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Abstract. Unbalance and asynchronous forces acting on a flexible rotor are characterized by their positions, amplitudes, fre-

quencies and phases, using its measured vibration responses. The rotary machine dynamic model is a neural network trained

with measured vibration signals previously decomposed by wavelets. A typical compaction ratio of 2048:4 is achieved in this

application, considering the stationary nature of the measured vibrations signals and the shape of the chosen wavelet function.

The Matching Pursuit procedure, coupled to a modified Simulated Annealing optimization algorithm is used to decompose the

vibration signals. The performance of several neural network with different input database sets is analyzed to define the best

network architecture in the sense to achieve successful training, minimum identification error, with maximum probability to

give the correct answers. The experiments are conducted on a vertical rotor with three rigid discs mounted on a flexible shaft

supported by two flexible bearings. The vibration responses are measured at the bearings and at the discs. A methodology to

balance flexible rotors based on the proposed identification methodology is also presented.

1. Introduction

Vibratory mechanical systems always present non

linearities that are responsible for the differences

between experimental responses and those obtained

through the simulations of any adopted linear model.

In order to solve the inverse problem associated to the

identification of excitation forces of a dynamic system,

a neural network model represents a viable alternative.

It has robustness and is capable to represent any nonlin-

ear system, but its application is restricted to a closed

domain for the inputs and outputs defined during the

training of the neural network [5].

The identification of excitation forces of linear me-

chanical systems has been recently studied. Stef-

fen [10] reconstructed the excitation forces of a vibra-

tory system, represented by a finite element model, us-

ing orthogonal functions. Rade [7] applied a decon-

volution technique to identify excitation sources of a

mechanical system, previously characterized by modal

analysis. Santos [9] studied the identification of the
defects on a ball bearing applying a neural network
model trained with the vibration signals preprocessed
by wavelet transform, using the Morlet function as the
mother wavelet.

The methodology to compact data using wavelet
transform has been applied to signal transmission and
to pattern recognition. This technique is very powerful
to reduce redundant information in signals that are used
as inputs to neural network [3].

In this paper, unbalance and asynchronous forces
acting on a flexible rotor are characterized by their
positions, amplitudes, frequencies and phases. The
system dynamics model is a neural network trained with
measured vibration signals, previously decomposed by
wavelets. The typical compaction index of 2048:4 is
achieved in this application, considering the stationary
nature of the measured vibrations signals and the shape
of the chosen wavelet function.

The performance of different neural network with
different input database sets is analyzed to define the
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best network architecture in the sense to achieve suc-

cessful training, minimum identification error and with

maximum probability to give the correct answers.

A methodology to balance flexible rotors based on

the proposed identification methodology is presented.

For the flexible rotor used in the experimental appa-

ratus, the unbalance is predominant at the rigid disc

stations. The applied methodology was able to iden-

tify the position of the unbalanced discs and the un-

balance magnitudes and phase angles relative to an an-

gular reference frame. The rotor remains balanced in-

dependently of its angular velocity since the correc-

tion masses are installed in opposition to the unbalance

excitation forces.

2. Fundaments of the decomposition of vibration

signals using wavelets

Several authors, such as Lepore [3], used wavelet

functions to compress vibration signals and to reduce

data redundancy. The signals processed by wavelets

were used as the input database training set of a neural

network applied to recognize fault patterns of a me-

chanical system. The design of the neural network re-

sulted an optimized architecture, with reduced number

of neurons, as consequence of the choice of a suitable

wavelet function, allied to the ability of the wavelet

transform to compact and to reduce redundant infor-

mation of the input data. The neural network training

process effort was significantly reduced and its perfor-

mance and precision were also improved when com-

pared to other architectures trained with input signals

that are not preprocessed by wavelets.

Vibration signals measured on mechanical systems

frequently contain noise and present redundant infor-

mation. The direct application of these signals, ex-

pressed in the time or frequency domains, to a neural

network is not a viable task, as shown by Oliveira [5].

He proposed a methodology to compact the data us-

ing a statistic approach based on the analysis of the

covariance matrix constructed with the input signals.

