parameter was taken in the range 10–80, in intervals of 10, and the
gain parameter 1.5–8.5, in intervals of 1. For each topological network, the sta-
tistical analysis performed in the previous paragraph was performed independently.
We then selected a finer region in the parameter space for each cohort based on the
following criteria:

A large number of mutated genes with a significant score (q-value < 0.15) at a
fixed FDR.
Absence of significant spurious correlations and batch effects (as described in
next paragraph).

For each selected region in the parameter space, we performed a finer scan
across the resolution and gain parameters, taking intervals of 5 and 0.5,
respectively.

Control of spurious associations with expression. Hypermutated tumors often
have a distinctive expression signature. In those cases, some localized regions of the
expression space will consist of tumors with a higher mutation rate. Those localized
regions will harbor an accumulation of passenger mutations that may confound
our approach. To control for associations between global expression patterns and
the tumor mutation rate, we assessed the localization of the mutational tumor
burden on the topological representations using the same approach as described in
the paragraph “Statistical analysis”, where ei is now the average frequency of
somatic mutations for the samples in node i. If the localization of the mutational
burden was significant (p-value < 0.05), we manually set a threshold on the
mutational burden to split the cohort into hypermutated and nonhypermutated
tumors. This process could have been automated; however, we found it unneces-
sary as small changes in the threshold do not affect substantially the results. The
thresholds used in each cohort are summarized in Supplementary Table 3. We
randomly subsampled mutations from each of the hypermutated tumors so that
after subsampling the median mutational burden for hypermutated tumors in the
cohort was equal to the median mutational burden for nonhypermutated tumors.
We reassessed the significance of the localization of the mutational burden using
the down sampled data. If the degree of localization of the mutational tumor
burden was not significant, we continued the analysis using the down sampled
mutation data. Otherwise, if the degree of localization was still significant after
subsampling, we did not include the cohort in our study.

To control for associations between expression and mutation rates within the
same gene, such as those due to transcription-coupled DNA repair, we assessed the
similarity between the profiles of somatic mutation and mRNA expression on the
topological representations. To that end, we computed the Jensen–Shannon
divergence between the expression and mutation profiles of each gene in the
topological representations using the formula

J gð Þ ¼
1

2

X

i2Γ

� ~ei gð Þ þ ~ri gð Þð Þlog
~ei gð Þ þ ~ri gð Þ

2

� �

þ ~ei gð Þlog ~ei gð Þð Þ þ ~ri gð Þlog ~ri gð Þð Þ

� �

ð2Þ

where ~ei gð Þ and ~ri gð Þ are, respectively, the fraction of tumors with gene g
somatically mutated and the average expression of gene g in the tumors associated
with the i-th node of the topological representation, normalized such that

X

i2Γ

~ei gð Þ ¼
X

i2Γ

~ri gð Þ ¼ 1 ð3Þ

The significance of J(g) was assessed for each gene independently by means of a
permutation test. To that end, for each gene the labels of the samples on the
mutation data were randomly permuted 2000 times, and J(g) was computed in each
permutation. A p-value was estimated by counting the fraction of permutations
that led to a value of J(g) smaller than the original value. Genes with a p-value for J
(g) closed to 0 displayed a large degree of correlation between expression and
mutation in the topological representation, whereas genes with a p-value for J(g)
closed to 1 displayed a large degree of anti-correlation between expression and
mutation in the topological representation. After adjusting for multiple-hypothesis
testing using Benjamini–Hochberg procedure to control the false discovery rate, we
removed genes from the analysis for which the median q-value for J(g) across the
parameter space of the topological representation was above 0.8, as those are
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potentially related to spurious anticorrelations between gene expression and
mutation.

Last, to control for the presence of batch effects due to differences among
mutation calling centers, we assessed the degree of localization of batches in the
topological representation using the same approach as described in the paragraph
“Statistical analysis”, with ei now represents the fraction of tumors in node i that
were processed by a given center. We removed the contribution of batches whose
degree of localization was significant (p-value < 0.05) according to this procedure.

Computational benchmarking. We generated smaller LGG datasets by randomly
sampling 50, 100, 200, 300, and 400 patients from the original LGG cohort. For
each of these sizes, we generated a null dataset by randomly permuting the labels of
the patients on the expression data. We ran the integrative topological analysis in
each of these new datasets using the same parameters than in the original analysis
of the LGG cohort (Supplementary Table 3).

To benchmark the performance of algorithms based on a gold-standard list of
cancer-associated genes, we followed the same approach as in Bertrand et al.35. We
considered the same gold-standard list as in that reference. For each of the
algorithms evaluated, we computed the precision (P), recall (R), and F1 score based
the top min(15,G) significant genes (q-value < 0.15)

P ¼
T

minð15;GÞ
; R ¼

T

15
; F1 ¼ 2 �

P � R

P þ R
ð4Þ

where G is the total number of significant genes and T the number of top min(15,
G) significant genes present in the gold-standard. We run Xseq, OncodriveFML
and 20/20+ with default parameters, as described in their documentation.

