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Abstract

The identification of regions that have undergone selection is one of the principal goals of theoretical and applied
evolutionary genetics. Such studies can also provide information about the evolutionary processes involved in shap-
ing genomes, as well as physical and functional information about genes/genomic regions. Domestication followed
by breed formation and selection schemes has allowed the formation of very diverse livestock breeds adapted to a
wide variety of environments and with special characteristics. The advances in genomics in the last five years have
enabled the development of several methods to detect selection signatures and have resulted in the publication of a
considerable number of studies involving livestock species. The aims of this review are to describe the principal ef-
fects of natural/artificial selection on livestock genomes, to present the main methods used to detect selection signa-
tures and to discuss some recent results in this area. This review should be useful also to research scientists working
with wild animals/non-domesticated species and plant biologists working with breeding and evolutionary biology.
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Introduction

Selection tends to cause specific changes in the pat-
terns of variation among selected loci and in neutral loci
linked to them. These genomic footprints left by selection
are known as selection signatures and can be used to iden-
tify loci subjected to selection (Kreitman, 2000). The recent
availability of genomic information on domestic animal
species and the development of improved statistical tools
make the identification of these footprints in a given spe-
cies possible (International Chicken Genome Sequencing
Consortium, 2004; The Bovine Genome Sequencing and
Analysis Consortium, 2009; The International Sheep
Genomics Consortium, 2010; Groenen et al., 2012; Dong et

al., 2013).
The identification of selection signatures is currently

one of the principal interests of evolutionary geneticists be-
cause it can provide information ranging from basic knowl-
edge about the evolutionary processes that are shaping
genomes to functional information about genes/genomic
regions (Nielsen, 2001, 2005; Schlötterer, 2003). For ex-
ample, if a region that was not previously identified as con-

tributing to any special trait in mapping experiments is
targeted by selection in a specific population, then this in-
formation could lead to an initial inference about the func-
tional characteristics of that region. This approach could
also lead to the identification of genes related to ecological
traits (e.g., genes related to tropical adaptation) that are dif-
ficult to identify through laboratory experiments and may
also be useful in corroborating quantitative trait loci (QTL)
mapping experiments in production animals. The final and
certainly most ambitious aim of these studies is to identify
the causal mutations that confer a selective advantage in a
specific population or species (Nielsen, 2001; Schlötterer,
2003; Hayes et al., 2008).

Domestication greatly changed the morphological
and behavioral characteristics of modern domestic animals
and, along with breed formation and selection schemes for
improving the production of specific products or achieving
a morphological/behavioral standard, allowed the forma-
tion of very diverse modern breeds (Diamond, 2002; Toro
and Mäki-Tanila, 2007; Flori et al., 2009). These features,
along with extensive knowledge about genomic regions
that affect economically important traits and recent ad-
vances in the field of genomics, provide an excellent oppor-
tunity for identifying loci subjected to selection and for the
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validation of new methods developed to detect selection
signatures (Hayes et al., 2008; Flori et al., 2009).

In this review, we describe the effects of natural/arti-
ficial selection on genomes, summarize the main methods
of detecting the footprints of selection and, finally, indicate
and discuss studies aimed at detecting selection signatures
in livestock.

Natural and Artificial Selection

Natural selection is a phenomenon driven by the envi-
ronment in which individuals with specific genotypes have
a differential capacity for contributing to the next genera-
tion’s gene pool (Falconer and Mackay, 1996; Templeton,
2006; Driscoll et al., 2009). Natural selection could basi-
cally act in three ways: positive selection, purifying selec-
tion (also known as negative or background selection) and
balancing selection. Each form of selection is a response to
environmental pressure and acts differentially to alter the
allelic and genotypic frequencies (Harris and Meyer, 2006;
Oleksyk et al., 2010).

Positive selection occurs when a newly arisen muta-
tion has a selective advantage over other mutations and,
therefore, increases in frequency in the population (Kaplan
et al., 1989). In purifying selection, the disadvantageous
variants that appear in the population tend to be removed,
thereby maintaining the functional integrity of DNA se-
quences (Charlesworth et al., 1993). Balancing selection
occurs when polymorphism is favored, leading to increased
genetic variability. Several biological processes can be
grouped in this type of selection, e.g., overdominant selec-
tion (in which the heterozygote has a selective advantage),
frequency dependent selection (in which different alleles
are favored at different time intervals) and temporally or
spatially heterogeneous selection (Charlesworth, 2006).

In contrast to natural selection, artificial selection
(also called selective breeding) is a human-mediated pro-
cess in which the gene pool of the next generation does not
depend exclusively (or necessarily) on fitness components,
but also on traits chosen by humans. Artificial selection can
be classified as unconscious selection or methodical selec-
tion – the former occurs when there is no long-term objec-
tive, and this has been suggested as the cause of the early
domestication process. The second occurs when a standard
or objective drives the choice of parents for the next genera-
tion. Despite these differences and considering that the time
frame in which these changes occur is often considerably
different, the genetic consequences of natural and artificial
selection are essentially the same (Avise and Ayala, 2009;
Driscoll et al., 2009; Gregory, 2009).