The shape of the mother wavelet function plays an

important role to represent precisely the response of a

vibrating mechanical system. The use of general wave-

forms can mathematically produce a good result,but the

association of the physical system properties with the

wavelet parameters is very difficult to achieve. Lepore

and Santos [1] applied wavelets to identify modal pa-

rameters of a highly damped mechanical system, which

has close spaced natural frequencies. The adopted

mother wavelet function was similar to the system im-

pulse response.

The choice of the correct wavelet function, over a

wide set of available functions, determines which sig-

nal patterns can be represented by a finite set of lin-

ear combination of the wavelet. Consequently, the

compaction level, the minimum required number of

wavelets, the precise representation of the vibration sig-

nal, and the identification of physical parameter values,

depend strongly on the selected wavelet function.

Using the wavelet transform it is possible to identify

special patterns contained on vibration signals, result-

ing compacted data that can be used as inputs to re-

duced architecture neural networks, designed to clas-

sify and to identify excitation forces acting on a rotary

machine.

The identification of unbalance and asynchronous

excitation forces applied to a flexible rotor is analyzed.

The unbalance is located at several discrete positions

along the shaft, and the asynchronous forces are always

applied at the rotor bearings. With these two classes

of excitation forces, steady vibration responses can be

measured at any location of the rotor, and normally are

periodic signals containing multiple harmonic compo-

nents of the rotor angular velocity. To analyze these

type of signals the wavelet function must use as vari-

able parameters: the frequency, f, an exponential decay

coefficient, ξ, and a phase angle, φ.

The proposed mother wavelet, presented by Eq. (1),

represents an orthogonal and orthonormal set of func-

tions, and can be used to univocally represent the rotor

vibration signals [9].

ψf,ξ,φ (1)

=
e
− ξ√

1−ξ2
2πf∗t

cos(2πf∗t + φ)
√

∫ T

0

(

e
−

ξ√
1−ξ2

2πf∗t
cos(2πf∗t + φ)

)2

dt

To decompose the vibration signals in terms of the

atoms defined by Eq. (1), the Matching Pursuit algo-

rithm proposed by Mallat and Zhang [4] is coupled to

the Simulated Annealing optimization algorithm mod-

ified by Lepore and Santos [2]. This technique pro-

vides good convergence to the optimal values of the

wavelet design parameters, being insensitive to local

minimal. To refine the solution around the optimal, a

classic steepest descent algorithm is applied at the fi-

nal stage of the solution. The signal components are

successively extracted using the Eq. (2), where < , >

indicates the internal product,n is the iteration step and
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Rf is the decomposed signal and its residue.

Rn
f = 〈Rn

f , ψγn
〉ψγn

+ Rn+1

f

n = 0, . . . ,m (2)

γn = fn, ξn, φn

The design variables f, ξ and φ, which character-
ize the mother wavelet function ψf,ξ,φ, are determined
by the proposed optimization procedure applied to the
objective function defined by Eq. (3)

kn =
|〈Rn

f , ψγn
〉|

‖Rn
f ‖

(3)

3. Neural network basic concepts and the Back

Propagation training algorithm

A neural network can be considered as a set of non-
linear equations with memory capacity. It can only be
used to interpolate results on a closed domain limited
by the set of data used on its training. The basic pro-
cessing unit of a neural network is the neuron activating
function which produces an active or non active con-
dition at its output, depending on the pattern applied
at its input. The activation functions normally present
nonlinear behavior such as the step, the sigmoid and
the ramp functions. The neural network synapses are
weighting values applied to the inputs of each neuron,
defining paths for the information propagation through
the network. The set of values for the synapses, ob-
tained after the training process, provides the memory
capacity of the neural network [5].

The number of layers, the type of connections be-
tween neurons and the way that data flows through the
network characterize the neural network architecture.
For unidirectional or feed-forward neural networks, the
data is presented to the input layer, and flow through
the intermediate or invisible layers were they are pro-
cessed, and result the desired answers at the output
layer. On a neural network designed with the feed-
forward topology, the neurons of the same layer don’t
exchange information and also don’t receive data from
neurons from the forward layers.

