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Abstract

Mitigation of greenhouse gas emissions is relevant for reducing the environmental 

impact of ruminant production. In this study, the rumen microbiome from Holstein 

cows was characterized through a combination of 16S rRNA gene and shotgun 

metagenomic sequencing. Methane production (CH4) and dry matter intake (DMI) 

were individually measured over 4–6 weeks to calculate the CH4 yield (CH4y = CH4/

DMI) per cow. We implemented a combination of clustering, multivariate and mixed 

model analyses to identify a set of operational taxonomic unit (OTU) jointly associ-

ated with CH4y and the structure of ruminal microbial communities. Three ruminotype 

clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH4y. 

The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and 

Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae 

and Lachnospiraceae. Metagenomic data confirmed the lower abundance of 

Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter 

and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addi-

tion, the functional metagenomic analysis revealed that samples classified in cluster 

R2 were overrepresented by genes coding for KEGG modules associated with meth-

anogenesis, including a significant relative abundance of the methyl‐coenzyme M 

reductase enzyme. Based on the cluster assignment, we applied a sparse partial least‐

squares discriminant analysis at the taxonomic and functional levels. In addition, 

we implemented a sPLS regression model using the phenotypic variation of CH4y. 

By combining these two approaches, we identified 86 discriminant bacterial OTUs, 

notably including families linked to CH4 emission such as Succinivibrionaceae, 

Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These 

selected OTUs explained 24% of the CH4y phenotypic variance, whereas the host ge-

nome contribution was ~14%. In summary, we identified rumen microbial biomark-

ers associated with the methane production of dairy cows; these biomarkers could be 
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1 |  INTRODUCTION

Cattle have the remarkable ability to digest and transform 

non‐edible plant cell wall components into high‐quality pro-

teins for human consumption. The digestion of feeds entails, 

however, the production of the greenhouse gas CH4. The 

possibility to mitigate CH4 emissions while simultaneously 

improving feed efficiency is highly relevant for the sustain-

ability of cattle production systems. Notwithstanding, the 

mechanisms to achieve it are not yet fully understood (Flay 

et al., 2019). The contribution of the gastrointestinal micro-

biota to feed digestion and enteric CH4 production is well 

established in ruminants (Delgado et al., 2019; Difford et 

al., 2018; Huws et al., 2018; Ross, Moate, Marett, Cocks, 

& Hayes, 2013; Tapio, Snelling, Strozzi, & Wallace, 2017). 

However, enteric CH4 production is a complex trait de-

termined not only by the rumen microbiome (Huws et al., 

2018; Ross et al., 2013; Tapio et al., 2017), but also by host 

genetics (Difford et al., 2018; Ross et al., 2013), and envi-

ronmental factors (Gerber et al., 2013; Martin, Morgavi, 

& Doreau, 2009; McAllister, Cheng, Okine, & Mathison, 

1996). Exploring the abundance and composition of mi-

crobial communities in the gastrointestinal tract of cattle in 

relation to the host genome is of great interest for quantify-

ing animal variability in feed digestibility and enteric CH4 

emission (Huws et al., 2018; Leahy et al., 2013; Li et al., 

2019). Several studies in ruminants have explored the re-

lationship of the rumen microbiota composition with feed 

efficiency and CH4 emission (Delgado et al., 2019; Jami, 

White, & Mizrahi, 2014; Jewell, McCormick, Odt, Weimer, 

& Suen, 2015; Li et al., 2019; Myer, Smith, Wells, Kuehn, & 

Freetly, 2015; Wallace et al., 2015). Pioneering rumen‐engi-

neering studies have suggested that microbial communities 

are highly resilient and host‐specific (Cole, 1991; Weimer, 

2015). Although these latter properties make it difficult to 

manipulate the ruminal microbial community, they also en-

able the analysis of the covariation of these ecosystems with 

host performance and jointly selecting both host genome and 

microbiome variants.

The main goal of this study was to implement an in-

tegrative approach using 16S rRNA and shotgun metage-

nomic sequencing data to identify microbial biomarkers 

linked to CH4y emission. In addition, we also explored 

the role of host genetics on the determinism of this 

phenotype.