Selection Signatures

The occurrence of selection creates departures from
the neutral theory expectations in the patterns of molecular
variation. Each form of selection causes specific changes in

the selected loci and in neutral loci linked to them
(Kreitman, 2000). When positive selection operates in a
newly arisen allele that has a selective advantage it tends to
increase in frequency in the population and carries linked
neutral alleles along with it. This phenomenon is known as
the hitchhiking effect or selective sweep (Maynard-Smith
and Haigh, 1974; Charlesworth, 2007). The selective
sweep reduces the heterozygosity of regions surrounding
the selected locus (Kaplan et al., 1989; Kim and Stephan,
2002) and introduces a skew in the site frequency spectrum
(SFS) because of an excess of rare variants in the selected
region (Braverman et al., 1995; Kim and Stephan, 2002).

An increase in the average linkage disequilibrium
(LD) leading to long haplotypes is also expected in the re-
gion surrounding the selected site (Kim and Stephan,
2002). As LD decays and high frequency neutral alleles be-
come fixed in the population after fixation of the selected
mutation, this selection signature vanishes rapidly (Prze-
worski, 2002; Kim and Nielsen, 2004; McVean, 2007).
Thus, a high frequency derived allele surrounded by a
long-range LD is indicative of a recent selective sweep
(Sabeti et al., 2002; Voight et al., 2006). In addition, the
levels of within-population diversity tend to decrease while
the between-population levels of diversity tend to increase
in the region surrounding the selected locus (Beaumont,
2005; Storz, 2005). Furthermore, the number of nonsyno-
nymous substitutions per nonsynonymous site (dN) tends to
be higher than the number of synonymous substitutions per
synonymous site (dS) (Nei, 2005; Harris and Meyer, 2006).

The model of selective sweep in which a newly arisen
allele with a strong selective advantage increases quickly in
frequency until reaching fixation is known as “hard
sweep”. In contrast, when the selected allele is part of exis-
tent genetic variation, it causes a “soft sweep” in which the
footprint left by selection tends to be less pronounced and
the frequency of the selected allele at the beginning of the
selected phase is the crucial factor influencing the selective
sweep (Przeworski et al., 2005; Pritchard et al., 2010).

Balancing selection favors the maintenance of poly-
morphism (Harris and Meyer, 2006; Oleksyk et al., 2010).
The persistence of the same alleles for a long time is known
as long-term balancing selection and, in addition to main-
taining polymorphism in the selected locus, it also tends to
increase diversity in tightly linked neutral sites; if the re-
gion under selection has low recombination rates then it
generally also has longer coalescence times than other re-
gions (Charlesworth, 2006). In the presence of long-term
balancing selection, the within-population diversity levels
tend to increase and the between-population levels of diver-
sity tend to decrease (Navarro and Barton 2002; Charles-
worth et al., 2003; Charlesworth, 2006), leading to reduced
inbreeding coefficient (FST) values among populations
compared to neutral expectations (Beaumont, 2005; Storz,
2005). However, in some cases, the FST levels may be
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higher than expected by neutrality (Beaumont, 2005; Char-
lesworth, 2006).

When negative (background) selection occurs, the
novel variants are disadvantageous and are consequently
removed from the population, along with neutral variations
linked to them (Innan and Stephan, 2003). If the recombi-
nation rate in the region is restricted or the population is
highly inbred then background selection reduces the vari-
ability around the eliminated sites (Charlesworth et al.,
1993, 1995; Andolfatto, 2001; Stephan, 2010). An excess
of low frequency alleles is also observed in small to moder-
ately sized populations (Charlesworth et al., 1993, 1995)
and the number of nonsynonymous substitutions per non-
synonymous site tends to be lower than the number of syn-
onymous substitutions per synonymous site (Nei, 2005;
Harris and Meyer, 2006). However, in regions with normal
recombination rates, or when inbreeding is restricted, no re-
duction in variability is observed (Charlesworth et al.,
1993, 1995; Stephan, 2010). Furthermore, background se-
lection does not cause a marked bias in the frequency spec-
trum (Charlesworth et al., 1993, 1995; Kim and Stephan,
2000; Andolfatto, 2001; Stephan, 2010).