The definition of the neural network optimal archi-
tecture is an inverse problem with difficult solution.
Using insufficient number of neurons at the invisible
layers a state of neural paralysis is promoted, in a such
way that the neural network can not represent an infor-
mation or can not distinguish between different events.
The overfitting problem will occur when an excessive
number of neurons is adopted, and the training process
effort is significantly increased. The optimal design of
neural network architecture is not discussed here.

3.1. The back-propagation algorithm

RUMERLHAR [8] presents an algorithm to adjust

the synapses weights from the input through the invis-

ible layers up to the output layer. The error of each

invisible layer is calculated by back-propagating the

error from the output layer. For this reason, the method

is known as the back-propagation learning rule. This

algorithm can be considered a generalization of the

delta rule, used on multi layers neural network, with

nonlinear activation functions [5].

Adjusting the matrix of the synapses weights using

sets of known inputs and outputs does the training pro-

cess. This problem can be solved by an optimization

technique. The changes in the weight values are pro-

portional to the residual error at each layer. This con-

stant of proportionality is known as learning rate. If a

fraction of the gradient of the error is preserved from

the last iteration to the next, an inertia factor is included

on the optimization process. The correct choice for the

value of the inertia factor helps the optimization algo-

rithm to escape from a local minimum of the objective

function.

In this paper an initial weight matrix is calculated

by the Simulated Annealing method, modified by Lep-

ore and Santos [2]. This procedure overcome the ill-

conditioning numeric problems and also can surpass

the extreme number of local minimum of the error func-

tion.

As defined by Eq. (4), the error function is the aver-

age of the errors calculated for each vector, or experi-

ment, that composes the training data set.

Ep = 100
1

n

n
∑

i=1

E2
i (4)

The adopted optimization procedure permits to use

a higher learning rate and lower values for the inertia

factor when compared to those used by conventional

optimization techniques. Reducing the inertia factor

and increasing the learning rate provide better conver-

gence rate and a reduction of final error of the training

process [2].

4. The modified simulated annealing algorithm

The proposed optimization procedure includes fun-

damental modifications to the classic Simulated An-

nealing algorithm with respect to the sampling strat-

egy of the design variables. The Metropolis criterion

is also modified to increase the convergence of the ob-
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jective function to the global minimum [2]. With these

modifications, the algorithm is self-adjustable to the

characteristics of the error function associated with the

training of the neural network. This property is very

useful to the training process, since the shape of the

error function is always modified when an existing ex-

periment is removed and a new one is included in the

training data set. The error function also changes when

the neural network topology is modified, since neurons

are included or removed from the invisible layers. This

occurs when the neural network architecture is to be

optimized.

The following strategy is implemented: The initial

size of the training data set [X ] is chosen. It is character-

ized by a fixed number of n experiments (x i, i = 1, n).
This set is used to estimate the statistic correlation in-

dex [r] between each normalized design variable and

the error function (fi). The calculated ri values are

used as the standard deviation of the variation that is

applied to the correspondent design variable, during the

search procedure.

The correlation index is determined using the covari-

ance matrix [6] as stated by Eqs (5) and (6), where r is

the correlation coefficient between the design variables

and the cost function.

X = [x1, x2, . . . , xn]

F = [f1, f2, . . . , fn]
(5)

C =

[

Cxx Cxf

Cfx Cff

]

Cxf = E[(x− x)∗(f − f)]

r =
Cxf

√

Cxx ∗ Cff

(6)

The correlation index is similar to the sensitivity

analysis used in gradient based optimization proce-

dures. When the value of ri ∈ [0, 1] approaches zero

there is practically no correlation between the ith de-

sign variable and the error function. This occurs if the

variable is close to its optimum value. This property

promotes the refinement of the solution, since the ith-

variable perturbation is reduced when r i is closed to

zero. For each new value of the design variable a new

sample of the objective function is calculated. To be

included in the sample set the value of f must be close

to the mean value of all objective functions calculated

on the previous iteration steps.

To fulfill this requirement, a new criterion similar to

the Metropolis is adopted. It is assumed that the objec-

tive function variations follow a gaussian probability

density function, as represented by Eq. (7).

p(xi → xt+1) (7)

=







1

σf

√
2π

e

−(f(x)−µf )

2σ2
f ∀f(x) � f(xatual)

1 ∀f(x) < f(xatual)

With this procedure the global optimum is achieved

with high probability, even if the objective function

presents several local minimal. This is the case of the

error function given by Eq. (4). If the standard devi-

ation grows in a region containing the minimum, the

mean value attracts the new perturbations of the design

variables, reducing the probability of the acceptance of

a design located outside that region.