2 |  MATERIALS AND METHODS

2.1 | Phenotype and host genotype details

The experiment was carried out at the INRA experimental 

farm in Méjusseaume (Le Rheu, France). Management of 

experimental animals followed the guidelines for animal 

research of the French Ministry of Agriculture and other 

applicable guidelines and regulations for animal experi-

mentation in the European Union (European Commission, 

2010). Approval number for ethical evaluation was 

APAFIS:3122‐2015112718172611. Sixty‐five loose‐housed 

lactating Holstein cows were used in this experiment. They 

were allocated to three pens equipped with individual troughs 

and automatic gates detected by radio‐frequency identifica-

tion tags attached on the cow ears. Each pen was of simi-

lar size (n = 21–23). Parity was equilibrated between pens, 

with two‐thirds of the cows that were in their first lactation 

(n = 42). Cows received the same total mixed ration (TMR) 

throughout the experiment consisting of maize silage (65%), 

soybean cake (18%) and energy concentrate (8%), composed 

of corn, wheat, barley, dehydrated beet pulp, dehydrated al-

falfa (8%) and minerals (Table S1). The TMR was offered ad 

libitum and individually weighed every morning. Each morn-

ing, refusals from the previous day were weighed. Samples 

of forages, concentrates and refusals were analysed for dry 

matter content. Dry matter intake was calculated daily as the 

difference between offered and refused dry matter weights.

Methane production was measured with two GreenFeed 

emission monitoring (GEM) systems (C‐Lock Inc.). This sys-

tem automatically measures CH4 when animals visit a con-

centrate feeder equipped with a head hood and an extractor 

fan for the capture of breath and eructation gases. The animals 

are attracted and kept attracted to the feeder with pellets that 

are distributed in small quantities. In the current experiment, 

the cows were allowed to visit the GEM a maximum of four 

times per day, with each visit separated by at least 6 hr. At 

each visit, cows received six drops of concentrate separated 

by 30 s for at least 3 min. At each visit, CH4 production rate is 

calculated, combining the gas concentration (measured with 

a non‐dispersive infrared analyser) to the airflow in the pipe 

(measured with a flow meter). An algorithm developed and 

applied by C‐Lock Inc. calculates the CH4 rate at each visit if 

the head of the animal is correctly positioned (controlled by 

a laser beam) for at least 2 min. With two GEM systems and 

used for targeted methane‐reduction selection programmes in the dairy cattle industry 

provided they are heritable.
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three batches, the following experimental design was applied: 

during a first period (6  weeks in January–February 2017), 

cows in batches B1 (n = 21) and B2 (n = 21) were measured 

and rumen liquid sampled. During a second period (the next 

4 weeks in March 2017), cows in batch B1 were measured 

again and sampled together with cows in batch B3 (n = 23). 

The daily dry matter intake (TMR and concentrate in the 

GEM system) and the per‐visit CH4 emission rate measures 

were averaged over the testing periods to estimate the indi-

vidual dry matter intake (DMI), methane emission rate (CH4) 

and methane yield (CH4y = CH4/DMI). The traits were ad-

justed beforehand for the contemporary group mean in a sim-

ple linear model including the batch × period effect:

where y is the trait value vector, b the fixed effect vector of 

the contemporary group (batch × period) effect and e the re-

sidual phenotype.

Rumen fluid (~400  ml) was sampled via oesophageal 

tubing in the morning before feeding (last week of February 

for period 1 and last week of March for period 2). The av-

erage days in milk (DIM) in period 1 were 148.5 (SD 12.5) 

and 182.8 (SD 18.6) in period 2. Samples were filtered 

through a polyester monofilament fabric (250 μm mesh ap-

erture), and 2 ml of the filtrate was centrifuged at 20,000 g, 

20 min, 4°C. The supernatant was discarded, and the pellet 

was snap‐frozen in liquid nitrogen and stored at −80°C.

The Illumina BovineSNP50 v.2 BeadChip (Illumina Inc.) 

was used to genotype the 65 Holstein cows. Quality control 

was performed to exclude single nucleotide polymorphisms 

(SNPs) with minor allele frequencies (MAF) <5%, rates of 

missing genotypes above 10%, as well as those that did not 

conform to Hardy–Weinberg expectations (threshold set at a 

p‐value of .001). We also excluded SNPs that did not map 

to the bovine reference genome (ARS‐UCD1.2 assembly) or 

that were located on the X‐chromosome.