Selection signatures can be influenced by several fac-
tors. For example, the type of selection, the relative age of
the neutral linked alleles, the strength of selection and the
recombination rate (Braverman et al., 1995; Kaplan et al.,
1989; Kim and Stephan, 2002; Charlesworth, 2007;
McVean, 2007). Recognition of the molecular footprints
left by different types of selection is a crucial task in identi-
fying genomic regions subjected to selection. In this case,
the neutral theory serves as the backbone for the statistical
tests developed to detect selection signatures. However, in
natural populations, some assumptions of the neutral theory
can be violated (e.g., population expansion, subdivision
and bottlenecking) and this can lead to signals that mimic
the footprints of selection. The interaction of different types
of selection and interaction between selection and demo-
graphic factors can bias the footprints left in the genome
(Barton, 1998; Kim and Stephan, 2000; Kreitman, 2000;
Charlesworth et al., 2003; Harris and Meyer, 2006; Toro
and Mäki-Tanila, 2007). Because of this, it is worth noting
that in studies designed to detect selection signatures in
livestock a considerable high rate of false positives is ex-
pected as a result of genetic drift and founder effect, both of
which were particularly important during the development
of livestock breeds (Petersen et al., 2013).

Methods for Detecting Selected Loci

The methods proposed for detecting selected loci can
be classified in different ways (Harris and Meyer, 2006;
Oleksyk et al., 2010). Based on the main variables that af-
fect the patterns of molecular variation left by selection,
Hohenlohe et al. (2010) proposed a decision tree designed
to identify the most appropriate method for each case. This
decision tree is based primarily on the time scale in which

selection can occur, but also considers other factors (e.g.,
the number of populations in the study, mode of selection,
etc.) and can be used by researchers in studies designed to
detect selection signatures.

Tests based on synonymous and non-synonymous
substitution rates

When the coding sequences of orthologous genes of
interest are compared, it is expected that under neutral evo-
lution, dN/dS = 1. When positive selection is in effect,
dN/dS > 1, and under negative selection, dN/dS < 1. Differ-
ences in dN/dS are also expected among lineages when se-
lection is in effect (Yang, 1998). Several methods have
been proposed to estimate dN and dS (Nei, 2005). These
methods were initially approximations based on the com-
parison of two sequences (Nei and Gojobori, 1986). More
recently, maximum likelihood estimates from multiple
alignments that account for transition/tranversion rate bias,
codon usage bias, selective restraints at the protein level
(Goldman and Yang, 1994), and variable dN/dS among sites
and among lineages have been proposed (Nielsen and
Yang, 1998; Yang et al., 2000; Yang, 2002; Yang and Niel-
sen, 2002; O’Brien et al., 2009). Hypothesis testing can be
done using a likelihood ratio test that compares the model
(assuming neutrality) with alternative models (Yang, 1998;
Yang and Nielsen, 1998; Yang et al., 2000, 2005). Pack-
ages such as MEGA (Tamura et al., 2007) and PAML
(Yang, 2007) implement the dN/dS selection tests.

Tests based on the frequency spectrum

The � parameter can be estimated from DNA se-
quences in several ways, and comparison of the different

estimates of � is the basis for some tests aimed at identify-
ing selected regions (Tajima, 1989; Fu and Li, 1993; Fu,
1996, 1997). Tajima (1989) proposed a test based on the
difference between ��

�
(the average number of nucleotide

differences) and ��S (the number of segregating sites along

the DNA sequence) because the presence of selection tends
to alter the value of ��

�
while that of ��S tends to remain un-

affected (Tajima, 1989; Hartl and Clark, 2010). The pro-
posed statistic (Tajima’s D) corresponds to the standard-
ized difference between ��

�
and ��S (Tajima, 1989; Harris

and Meyer, 2006). Under neutrality, the value of D tends to
be zero. Positive and negative selection tend to reduce
heterozygosity and cause an excess of rare variants sur-
rounding the selected locus, leading to D < 0 (Kaplan et al.,
1989; Tajima, 1989; Charlesworth et al., 1993, 1995; Bra-
verman et al., 1995; Andolfatto, 2001; Kim and Stephan,
2002; Stephan, 2010). In contrast, long-term balancing se-
lection increases the diversity around the selected locus,
leading to D > 0 (Tajima, 1989; Navarro and Barton, 2002;
Charlesworth, 2006).

Several other tests for detecting selection based on the
excess of rare alleles have been developed (Fu and Li,
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1993; Fu, 1996, 1997). However, the results of these tests
do not always have a straightforward biological interpreta-
tion because in some situations it is impossible to differen-
tiate between positive and negative selection (Tajima,
1989; Harris and Meyer, 2006), and also because these tests
are sensitive to demography (Tajima, 1989; Charlesworth
et al., 1993; Fu and Li, 1993; Fu, 1996, 1997). While a re-
duction in heterozygosity and an excess of rare variants are
not necessarily a specific pattern left by selection, an excess
of derived variants (non-ancestral allele determined by an
outgroup) has been identified as a unique feature produced
by positive selection (Fay and Wu, 2000). To access this
feature, Fay and Wu (2000) proposed a statistic called Fay
and Wu’s H that is calculated as the difference between ��

�

and ��H (where ��H is an estimator of � weighted by the

homozygosity of the derived alleles). When positive (but
not negative) selection acts, the value of ��H tends to in-

crease because of an excess of derived alleles, leading to
H < 0. Thus, in contrast with Tajima’s and Fu and Li’s sta-
tistics, Fay and Wu’s H allows the distinction between posi-
tive and negative selection (Fay and Wu, 2000).