Finally, when the last n samples are at the region

of minimum, the resulting reduction of the standard

deviation value forces the algorithm to escape from the

local minimum, since the value of correlation index

increases to one. This can represent a critical situation

because the global optimum is not precisely found. To
improve the precision after the global optimum region

is reached by the Simulated Annealing procedure, the

optimization final stage applies a conventional steepest

descent method to refine the solution.

5. Case study and results

The experimental apparatus, represented in Figs 1

and 2, is used to validate the proposed methodology to

detect and quantify unbalance of the discs and asyn-

chronous forces applied to the bearings.

A finite element model of the complete system is

used to design the rotor, the bearings housing suspen-

sion, and the external supporting structure. Therefore,
the main structure does not have natural frequencies

coincident with the first three critical velocities of the

rotor. This model was validated by modal analysis.

Each shaft ball bearing is mounted on a rigid housing

that is connected to the external frame by two mutu-

ally perpendicular sets of four parallel spring blades.

The adopted configuration for the bearings suspension

uncouples the vibrations in the x and y directions.

The rigid discs are mounted on the shaft by means

of conical sleeves. This solution allows testing several

rotor geometric configurations, with minimum design

modifications, since the discs can be easily positioned

along the shaft.

An AC induction motor, controlled by a frequency

inverter, is used to drive the rotor, so that, the angular
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Fig. 1. Experimental apparatus.

speed can be adjusted with a resolution of 1 Hz. This

inverter operates with a pulse modulation frequency

equal to 16 kHz and all electric cables are shielded and

properly grounded, to reduce the electromagnetic in-

duction on the measuring instruments. A very flexible

link between the motor and the rotor shafts is used to

reduce the transmission of lateral vibrations.

Proximity inductive sensors, with sensitivity equal

to 1.0 Volt/mm measure the vibration signals directly

at the rotor discs.

The vibrations at the bearings are measured by piezo-

electric accelerometers. By analog integration the ac-

celeration is converted to displacement, with an overall

sensitivity of 1 Volt/mm.

The proximity sensors are the probes 1 to 3, and the

accelerometers are the probes 4 and 5, as indicated in

Fig. 2. The angular position and velocity of the rotor are

measured from two sources of TTL pulses generated

by optic encoders. The first source provides one pulse

per revolution that is used to trigger the acquisition

system and is the reference for the phase measurements.

The second TTL source, that generates 120 pulses per

revolution, is used to position the unbalance and the

corrective masses at the discs, with a resolution of three

degrees.

All analog signals are sent to the HP 36650 that is

a simultaneous eight-channel data acquisition system.

The sampling frequency is set to 1024 Hz, and 2048

points are acquired per sample. The time domain digi-

tized data is transferred to a workstation HP725i.

Adding known masses to the discs the unbalance

excitations are generated.

Two electromagnetic exciters are used to apply the

asynchronous excitation at the bearings. The upper

bearing exciter acts perpendicular to the plane that

contains the proximity probes and the lower bearing

exciter apply forces parallel to the proximity probes.

Piezoelectric force sensors with sensitivity equal to

100 mV/N measure the applied forces.

5.1. Design of the experiments

In order generate the input data to the classifica-

tion and identification neural networks a set of experi-

ments are conducted using the testing apparatus shown

in Figs 1 and 2. They include different combinations of

amplitude, phase, frequency and location of the exci-

tations applied to the rotor, according to the following

description:

– The angular velocity of the rotor is kept constant

at 15 Hz in all experiments. This value is between

the second and the third critical speed of the rotor.

– Sixteen unbalance masses varying from 3.5 grams

up to 13.7 grams are used to execute 368 experi-

ments organized in two groups. In the first group

the vibration signals are generated by the intro-

duction of one unbalance mass to one disc only, in

each experiment. The second group of 320 exper-

iments, two discs receive simultaneously different

unbalance masses.
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Fig. 2. Probes and exciter positions.