2.2 | Rumen microbial DNA extraction, 
PCR amplification and sequencing

DNA from rumen liquid fraction was extracted with an estab-

lished protocol (Yu & Morrison, 2004). Extracted DNA was 

sent to the University of Illinois Keck Center for Fluidigm 

sample preparation and Illumina sequencing. Primers target-

ing the V3–V5 region (F357 and R926) were used to amplify 

a region of 570 base pairs of the bacterial 16S rRNA gene. 

Archaea‐specific primers (349F and 806R) were used to am-

plify a 457‐base‐pair 16S rRNA gene fragment. The amplicons 

were sequenced on one MiSeq flow cell for 251 cycles. The 

whole‐metagenome shotgun sequence of 30 samples collected 

from rumen of Holstein cows with low and high CH4y emission 

and distributed across the three batches were generated using a 

quantitative metagenomic pipeline (Supporting Information).

2.3 | Bioinformatics and statistical analysis

Sequences corresponding to the 16S rRNA gene data were 

analysed on an in‐house Galaxy‐based graphical user inter-

face for IM TORNADO (Jeraldo et al., 2014) and mothur 

(Schloss et al., 2009) for bacteria and archaea, respectively. 

The workflow included a quality control step to remove se-

quences with Phred scores of <33 and trimmed sequences 

based on expected amplicon length, as well as merge 

paired reads, remove chimera and select OTUs (97% iden-

tity). Finally, after removing doubleton OTUs, only those 

OTUs representing more than 0.001% of the total were re-

tained. Taxonomic classification was based on the SILVA 

v123 database (Quast et al., 2012) for bacteria and RIMDB 

(Seedorf, Kittelmann, Henderson, & Janssen, 2014) for ar-

chaea. As previously mentioned, animals in the study were 

divided into groups due to experimental constraints (see 

Phenotype2.1 section). Therefore, to estimate the stability 

of ruminal bacterial communities, we used the 16S rRNA 

gene data of 21 cows in batch B1 that were sampled twice 

in the two successive periods. In a first step, we estimated 

and contrasted diversity metrics among time points (T1 

vs. T2) with vegAn R package (Jari Oksanen et al., 2018). 

Alpha‐diversity was evaluated with the Shannon index 

(Shannon, 1984), and beta‐diversity was assessed using the 

Whittaker index (Whittaker, 1972). Subsequently, stability 

between sampling points was estimated using the RV coef-

ficient on the two OTU normalized abundance tables. The 

RV coefficient was calculated between times points as the 

total co‐inertia (sum of eigenvalues of the product of two 

cross‐product matrices) divided by the square root of the 

product of the squared total inertia. A zero RV score indi-

cates no similarity, whereas the RV score approaches 1 for 

increasing co‐structure between two data sets.

The whole‐metagenome data were processed as fol-

lows. Gene abundance profiling was performed using the 

16.6  million gene integrated reference catalogue of the 

rumen microbiome (Junhua et al., 2019). First, low‐quality 

and host contaminant reads (from Bos taurus genome ARS‐

UCD1.2) were removed using AlienTrimmer (Schubert, 

Lindgreen, & Orlando, 2016) and Bowtie2 (Langmead & 

Salzberg, 2012), respectively. For a more detailed infor-

mation which includes the creation of gene abundance and 

KEGG orthologous (KO) tables, as well as the assembly of 

metagenomic species (MGS) clusters, see the supplemen-

tary material (Supporting Information).

2.3.1 | Structure of the ruminal ecosystem

To infer the structure of ruminal bacterial communities, rumi-

notype cluster detection was done using the genera abundance 

(101 genera based on the bacterial data) in each sample, as 

previously described for human gut enterotypes (Arumugam 

y=Xb+e
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et al., 2011). Briefly, sample clusters were detected using the 

probability distribution distance metric related to Jensen–

Shannon divergence and partitioning around medoids. The 

optimal number of clusters was determined following the 

Calinski–Harabasz (CH) index (Caliński & Harabasz, 1974), 

and the statistical consistency of the corresponding partition 

was evaluated using the Silhouette coefficient (Rousseeuw, 

1987). Furthermore, sample stability within each cluster was 

estimated through a cluster‐wise Jaccard bootstrap analysis 

(100 repetitions; Hennig, 2007). The association between 

predicted ruminotype clusters with CH4y was obtained using 

a least‐squares analysis as implemented in the LSMeAnS R 

package. To identify genera with significantly different 

abundance among the predicted ruminotype cluster groups, 

a differential abundance (DA) analysis was performed using 

the zero‐inflated Gaussian mixture model implemented in the 

MetAgenOMeSeq R package (Paulson, Stine, Bravo, & Pop, 

2013), using a threshold for adjusted p‐values of 5%. In ad-

dition, a presence–absence (PA) test was also performed to 

identify genera that were unique for each of the identified 

clusters.