The decrease in variability caused by positive selec-
tion tends to be broken by recombination events. Conse-
quently, “valleys” of reduced heterozygosity have been
suggested to be footprints of recent hitchhiking events. The
depth and extent of the “valleys” is influenced by several
factors, such as the strength of selection, recombination
rates and effective population size. Because of this, Kim
and Stephan (2002) proposed a composite likelihood ap-
proach for detecting positive selection in a recombining
chromosome. The test is based on the expected number of
sites where the derived allele is part of a given frequency in-
terval in the population. More recently, extensions of these
tests based on the frequency spectrum around a selective
sweep have been proposed. These new methods can deal
with genomic data and account for the ascertainment bias
(Nielsen et al., 2005; Kelley et al., 2006; Williamson et al.,
2007).

Tests based on linkage disequilibrium

Exploitation of the LD patterns is the focus of several
tests for detecting selection (Sabeti et al., 2002, 2007; Kim
and Nielsen 2004; Voight et al., 2006; Kimura et al., 2007).
However, these signatures tend to be transient since the re-
combination tends to quickly break down this LD as soon
as the selected locus reaches fixation (Przeworski, 2002;
Kim and Nielsen, 2004; McVean, 2007). Sabeti et al.

(2002) proposed an approach referred to as the long-range
haplotype (LRH) test to detect recent selective sweeps by
focusing on the relationship between the allele frequency
and the LD level surrounding it.

This test starts with identification of the core haplo-
types (through genotyping a set of single nucleotide poly-
morphisms (SNPs) in a region so small that recombination

may not occur). Subsequently, other SNPs at increasing
distances from the core haplotypes are analyzed to evaluate
the decay of LD according to distance (Sabeti et al., 2002).
The LD is measured at increasing distances from the core
haplotypes through calculation of the extended haplotype
homozygosity (EHH), which is the probability that two
chromosomes carrying a specific core haplotype are homo-
zygous for the whole region from the core to a distance x
(Sabeti et al., 2002). The relative EHH (REHH) is then cal-
culated to compare the decay of EHH of one specific core
haplotype to the decay of EHH of all the other core haplo-
types combined. To test for selection, REHH and the fre-
quency for each core haplotype is compared to REHH and
the frequency of the other core haplotypes. Positive selec-
tion is inferred if one core haplotype has a combination of
high REHH and high frequency in the population (Sabeti et

al., 2002).

An extension of the LRH test was proposed by Voight
et al. (2006). This test is referred to as the iHS (integrated
haplotype score) and was designed to work on a genomic
scale using information from dense SNP chips. The iHS

value can be defined simply as a measure of how unusual
the haplotypes around an SNP are, compared to the genome
(Voight et al., 2006). In this approach, each SNP is treated
as a core SNP and the test starts with calculation of the EHH

for each core SNP. As SNPs are biallelic loci, each core
SNP can be ancestral or derived. For the test, the integral of
the observed decay of EHH from a core SNP until EHH
reaches 0.05 is computed (the area under the curve in an
EHH vs. distance plot). This value is referred to as the inte-
grated EHH (iHH) and is identified as iHHA or iHHD, de-
pending on whether it was computed from the ancestral or
the derived allele of the core SNP. This value is then stan-
dardized to allow direct comparisons among different
SNPs regardless of allele frequencies (Voight et al., 2006).

Hussin et al. (2010) proposed a method based on the
haplotype allelic classes (HAC). This measure can be
defined as the count of allelic differences between the refer-
ence allelic class and the individual haplotypes in the sam-
ple. The statistic proposed is referred to as Svd, with posi-
tive values suggesting positive selection (Hussin et al.,
2010).

The LRH and iHS tests rely on the frequencies of al-
leles at core SNP and therefore have reduced power for de-
tecting selection when the selected allele has reached
fixation. To deal with situations in which the selected allele
is fixed in one population but remains polymorphic in oth-
ers, LRH-derived tests based on pairwise comparisons
among populations have been proposed (Kimura et al.,
2007; Sabeti et al., 2007; Tang et al., 2007). The XP-EHH

statistic can be defined as the normalized log-ratio between
IA and IB, where IA is the integral of the observed decay of
EHH from a core SNP to an SNP X (which has an EHH

value as close as possible to 0.04 in both populations) in
population A, and IB is the analogous measure in population
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B (Sabeti et al., 2007). The ln(Rsb) statistic proposed by
Tang et al. (2007) is very similar to XP-EHH. The main dif-
ference between them is that the former calculates the EHH

based on the status of each core SNP allele and the latter
calculates the EHH based on the core SNP site (Sabeti et

al., 2007; Tang et al., 2007).