– Ninety-six experiments are done with asyn-

chronous forces applied by two electromagnetic

exciters at the rotor bearings. The excitation fre-

quencies are set to 20 Hz, 25 Hz and 40 Hz, with

peak to peak amplitudes varying from 5 N up to

40 N, in 5 N steps.

A subset of experiments, collected from the global

database, is not used in the training process of the neural

network, but it is reserved to evaluate the performance

of the previously trained neural network. The perfor-

mance evaluation is measured by the mean square er-

ror (Ep), defined as the percentage of the actual neu-

ral networks error with respect to the correct values,

obtained with the reserved group. Small values of the

mean square error indicate better neural network per-

formance.

The experiments are organized as the columns of the

general matrix [P ] as shown in Eq. 8. A column con-

tains the wavelet parameters grouped by each measur-

ing channel, (chani, i = 1, N ). The same organization

of [P ] is used as input to all neural networks designed to

solve the classification and the identification problems.

[P ] =
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An example that shows the capacity of the wavelet

functions to produce compacted data and to remove

noises from the signals is presented by Fig. 3. This

signal is randomly selected from the asynchronous ex-

citation training set, and is represented by only three

atoms of wavelet functions. As the mother wavelet
used in this analysis has four parameters: the ampli-

tude, the phase, the frequency and the damping factor,

then 1024 data points of the signal can be represented

by 12 wavelet parameters, without loss any important

information. The wavelet decomposition retained at

least 92% of the RMS energy of the measured vibration

signal.

The force identification problem was solved in two

steps. A first neural network is designed to classify the
force type, and other two neural networks are designed

to quantify the force parameters associated with each

type of excitation.

5.2. The classification neural network

Two groups of classification network are designed

to accept measurements from two combination of mea-

suring channels: (a) signals are measured by probes 3

and 5, located at one disc and at the lower bearing and,

(b) signals come from probes 4 and 5, located at the

bearings. The three neurons at the output layer distin-
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Fig. 3. Sample of a measured signal and its decomposition by wavelets.

guish the following conditions: only unbalance; only
asynchronous; or both excitations exist on the analyzed
signals.

Four architectures were studied, differing by the
number of neurons at the invisible layer. This approach
permits to analyze the effect of the size of the invis-
ible layer on the performance of the neural network,
and also determines its sensitivity to the location of the
measuring points.

All neural network were trained with a superset of
inputs obtained from the combination of 60% of unbal-
ance and asynchronous excitation experiments, includ-
ing their extremes. The reminder experiments are used
to validate the network performance.

Tables 1 and 2 present the results for the two groups
of classification networks. To complete the training
process a mean square error equal to 0.001 was im-
posed to all tested architectures. Different numbers
of iterations are necessary in the training process to
achieve the desired error, independently of the network
architecture. This can be explained by the fact that
the Simulated Annealing optimization technique is a
non-deterministic procedure and depends strongly on
the shape of the objective function. The networks of
group (b), operating with the vibration signals mea-
sured at the bearings, produced better results than those
obtained by the network group (a), but the differences
in classification performance are lower than 2%.

Reduced architectures, such as 3×3×3, could be suc-

cessfully trained and present good classification results.

This is a direct consequence of proposed methodology

that includes preprocessing the input vibration signals

by the wavelet transform and the use of modified Sim-

ulated Annealing during the training process. An im-

portant fact is that this network architecture couldn’t be

trained using only a classical optimization algorithm,

based on the steepest descent method.

When the two types of forces are simultaneously

applied to the rotor, an amplitude modulation effect

appears in the signal, with the carrier frequency equal

to the angular speed of the rotor. The performance

of the classification neural network is not affected by

this modulation effect, which introduces a series of

harmonic frequencies in the measured signals.