2.3.2 | Multivariate analysis

To identify a set of OTUs jointly associated with CH4y 

phenotypic variation and the structure of ruminal bacte-

rial communities, a combination of multivariate analyses 

was performed using sparse partial least‐squares (sPLS) as 

implemented in the MixOMiCS R package (Rohart, Gautier, 

Singh, & Lê Cao, 2017). sPLS is a statistical approach em-

ployed to identify a small subset of variables that maximize 

the covariance between two different data sets (for instance, 

a table of centred log ratio‐transformed OTUs and rumino-

type clusters or CH4y values; Lê Cao, González, & Déjean, 

2009). In a first step, sPLS discriminant analysis (sPLS‐

DA) was applied based on sample classification accord-

ing to ruminotype cluster assignment. The classification 

reliability corresponding to the sPLS‐DA model was as-

sessed as function of the prediction maximum distance 

between overall misclassification error rate and balanced 

error rate (BER) after fivefold cross‐validation repeated 500 

times. In addition, sPLS was also performed in regression 

model to identify OTUs associated with CH4y phenotypic 

variation. Subsequently, we implemented a conservative 

approach and retained only those OTUs found in common 

between the two approaches for downstream analysis. The 

sPLS‐DA approach using ruminotype‐like sample classifi-

cation was also implemented on the metagenomic data at 

MGS and functional (KEGG) levels.

2.3.3 | Mixed model

To estimate the proportion of CH4 and the CH4y pheno-

typic variance explained by the host (heritability) as well as 

by the bacterial community (microbiability), the following 

Bayesian mixed model was implemented using the bgLR R 

package (Pérez & de los Campos, 2014):

where y is the phenotype vector (i.e., CH4y), 1µ is the inter-

cept, g∼N
(

0,G�
2

g

)

 and b∼N
(

0,B�
2

b

)

, G is the genomic 

relationship matrix (GRM) based on 38,872 autosomal SNPs, 

and �2

g
 represents the additive genetic variance. B represents 

the microbial relationship matrix, calculated based on the 

Bray–Curtis dissimilarities distance matrix, and ε is the re-

sidual term. A second model was employed using the method 

proposed by Ross et al. (2013) which build the microbial re-

lationship matrix based on the variance–covariance matrix 

from the log‐transformed and standardized OTU table. In 

both cases, the models were run using a Gibbs sampler with 

30,000 iterations and a burn‐in of 2,000 rounds; we used 

standard flat priors for the intercept.

3 |  RESULTS AND DISCUSSION

3.1 | Phenotype description

The descriptive statistics of production and CH4 traits are 

presented in Table 1. Methane emissions were calculated 

as the average value of all visits throughout the study. With 

2.50 visits per day, emission rates per each cow were cal-

culated for an average of 105.1 and 69.7 visits for periods 

1 and 2, respectively. This large number of visits to GEM 

system ensured a precise measurement of the animal phe-

notype, as it largely exceeds the recommended 20–30 mini-

mum visits (Barchia et al., 2017; Manafiazar, Zimmerman, 

& Basarab, 2016). The variability among cows for methane 

production (g/day; CV 11%) was higher than previously 

reported (Ricci, Rooke, Nevison, & Waterhouse, 2013). 

y=1�+g+b+�

T A B L E  1  Mean and standard deviation of production and 

methane emission traits

Trait Unit Mean SD CV (%)

Live weight kg 634 49 8

Dry matter intake 

(DMI)

kg/day 21.2 2.2 10

Milk production kg/day 31.1 4.8 15

Milk efficiency kg/kg DMI 1.47 0.16 11

GreenFeed visits n/day 2.50 0.53 21

Visit duration s 224 16 7

Methane emission 

rate

g/day 506 56 11

Methane yield g/kg DMI 24.1 3.1 13
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From period 1 to period 2, the repeatability of the methane 

emission traits was 0.82 and 0.73 for CH4 and CH4y, re-

spectively. These values were lower than the repeatability 

of production traits (0.95–0.97 for DMI, milk production 

and milk efficiency). Methane production rate was moder-

ately correlated with DMI (Pearson's correlation r =  .44) 

and milk production (r  =  .28) and was poorly correlated 

with body weight (r = .16).