MutSig2CV analyses. We downloaded from the Broad Institute TCGA GDAC
Firehose Portal (http://gdac.broadinstitute.org/) the MutSig2CV v3.1 analyses of
each of the 12 TCGA cohorts (Supplementary Table 3).

Online database. Representative topological representations and precomputed
statistics were deposited in an online database for each of the 12 tumor types
considered in this study (https://rabadan.c2b2.columbia.edu/pancancer). The
interface of the database allows to explore the results of the analysis interactively.

Induction of lung tumors in mice. Mouse experiments were performed following
the institutional guidelines of the University of Oviedo (Comité de Ética en
Experimentación Animal). Adamts12−/− mice were generated in a C57BL/6J
genetic background and genotyped as in El Hour et al.49. Lung tumors were
induced in 6–8-weeks-old mice by intraperitoneal injection of eight doses of 1 g/kg
of urethane (ethyl carbamate; Sigma); second dose was given 48 h after the initial
one and then once a week to reach a total of eight doses. Mice were fed ad libitum
in standard housing conditions and sacrificed 20 weeks after the first urethane
injection. Left lungs were fixed in 4% paraformaldehyde, paraffin-embedded and
sectioned every 100 μm in of 10-μm slices. These were then stained with hema-
toxylin/eosin for morphological examination by experienced pathologists (Unidad
de Histopatología Molecular en Modelos Animales de Cáncer, IUOPA). Tumors
were quantified and classified according to their diameter in large (> 400 μm),
medium (200–400 μm), and small (<200 μm) tumors.

Generation of shADAMTS12 LL/2-luc-M38 cells. We used an Adamts12 Mouse
shRNA Plasmid (OriGene, Locus ID: 239337) and transfected LLC/2-luc-M38
(Caliper) cells with lipofectamine/plus (ThermoFisher Scientific) following the
recommendations of manufacturer. We checked transfected cells for ADAMTS12
expression by western blot for ADAMTS12 (Santa Cruz Biotechnology H-142;
1:200 dilution) and β-actin (Sigma-Aldrich AC-15; 1:5000 dilution) in 10% poly-
acrylamide gels. Immunoreactive proteins were visualized using HRP-peroxidase-
labeled anti-rabbit or anti-mouse secondary antibodies (Cell Signaling Technology
7074S and Jackson ImmunoResearch 115-035-062; 1:10000 dilutions) and the ECL
detection system (Pierce).

Proliferation assay. Cell proliferation was measured using the CellTiter 96 Non-
radiactive Cell Proliferation Assay kit (Promega). LL/2-luc-M38 cells (3 × 104/well)
were seeded into 96-well plates in six replicates. Cell proliferation rates were
determined on five consecutive days using the automated microtiter plate reader
Power Wave WS (BioTek).

Invasion assay. In vitro invasion potential was assessed using 24-well Matrigel-
coated invasion chambers with 8 µm pore size (BD Biosciences). A total of 5 × 104

cells were allowed to migrate for 24 h using 10% fetal bovine serum as chemoat-
tractant. Cells that reached the lower surface were stained with crystal violet. At
least three independent experiments were performed with triplicates for each
condition. Cells were counted in eight randomly selected microscopic fields.

Immunohistochemistry. Lungs were fixed in 4% formalin for 24 h. After fixation,
samples were dehydrated and embedded in paraffin. Sections 4-µm thick were

stained with hematoxylin and eosin for microscopy examination and consecutive
sections were used for immunohistochemical labeling. Sections were incubated
with anti-ADAMTS12 (H-142, Santa Cruz Biotechnologies, 1 h at 37 °C; 1:50
dilution) or with anti-Ki-67 (ab66155, Abcam, o/n at 4 °C; 1:4000 dilution) primary
antibodies. Sections were then incubated 30 min with EnVision™+/HRP (Dako)
and 5 min with Liquid DAB (Dako). Samples were counterstained with
hematoxilin.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The gene expression data that support the results of this study are available at the TCGA
repository (https://portal.gdc.cancer.gov/). The complete list of RSEM files used from this
portal can be found in Supplementary Table 3. The somatic mutation data and
MutSig2CV results that support the results of this study are available at the Broad
Institute TCGA GDAC Firehose Portal (http://gdac.broadinstitute.org/). The complete
list of MAF and MutSig2CV files used from this portal can be found in Supplementary
Table 3. Representative topological representations have been deposited in an online
database for each of the 12 tumor types (https://rabadan.c2b2.columbia.edu/
pancancer). Source data are provided with this paper.

Code availability
The source code and scripts used in the paper have been deposited in GitHub (https://
github.com/CamaraLab/TDA-TCGA/).
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