5.3. Identification of the asynchronous forces applied

to the bearings

A neural network process the vibration signals gen-

erated by asynchronous excitations applied to the bear-

ings and identifies the amplitude, the frequency and the

point of application of these forces. The experimental

signals used as the network input data are obtained by

the procedures described in item 5.1. All tested archi-

tecture designs of the identification network use four
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Table 1

Training and validation results for the group (a) classification neural networks

Probes [3,5] Training Validation

Architecture Ep (%) Number of iteractions Ep (%) Correct answer (%)

3 × 3 × 3 0.001 33284 1.8713E-02 98.80

3 × 5 × 3 0.001 388229 1.7441E-02 98.80

3 × 10 × 3 0.001 9677 1.1952E-03 100.00

3 × 15 × 3 0.001 8105 6.0885E-03 98.80

Table 2

Training and validation results for the group (b) classification neural networks

Probes [4,5] Training Validation

Architecture Ep (%) Number of iteractions Ep (%) Correct answer (%)

3 × 3 × 3 0.001 3776 8.7625E-04 100.00

3 × 5 × 3 0.001 3742 2.9875E-03 100.00

3 × 10 × 3 0.001 15237 1.7046E-02 98.80

3 × 15 × 3 0.001 4371 1.3017E-03 100.00

Table 3

Training and validation results for the asynchronous forces identification neural networks

Probes Architecture Training Validation

Ep (%) Amplitude Fequency Ampl. and Freq. Localizaion

Ep (%) Ep (%) Ep (%) (%)

[1,2,3,4,5] 4 × 12 × 4 0.001 12.36 6.59 0.765 97.36

[1,3] 4 × 8× 4 0.001 25.68 6.97 5.11 65.70

[4,5] 4 × 8× 4 0.001 25.70 6.87 1.36 92.10

[3,5] 4 × 8× 4 0.001 15.28 8.01 6.60 76.31

neurons at the input and output layers. Several input

signal combinations are studied but only those that pro-

duced the best results are presented by Table 3. The

output layer gives four answers about the localization,

the amplitudes and the frequencies of the asynchronous

excitation forces.

To evaluate the performance of these neural networks

the following criteria are adopted:

– The number of iterations required to achieve the

desired mean square error in the training process;

– the percentage of correct localization of the force

and;

– the combined error (Ep) of the amplitude and fre-

quency estimates.

The neural network with 12 neurons at the invisi-

ble layer, trained with input signals measured from all

probes, presents best performance.

Using only two probes, and 8 neurons at the invisi-

ble layer, the influence of the measuring points on the

network performance can be analyzed by looking at

the last three rows of Table 3. For the network trained

with probes 4 and 5 located at the bearings, the local-

ization quality, the frequency error, and the combined

frequency-amplitude error are very close to those of

the best neural network, therefore the value amplitude

error is doubled.

These results agree with the physical interpretation

of the dynamic behavior of the rotor. Probes at the bear-

ings receive more information about the asynchronous

forces than the probes placed at the discs.

Some other neural networks are trained with the sig-

nals measured by only one probe, installed at the lower

bearing or at the upper bearing, representing an ex-

tremely unfavorable situation. These networks perfor-

mance, not shown in Table 3, are poor when the rotor is

excited by forces applied simultaneously to both bear-

ings. This behavior is due the strong influence of the

force on the vibration measured at the same bearing.

Using probes 1 and 3 positioned at the discs the

worst network performance was obtained. This can

be explained by the fact that several vibration natural

modes of the flexible rotor present nodes at the bearings.

5.4. Identification of the Unbalance forces applied at

the discs

A neural network that identifies the mass magni-

tudes, their localization along the shaft and their an-

gular positions, processes the signals generated by un-

balance excitations applied to the three discs. The ex-
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Table 4

Training and validation results for the unbalance identification neural

networks

Probes Architecture Training Validation

Ep (%) Ep (%) Localization (%)

[1,2,3,4,5] 5 × 10 × 5 0.01 1.90E-02 100.00

5 × 20 × 5 0.01 1.81E-02 94.44

10 × 5 × 5 0.01 2.82E-02 100.00
10 × 10 × 5 0.01 1.44E-02 94.44

10 × 25 × 5 0.01 1.39E-02 100.00

[1,3] 5 × 10 × 5 0.01 1.25E-01 72.22

5 × 15 × 5 0.01 7.93E-02 77.78

10 × 5 × 5 0.01 5.25E-02 77.78

[3,5] 5 × 5 × 5 0.01 5.35E-02 83.33

10 × 5 × 5 0.01 6.23E-02 94.44

[4,5] 5 × 5 × 5 0.01 6.18E-02 88.89
5 × 20 × 5 0.01 5.52E-02 83.33

5 × 25 × 5 0.01 8.65E-02 88.89

10 × 5 × 5 0.01 3.96E-02 94.44

10 × 15 × 5 0.01 8.18E-02 88.89

10 × 25 × 5 0.01 5.29E-02 88.89

perimental signals used as the network input data are

obtained by the procedures described in item 5.1. All

tested designs of the identification network architec-

tures use 5 neurons at the output layer, resulting the un-

balance magnitudes at discs 1, 2 and 3, and the angular

positions of the unbalance masses.