3.2 | Link between ruminotype 
structure of ruminal bacterial communities and 
CH4y emissions

The 16S rRNA gene sequences from 65 rumen liquid frac-

tions were analysed. After quality control, bacterial 1,198 

OTUs and 1,764 archaeal OTUs were identified (Supporting 

Information). The relative abundance of bacterial genera in 

each sample was used for cluster detection as described for 

human gut enterotypes (Arumugam et al., 2011). This method 

first performs a sample stratification, followed by the identi-

fication of the optimal number of clusters and the statistical 

consistency of the predicted partition. Cows clustered into 

three ruminotype clusters (R1, R2 and R3; Figure 1a,b); 30 

cows were assigned to R1, 16 to R2 and 19 to R3. In concord-

ance with our results, three ruminotype clusters have previ-

ously been reported in sheep (Kittelmann et al., 2014), while 

in dairy cattle (based on a principal coordinate analysis at the 

OTU level), two clusters were reported by Danielsson et al. 

(2017). Therefore, we tested sample stability by comparing 

two (k = 2) or three (k = 3) putative clusters. Cluster‐wise 

Jaccard bootstrap analysis revealed moderate sample stabil-

ity, showing a more stable solution for three (K3: 0.63, 0.64 

and 0.63) clusters compared with two (K2: 0.61 and 0.4). 

In concordance with the aforementioned studies in sheep 

(Kittelmann et al., 2014) and dairy cattle (Danielsson et al., 

2017), we observed a significant association between rumi-

notype cluster assignments and CH4y emission (Figure 1c). 

Cows that clustered within R2 emitted more CH4y (p < .05) 

than those clustered in R1 or R3, and no significant differ-

ence in CH4y emission was observed between the R1 and R3 

clusters (Figure 1c).

We evaluated the taxonomic composition of rumino-

type clusters through a combination of presence–absence 

(PA) and differential abundance (DA) analysis. According 

to the PA test, the only genera showing significant differ-

ences between clusters was Succinivibrionaceae_UCG‐001, 

which was absent in most cows classified as R2 (high CH4y 

emission) compared with R1 and R3. Only four cows out 

of the 16 in R2 had Succinivibrionaceae_UCG‐001, al-

beit with a lower abundance compared to the other clusters 

(Table 2). The DA analysis confirmed the PA test results, as 

Succinivibrionaceae_UCG‐001 showed significantly differ-

ent abundance among clusters (Table S2). We note that larger 

differences in Succinivibrionaceae_UCG‐001 abundance, as 

well as a greater number of DA genera, were observed be-

tween samples classified as R2 and R3 (Table S2). However, 

no significant difference in Succinivibrionaceae_UCG‐001 

relative abundance was observed between R1 and R3 (Table 

S2). These observations are consistent with previous reports 

describing members of the Succinivibrionaceae family as-

sociated with low CH4 (Danielsson et al., 2017; Kittelmann 

et al., 2014; Wallace et al., 2015). Furthermore, this is in 

agreement with the higher CH4y emissions observed in 

R2. Members of families associated with high CH4 emis-

sion, such as Ruminococcaceae, Christensenellaceae and 

Lachnospiraceae (Kittelmann et al., 2014; Tapio et al., 2017), 

exhibited DA patterns with higher abundant in R2 compared 

to R1 and R3 (Table S2). In a similar way, we explored the 

archaeal taxonomic composition of the ruminotype clusters. 

According to a DA analysis, significant differences were only 

detected at the OTU level. Similar to the aforementioned pat-

terns at the bacterial level, the largest number of DA OTUs 

was observed between samples classified as R2 and R3 (Table 

S3). Of noted, OTU members of Methanosphaera showed 

F I G U R E  1  Structure of the ruminal 

bacterial community of lactating Holstein 

cows displaying natural differences in 

methane emission. (a) Sample distribution. 