Tests based on population differentiation

The estimation of FST from multiple loci and com-
parison of these values with its neutral expectations is the
basis of several tests aimed at identifying selection (Le-
wontin and Krakauer, 1973; Bowcock et al., 1991; Vitalis
et al., 2001, 2003; Beaumont and Balding, 2004; Foll and
Gaggiotti, 2008; Excoffier et al., 2009; Bonhomme et al.,
2010). The first effort in this direction was proposed by
Lewontin and Krakauer (1973). They suggested that the
FST estimated from several loci under neutrality must show
small heterogeneity; however, if selection is acting on some
of them then the estimates of FST tend to vary widely. The
Lewontin and Krakauer test involves comparison between
the variance of FST estimated from the data and the ex-
pected variance of FST under neutrality through a variance
ratio test (Lewontin and Krakauer, 1973).

Lewontin and Krakauer’s test was severely criticized
soon after publication because of the assumptions they
made in estimating the variance of FST under neutrality
(Nei and Maruyama, 1975; Robertson, 1975). To avoid the
effects of population structure, Bowcock et al. (1991) sug-
gested the use of a null distribution obtained by calculating
an FST distribution using simulations that take into account
the populations phylogenetic history. More recently, mod-
els capable of generating the null distribution of FST that
are robust to population history and structure (recent diver-
gence and growth, isolation by distance and heterogeneous
levels of gene flow between populations) have been pro-
posed (Beaumont and Nichols, 1996; Beaumont and Bald-
ing, 2004; Foll and Gaggiotti, 2008; Excoffier et al., 2009)
and implemented in freely distributed softwares such as
BayesFST (Beaumont and Balding, 2004), BayeScan (Foll
and Gaggiotti, 2008) and Arlequin (Excoffier et al., 2009).
The methods proposed by Beaumont and Nichols (1996)
and Excoffier et al. (2009) are computationally feasible,
but the presence of some complex demographic histories
can lead to important biases. On the other hand, Markov
chain Monte Carlo (MCMC) based methods (Beaumont
and Balding, 2004; Foll and Gaggiotti, 2008) efficiently ac-
commodate some departures from model assumptions but
are computationally very intensive.

Another way to avoid the effects of demography is to
perform pairwise comparisons between populations (Tsa-
kas and Krimbas, 1976). Based on this idea, Vitalis et al.

(2001) proposed a simple model of population divergence
from which they obtained the joint distribution of popula-
tion-specific estimators of branch length which were used
to construct the confidence interval. This approach seems

to be robust against departures from model assumptions
and also tends to remove the bias introduced by unknown
population structure. However, the pairwise comparison
tends to reduce the power of the test because information
from other populations is discarded (Tsakas and Krimbas,
1976; Vitalis et al., 2001). This analysis is implemented in
the software DetSel 1.0 (Vitalis et al., 2003).

The foregoing discussion has shown that there are
currently several approaches for detecting footprints left by
selection. Each of these approaches can capture specific
patterns of molecular variation. The use of a combination of
alternative approaches for detecting selection signals is an
interesting strategy that has been suggested as a means of
increasing the reliability of these studies. However, the suc-
cess of one test and failure of another does not exclude the
region of interest from having been subjected to selection
since different tests can focus on different signals left by se-
lection or look for different time scales in which the selec-
tion can act (Hohenlohe et al., 2010; Oleksyk et al., 2010).

Selection signatures in livestock

Domestication has resulted in considerable changes
in the morphology and behavior of livestock species. In the
early stages of domestication, unconscious selection for be-
havioral traits was applied. This early stage was followed
by methodical selection in which specific traits were se-
lected based on goals (Diamond, 2002; Gregory, 2009).

The development of specialized breeds, improved to
produce specific products or to reach a morphological stan-
dard, increased the differences between domesticated ani-
mals and their wild relatives and also generated an
enormous variety of different populations, with specific
traits related to their specialization. Some of these traits are
controlled by several interacting genes with minor effects.
This creates an exceptional opportunity to gain knowledge
of the molecular basis of these traits, particularly since most
economically important traits in livestock are quantitative
(Andersson and Georges, 2004).

The identification of genes targeted by selection in
livestock can help to find and prove causal mutations in re-
gions previously identified by QTL mapping experiments
and can reveal genes related to ecological traits (e.g., genes
related to tropical adaptation) that are difficult to find ex-
perimentally. Furthermore, these studies can help to iden-
tify the genes or gene networks that contribute to the same
trait but that were selected differentially between breeds;
they can also unveil genes responsible for genetic correla-
tions and the domestication process (Schlötterer, 2003;
Hayes et al., 2008; Ojeda et al., 2008; Flori et al., 2009;
MacEachern et al., 2009).