Several input signal combinations are studied, but

only those that produced the best results are presented

by Table 4, that contains network architectures with

5 and 10 neurons at the input layer and with 5 up to

25 neurons at the invisible layer. The influence of the

number of inputs is analyzed by selecting signals from

all five probes and sets of only two-probe combination.

The mean square error of the training process was set

to 0.01 for all network architectures of Table 4. Other

networks with larger number of neurons at the invisible

layer were tested, but presented overfitting problems,

resulting incorrect answers, even when the mean square

errors of the training process was set less than 0.001.

To evaluate the performance of these neural networks

the following criteria were adopted:

– The number of iterations required to achieve the

desired mean square error in the training process;

– the percentage of correct localization of the unbal-

ance; and

– the combined error (Ep) of the unbalance magni-

tudes and phase angles.

The networks trained with signals measured by the

five probes presented better performance than those

trained with only two probes. Measurements done by

two probes at the bearings gave better results than with

probes locate exclusively at the discs.

Additionally, the architecture 10×5×5 always pro-

duced good results independently of the number of

measuring channels applied as inputs in the training

process.

The worst case occurred for the probes 1 and 3, with

the 5 × 10 × 5 architecture, that produced a combined

magnitude and phase error Ep = 1.25E-1, and 72% of

correct localization of the unbalanced disc. All other

architectures, presented by Table 4, have validation

error in the order of 10−2, which is very low. This

indicates the precision of the neural network to identify

the unbalance forces applied to the flexible rotor.

The proposed methodology can be used to balance

flexible rotors with concentrated inertia discretely dis-

tributed along the shaft. Considering that the neural

network which models the rotary machine is previously

available, the correct identification of the unbalance

permits that the correction masses be placed in opposi-

tion to the unbalance masses. Consequently, the rotor

remains balanced independently of its angular speed,

since the unbalance excitations are individually can-

celed.

6. Conclusions

Neural networks with reduced architecture and im-

proved performance can be successfully trained when

the input data is previously compressed by the wavelet

transform. The signal compression done by an ade-

quate wavelet function naturally increases the signal

to noise ratio and is able to retrieve only the desired

information from the signal. So that, analog or digital
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filters can be eliminated in the preprocessing stage of

the signals used as input database to a neural network.

The design of the neural network optimal architec-

ture is an open problem. The results obtained with this

research indicate that a reduced topology is always bet-

ter, since it can be easily trained and generally provides

good performance. The use of the wavelet transform to

compress the input data to the network is fundamental

to fulfill this task.

The training process of neural networks is improved

by the application of the modified simulated anneal-

ing algorithm to the optimization of the network error

function. This algorithm proved to be efficient, ro-

bust and less sensitive to the presence of local minimal.

Therefore, the usage of simulated annealing combined

to steepest descent algorithm at the final stage of the

optimization procedure is a reliable approach to find

the global minimum of objective functions that present

large number of local minimal. The final results are

obtained with good precision and without large

The neural network identification methodology is ef-

ficient and robust to identify excitation forces in ro-

tary machines, without any prior knowledge about the

number of the forces, but requires the existence of a

previously trained network.

The identification of the unbalance presented sur-

prising good results, since the precision obtained for

the magnitudes and their angular position were high,

for almost all tested architectures. The correct local-

ization of the balancing planes depends on the num-

ber and position of sensors that measure the vibrations

used as inputs to the neural network. Evidently, the

sensors should not be positioned close to nodes of the

predominant modes of the flexible rotor at its operating

speed. The best measuring points can be determined

by an experimental modal analysis of the actual rotary

machine or by simulation of a computational model.
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