(b) Calinski–Harabasz (CH) indexes of 

potential numbers of clusters. (c) Pairwise 

comparisons of CH4y emission between 

ruminotype‐like clusters R1 (red), R2 (blue) 

and R3 (green) [Colour figure can be viewed 

at wileyonlinelibrary.com]

(a) (b)

(c)

www.wileyonlinelibrary.com
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consistently lower abundance in the R2 cluster (higher CH4 

emitters) and were only detected when R2 was compared with 

R1 or R3. Similar patterns were observed for OTUs classi-

fied as Methanobrevibacter ruminantium, which showed 

lower abundance in R2 compared with R3. Meanwhile, no 

clear patterns were observed for OTU members of the genera 

Methanobrevibacter (gottschalkii clade); some OTUs were 

most abundant in R2, while others showed higher abundance 

in R1 or R3 (Table S3).

3.3 | Identification of ruminal OTUs linked 
to CH4y emission and associated with the 
structure of the rumen microbiota

In this study, we used an integrative approach combining 

multivariate and clustering analyses to identify microbial 

biomarkers linked to CH4y emission and the structure of the 

rumen microbiota (Figure 2). We are aware that in compari-

son with a predictive model (which would take into account 

the total microbial variation), ruminotype cluster approaches 

may have some limitations for biomarker identification 

(Costea et al., 2018; Knights et al., 2014). However, as pre-

viously reported (Danielsson et al., 2017; Kittelmann et al., 

2014) and confirmed in this work, the link between the struc-

ture of the bacterial ruminal ecosystem and CH4y emission 

cannot be neglected. Therefore, to conservatively focus on 

the primary OTU markers associated with CH4y emissions, 

we combined the cluster analysis results with those of a pre-

dictive model. We applied a two‐pronged strategy using mul-

tivariate analysis, including a supervised sPLS‐DA (based on 

sample cluster classification) and a sPLS regression model 

that considers the joint covariation of OTU relative abun-

dances and CH4y emissions (Figure 2). For the sPLS‐DA, the 

first and second principal component combined the relative 

abundances of 231 OTUs (PC1 = 200 and PC2 = 31) and 

allowed a clear discrimination between samples classified as 

R2 and R3 (Figure S2 and Table S4). The area under the ROC 

curve corresponding to both R2 (0.97) and R3 (0.92) showed 

high values, suggesting a good ability of the model to cor-

rectly classify these samples. In addition, the sPLS regression 

model allowed us to identify features that maximize the covar-

iance between OTU relative abundance and CH4y phenotype 

variation. After tuning parameters (fivefold cross‐validation 

repeated 500 times), a single component was identified as 

optimal (PC1 Q2

h
 = 0.12), yielding a final selection of 200 

OTUs. We then applied a conservative approach, retaining 

the 86 OTUs that were common to both sPLS analyses (Table 

S4). We note that 75.5% (65/86) of them were also identified 

as DA among ruminotype clusters, where selected OTUs dis-

played consistent differential abundance patterns (Table S4). 

Comparison Genus Odds ratio p Values

Adj p 

values 

(BH)

R1_R2 Succinivibrionaceae_UCG‐001 17.72 5.27E−05 .005

R2_R3 Succinivibrionaceae_UCG‐001 0.022 4.22E−05 .003

T A B L E  2  Results from the presence–

absence test between ruminotype‐like 

clusters

F I G U R E  2  Analytical framework 

employed to identify microbial biomarkers 

of methane emission in lactating Holstein 

cows [Colour figure can be viewed at 

wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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The taxonomic classification of these OTUs included fami-

lies reportedly linked to CH4 such as Succinivibrionaceae, 

Ruminococcaceae, Christensenellaceae, Lachnospiraceae, 

Gastranaerophilales, Rikenellaceae, Bacteroidales_BS11 and 

Prevotellaceae (Danielsson et al., 2017; Difford et al., 2018; 

Kamke et al., 2016; Kittelmann et al., 2014).