Signatures associated with domestication and early
breed development

In some wild species, the expression both of eume-
lanin and phaeomelanin pigments is related to a camou-
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flaged coat color. During domestication, non-camouflaged
coat patterns were selected because of their direct effect on
animal husbandry and also because these patterns may have
been used as markers associated with improved individu-
als, or because of cultural preferences (Fang et al., 2009;
Wiener and Wilkinson, 2011).

The melanocyte stimulating hormone receptor gene
(MC1R) influences the production of eumelanin and phaeo-
melanin pigments (Werth et al., 1996; Kijas et al., 1998;
Fang et al., 2009; Li et al., 2010b) and is under selection in
domestic cattle (Flori et al., 2009; Stella et al., 2010) and
pig (Fang et al., 2009; Li et al., 2010b; Amaral et al., 2011)
breeds. Other genes that influence coat color pattern were
also suggested to be under selection in domestic species.
Selection signatures around the V-Kit Hardy-Zuckerman 4
feline sarcoma viral oncogene homolog (KIT) have been re-
ported for cattle (Stella et al., 2010; Wiener et al., 2011),
pigs (Fontanesi et al., 2010; Amaral et al., 2011) and sheep
(Kijas et al., 2012). The melanocyte protein 17 precursor
(PMEL17), also known as the Silver gene (SILV), is sug-
gested to be under selection in some cattle breeds (Gautier
et al., 2009; Wiener et al., 2011).

The presence/absence of horns is another important
feature in breed definition in some livestock species. Re-
cently, the relaxin-like receptor 2 (RXFP2) gene was asso-
ciated with this trait (Johnston et al., 2011), and a SNP
surrounding this gene showed a strong selection signal in
an analysis involving 74 sheep breeds. In cattle, the region
surrounding the polled locus was shown to be under selec-
tion, although the gene responsible for this trait was not
mapped (Drögemüller et al., 2005; Li et al., 2010a; Stella et

al., 2010). Behavioral changes, such as a reduction in fear
and anti-predator responses and an increase in sociability,
are believed to be important reflections of animal domesti-
cation (Diamond, 2002; Amaral et al., 2011; Wiener and
Wilkinson, 2011). Indeed, several studies in livestock sug-
gest selection signatures surrounding genes related to ner-
vous system development and function (The Bovine
HapMap Consortium, 2009; Gautier et al., 2009; Stella et

al., 2010; Amaral et al., 2011).

Cattle

Modern bovine breeds can basically be grouped into
two major types, the taurine and indicine groups. Within
each group, several breeds have been developed, and there
is considerable intra- and inter-group variability in produc-
tive (milk yield and quality, meat production), morphologi-
cal (coat color, presence/absence of horns) and adaptive
(disease resistance, heat tolerance) traits (The Bovine
HapMap Consortium, 2009). Several genome-wide studies
focusing on different approaches and using different sets of
breeds have sought for selection signatures in bovines (Pra-
sad et al., 2008; Barendse et al., 2009; Flori et al., 2009;
Gautier et al., 2009; Hayes et al., 2009; MacEachern et al.,
2009; The Bovine HapMap Consortium, 2009; Li et al.,

2010a; Qanbari et al., 2010, 2011; Stella et al., 2010;
Wiener et al., 2011; Hosokawa et al., 2012).

Various studies in beef cattle using approaches such
as differences in allele frequencies, iHS and FST have
found selection signals in the centromeric region of BTA14
(Hayes et al., 2009; The Bovine HapMap Consortium,
2009; Wiener et al., 2011), a region involved in the control
of marbling and fatness traits (Barendse, 1999; Moore et

al., 2003; Thaller et al., 2003; Casas et al., 2005; Pannier et

al., 2010; Veneroni et al., 2010). An increase in intramus-
cular fat percentage in Australian Angus in recent years, to-
gether with a significant effect of this region on fat traits,
may corroborate with the selection signature found in these
studies (Hayes et al., 2009).

The double muscled phenotype has been selected in
some beef breeds and mutations in the Growth Differentia-
tion Factor 8 (also known as myostatin or GDF-8) gene are
related to this phenotype (Bellinge et al., 2005). A decrease
in heterozygosity around this gene has been demonstrated
in double muscled breeds (Wiener et al., 2003; Wiener and
Gutiérrez-Gil, 2009) and an increase in LD (measured us-
ing the iHS approach) has been reported in this region (The
Bovine HapMap Consortium, 2009).

Using the FST approach, a selection signature was
found in the median region of BTA2 (Barendse et al., 2009;
The Bovine HapMap Consortium, 2009; Qanbari et al.,
2011). This region was associated with feed efficiency and
intramuscular fat in beef breeds (Barendse et al., 2007,
2009) and contains the R3H Domain Containing 1
(R3HDM1) and Zinc Finger, RAN Binding Domain Con-
taining 3 (ZRANB3) genes, which have been suggested to
be involved in feed efficiency (Barendse et al., 2009; The
Bovine HapMap Consortium, 2009).