3.4 | Rumen microbiome linked to CH4y 
identified through metagenomics

To gain insight into a more precise taxonomic composition 

and functional processes that differed between ruminotypes, 

we generated whole‐metagenome data from 30 samples dis-

tributed across the two periods and the three ruminotype 

clusters. After removing low‐quality and host contaminant 

reads (Supporting Information), an average of 21.3 million 

reads per sample was produced. Reads were mapped against 

the rumen gene reference catalogue (Junhua et al., 2019). A 

total of 608 MGS were identified by MSPminer (Cervino et 

al., 2019) and 264 KEGG functional modules were detected 

by consolidating the gene abundance matrix into KEGG an-

notations (Supporting Information). In a first step, the overall 

structure of the ruminal microbial community was explored 

using non‐metric multidimensional scaling (nMDS) with 

Bray–Curtis and binary Jaccard dissimilarities inferred from 

the metagenomic gene abundance matrix (Figure S3). nMDS 

plots showed a clear relationship between ruminotypes and 

nMDS patterns for both dissimilarities. After correction for 

group and period effects, PERMANOVA tests of signifi-

cance also showed a significant association between rumi-

notype classification and Bray–Curtis (p <  .05) and binary 

Jaccard (p < .01) dissimilarity matrices. The same approach 

was followed to explore the relationship between rumen 

ecosystem and CH4y, with nMDS plots showing a tendency 

of samples to group according to CH4y values. In this case, 

the PERMANOVA test corrected by group and period was 

not significant for Bray–Curtis or binary Jaccard (p =  .06) 

dissimilarities.

The MGS and functional profiles of each sample were 

explored through sPLS‐DA. Based on MGS, the relative 

abundance of 150 MGS enabled the discrimination between 

samples (Table S5 and Figure S4). In agreement with the tax-

onomic classification of the 86 selected OTUs, members of 

the Succinivibrionaceae, Lachnospiraceae, Prevotellaceae, 

Rikenellaceae and Ruminococcaceae families were among 

the top discriminant MGS. Moreover, 59.3% (89/150) of the 

MGS were also identified as DA among ruminotype (Table 

S6). Similarly, to the aforementioned results at the OTU 

level, a larger number of DA MGS were observed between 

samples classified as R2 and R3 (Table S6). Interestingly, 

shotgun metagenomics shows a lower abundance of a 

MGS affiliated to Succinivibrionaceae (MGS116, fold 

changeR3,R2  =  1.87, corrected p‐value  =  .043) in the R2 

ruminotype, a finding that agrees with the results of the 16S 

rRNA gene data. Members of the Succinivibrionaceae have 

been previously proposed to be responsible for the lower 

CH4 emissions in wallaby microbiota (Pope et al., 2011). 

Moreover Succinivibrionaceae was recently identify among 

the core of heritable rumen bacteria (Wallace et al., 2019) 

as well as associated with feed efficiency and levels of pro-

pionate in beef cattle (Li et al., 2019). Succinivibrionaceae 

produce succinate as a main fermentation product (O'Herrin 

& Kenealy, 1993; Santos & Thompson, 2014), which is 

converted to propionate by other members of the micro-

biota and thus less hydrogen might be available for meth-

anogens. Co‐exclusion between Succinivibrionaceae and 

Methanobrevibacter has been reported in cattle (McCabe et 

al., 2015). The use of metagenome data allows identifying 

other features not revealed by 16S rRNA gene sequences 

including unclassified Bacteroidales and Fibrobacteres 

(Table S6) as well as to confirm the patterns of methano-

genic archaea members of the family Methanobacteriaceae 

observed using the metataxomic approach. This is in agree-

ment with the previously reported negative correlation be-

tween Methanosphaera spp. and CH4 production in sheep 

(Kittelmann et al., 2014). The only MGS taxonomy clas-

sified as Methanosphaera (MGS512) showed lower abun-

dance in samples classified as R2 compared with R1 and 

R3 (fold changeR1,R2 = 5.92, corrected p‐value =  .03; fold 

changeR3,R2 = 8.56, corrected p‐value = .008).

A functional approach using KEGG modules shows a 

classification of samples according to ruminotype cluster 

assignation. The sPLS‐DA analysis revealed 55 modules; 

however, the model showed a slightly lower accuracy than 

for OTUs and MGS analyses (Table S7 and Figure S5). 