Chromosome BTA6 harbors at least three QTLs that
affect milk traits (Khatkar et al., 2004; Ogorevc et al.,
2009; Weikard et al., 2012) and these regions have been
suggested to be under selection in dairy breeds (Hayes et

al., 2008; Barendse et al., 2009; The Bovine HapMap Con-
sortium, 2009; Qanbari et al., 2010; Schwarzenbacher et

al., 2012). The first region contains the ATP-binding cas-
sette, Sub-family G (WHITE), Member 2 (ABCG2) gene
that was previously related to milk yield and quality traits
(Cohen-Zinder et al., 2005; Olsen et al., 2007; Cole et al.,
2009; Weikard et al., 2012). The second region contains the
Peroxisome Proliferator-Activated Receptor Gamma,
Coactivator 1 Alpha (PPARGC1A) gene that mediates the
expression of genes involved in adipogenesis, gluconeoge-
nesis and oxidative metabolism (Weikard et al., 2005;
Ogorevc et al., 2009) and the third region contains the Ca-
sein Cluster associated with milk and protein yield (Boet-
tcher et al., 2004; Nilsen et al., 2009; Sodeland et al.,
2011).

The increase in allele frequency differences between
meat and dairy cattle and the high linkage disequilibrium in
dairy breeds (using EHH and iHS methods) suggest that the
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region surrounding DGAT1 is under selection (Hayes et

al., 2009; Qanbari et al., 2010; Hosokawa et al., 2012;
Schwarzenbacher et al., 2012). This gene is suggested to be
responsible for a QTL with a major effect on milk fat per-
centage (Grisart et al., 2002; Khatkar et al., 2004; Cole et

al., 2009; Hayes et al., 2010; Jiang et al., 2010).
At least two QTLs affecting milk traits are located in

the BTA20 chromosome. The first QTL was mapped sur-
rounding the Growth Hormone Receptor Gene (GHR) and
has a marked effect on protein percentage and a minor ef-
fect on fat percentage and milk yield, while the second
overlaps the Prolactin Receptor (PRLR) and affects protein
and fat yield (Blott et al., 2003; Khatkar et al., 2004;
Schnabel et al., 2005; Viitala et al., 2006; Cole et al., 2009;
Ogorevc et al., 2009; Jiang et al., 2010). These regions are
under selection (Flori et al., 2009; Hayes et al., 2009; The
Bovine HapMap Consortium, 2009; Qanbari et al., 2010,
2011; Stella et al., 2010; Wiener et al., 2011).

Some studies have shown the presence of QTLs af-
fecting milk fat and protein traits in the region surrounding
the Signal Transducer and Activator of Transcription 1
(STAT1) gene. This gene has been implicated in mammary
gland development and is associated with milk, fat and pro-
tein yield in Holstein cattle (Cobanoglu et al., 2006). Two
studies comparing allele frequency differences between
beef and dairy cattle suggested a selection signal in the re-
gion surrounding this gene (Hayes et al., 2009; Hosokawa
et al., 2012).

The region surrounding the Sialic Acid Binding Ig-
Like Lectin 5 (SIGLEC-5) and Zinc Finger Protein 577
(ZNF577) genes was shown to be associated with Net Merit
and several related traits, such as conformation, longevity
and calving ease in Holstein cattle (Cole et al., 2009).
Based on findings using the iHS approach, this region was
suggested to be under selection in Holstein cattle and, al-
though these traits were not the main objective in breeding
improvement programs, a weak selection against unfavor-
able alleles may be responsible for this signature (Qanbari
et al., 2011).

Several other regions have been suggested to be under
selection in cattle, but the genes under selection cannot be
proposed for most of them. Functional analysis of these re-
gions reveals the presence of genes involved in the gonado-
tropic and somatotropic axes, muscle development,
growth, nervous system development and immune re-
sponse (Barendse et al., 2009; Flori et al., 2009; Gautier et

al., 2009; The Bovine HapMap Consortium, 2009; Qanbari
et al., 2010, 2011; Stella et al., 2010; Wiener et al., 2011).

Pigs

Pig domestication occurred independently multiple
times in diverse locations across Eurasia approximately
9000 years ago (Larson et al., 2005). Domestic pig species
are found in a wide range of environments and show exten-
sive variation in morphological, behavioral and ecological

characteristics (Larson et al., 2005; Chen et al., 2007). The
use of this species in very different production systems and
environmental conditions around the globe has resulted in
an enormous variety of breeds, each one harboring adapta-
tions to special conditions. Currently, most pig production
systems are based on five breeds (Large White, Duroc,
Landrace, Hampshire and Pietrain) that have been sub-
jected to intense artificial selection focused on productivity
traits. Moreover, there is a considerable number of related
species and wild individuals that can be used to infer some
aspects of selection (Chen et al., 2007).