Among the discriminant KEGG modules, there were func-

tional modules related to CH4y emission, such as methano-

genesis (M00567), C4‐dicarboxylic acid cycle, NAD‐malic 

enzyme type (M00171, M00172) and acetyl‐CoA pathway 

(M00422), but also with general functions such as glycol-

ysis (M00001), gluconeogenesis (M00003), formaldehyde 

assimilation (M00345) and crassulacean acid metabolism 

(M00169; Table S7). A detailed examination of KOs in-

volved in the methanogenesis pathway (M00567) revealed 

that six of them were significantly more abundant in sam-

ples classified as R2 (Figure S6). Interesting, five of them 

(K00205, K00672, K00399, K00580 and K03389) includ-

ing the methyl‐coenzyme M reductase (which catalyses the 

rate‐limiting CH4 synthesis (Scheller, Goenrich, Thauer, & 

Jaun, 2013; Wongnate et al., 2016) have been suggested as 

biomarkers for CH4 production across diverse cattle breeds 

(Auffret et al., 2018). Overall, our results show that shotgun 

metagenomics is able to provide additional insights into the 

differences observed with 16S rRNA gene data sets, even 

with smaller sample sizes. Interestingly, specific KEGG 

pathways and enzymes appear to be associated with CH4 and 



56 |   RAMAYO‐CALDAS et AL.

had a moderate discriminant ability of whole‐metagenome 

data using the sPLS‐DA approach.

3.5 | CH4 emission heritability and 
microbiability

A mixed model was implemented to estimate the proportion 

of CH4 and CH4y phenotypic variance explained by the host 

cow genome, the whole OTU matrix (n = 1,198) and the 86 

selected OTUs (Figure 2). According to the model based on 

the whole OTU matrix, the host genome explained ~14% 

of the CH4 and CH4y, whereas the bacterial community ex-

plained around ~16% of CH4 production and 18% of CH4y 

(Table 3). The estimated CH4 heritability and microbiability 

on the whole OTU model were consistent with recent results 

in dairy cattle (Difford et al., 2018). Meanwhile, in agree-

ment with previous studies (Saborío‐Montero, 2018), differ-

ences between the estimated microbiability were observed 

depending on the method employed to build the microbial 

relationship matrix (Table 3). We acknowledge that the 

number of samples in our study may not be large enough to 

accurately estimate parameters, which limit the robustness 

of the model. In spite of this limitation, consistent values of 

CH4 heritability between models were observed (Table 3). 

These values are also comparable to those of Difford et al. 

(2018). It is noted that heritability is similar for the two CH4 

emission traits but microbiability was always higher when 

using CH4y. Our results also suggest a slight improvement 

of CH4y variance component estimation (up to ~24%) after 

OTU preselection, but no for CH4 alone (Table 3). Further 

studies with larger sample sizes and standardized analyti-

cal pipelines could provide more reliable estimates of the 

microbiota contribution to this complex CH4 emission trait.

4 |  CONCLUSION

Our results confirm the link between the structure of the ru-

minal bacterial community and CH4 emission. We identified 

86 OTUs simultaneously linked to CH4y emission and the 

ruminal bacterial community structure. OTUs associated 

with CH4y emission were predominantly hydrogen‐produc-

ing bacteria and explained up to 24% of the CH4y pheno-

typic variance, whereas the host genome contribution was 

around 14%. Some discriminant bacterial OTUs identified 

by metataxonomic were confirmed by whole metagenome. 

In particular, samples clustered in R2 (high CH4y emis-

sion) showed a lower abundance of Succinivibrionaceae 

and Methanosphaera spp. as well as a higher abundance of 

genes coding for functional modules and enzymes involved 

in methanogenesis. Overall, we report a set of microbial bio-

markers that have the potential to be employed for charac-

terizing high‐emitting cattle for targeted management in the 

dairy cattle industry.
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Trait
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86 selected OTUs (Bray–Curtis 

distance)

86 selected OTUs (log‐transformed 

and standardized OTU table)a

h2 (SD) m2 (SD) h2 (SD) m2 (SD) h2 (SD) m2 (SD)

CH4 0.144 (0.09) 0.164 (0.10) 0.141 (0.09) 0.192 (0.11) 0.157 (0.09) 0.130 (0.06)

CH4y 0.148 (0.10) 0.181 (0.11) 0.143 (0.09) 0.242 (0.14) 0.163 (0.09) 0.174 (0.08)

aMethod proposed by Ross et al., 2013. Estimated a microbial relationship matrix based on the variance–covariance matrix from the log‐transformed and standardized 

OTU table. 
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