The increase in muscle mass and decrease in fat con-
tent in pigs has been subject to strong selective pressure in
commercial pig populations and is related to a substitution
in intron 3 of the Insulin-Like Growth Factor 2 (IGF2) gene
(Van Laere et al., 2003). Using Tajima’s D, Ojeda et al.

(2008) identified a selection signature in the IGF2 gene in
three breeds (Pietrain, Hampshire and Duroc) that are com-
monly used as sire lines, and have been selected for growth
and meat leanness. The Melanocortin 4 Receptor (MC4R)
gene related to growth and fatness traits has also been sug-
gested to be under selection in pigs (Rubin et al., 2012;
Onteru et al., 2013).

An intronic substitution in the Estrogen Receptor
(ESR) gene has been associated with litter size in pigs
(Rothschild et al., 1996; Short et al., 1997). Although some
studies have reported divergent results (Muñoz et al.,
2007), this marker has been used by the pig breeding indus-
try in Marker Assisted Selection (Dekkers, 2004). Re-
cently, Bonhomne et al. (2010) suggested that this gene is
under selection in the Large White breed.

Functional analysis of regions under positive selec-
tion in pig breeds has identified genes involved in develop-
ment of the nervous system and muscle, growth, pigmenta-
tion, metabolism, visual/odor perception, immune and
inflammatory responses and reproduction (Amaral et al.,
2011; Rubin et al., 2012; Esteve-Codina et al., 2013).

Sheep and goats

Sheep and goats were the first domesticated livestock
species approximately 9000 years ago. The wide distribu-
tion of these species is a reflection of their adaptability to
different environments and this has resulted in enormous
morphological variation among populations (Diamond,
2002; Gentry et al., 2004; Naderi et al., 2008; Chessa et al.,
2009; Kijas et al., 2009). Since their domestication, sheep
have been selected for meat, wool and milk production
(Chessa et al., 2009; Kijas et al., 2009).

Kijas et al. (2012) performed a genome scan based on
FST to detect selection signatures in a panel of 2819 indi-
viduals from 74 sheep breeds. Thirty-one regions showed
selection signals and contained genes related to coat color,
bone morphology, growth and reproduction traits. This
analysis revealed a strong peak of differentiation surround-
ing the Growth Differentiation Factor 8 (GDF-8) gene
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when Texel individuals were compared with all other
breeds (Kijas et al., 2012). In addition, Clop et al. (2006)
showed a reduction in the variability of microsatellites sur-
rounding this gene upon comparing hyper-muscled Texels
with other sheep breeds. The region surrounding GDF-8

was associated with QTLs for carcass traits in the Texel
breed (Johnson et al., 2005) and a point in the 3’ UTR of
this gene was suggested to be the causal mutation affecting
extreme muscling in Texel individuals (Clop et al., 2006).

Moradi et al. (2012) performed a genome scan with
approximately 50K SNPs to search for signatures of diver-
gent selection in a comparison between fat and thin-tailed
sheep breeds; their study identified at least three regions
(OAR5, OAR7 and OARX chromosomes) that have under-
gone selection. Interestingly, most of the regions identified
by Moradi et al. (2012) intersect with QTLs for carcass
traits. Improvement in the sheep genome annotation will fa-
cilitate the search for and validation of candidate genes re-
lated to these traits.

Horses

Horse domestication appears to have occurred 6000
years ago and was central to the development of human his-
tory. The major attraction for domestication of this species
was probably its ability to run fast for long distances, but its
importance as a source of meat may also have been an im-
portant factor. The domestic horse shows marked variation
in morphological traits, including shape, size, colours and
gait (Bowling and Ruvinsky, 2000; Levine, 2005).

Thoroughbred horses have been selected for athletic
performance traits and this has led to individuals with ex-
treme phenotypes related to anaerobic and aerobic meta-
bolic capabilities. A genome scan aimed at identifying pu-
tative regions under selection in this breed (based on a
combination of reduced heterozygosity and increased pop-
ulation differentiation) revealed the presence of genes re-
lated to phosphoinositide 3-kinase (PI3K) and insulin-
signalling pathways, oxidative stress, energy regulation,
adipocyte differentiation and muscle regulation and devel-
opment. These functions are directly related to the main fo-
cus of selection in these breeds, namely, racetrack perfor-
mance (Gu et al., 2009). Among the genes suggested to be
under selection in Thoroughbred horses, the Pyruvate
Dehydrogenase Kinase, isozyme 4 (PDK4) gene has been
associated with racing performance phenotypes (Hill et al.,
2010).

Petersen et al. (2013) identified strong signal differ-
entiation around the myostatin (GDF-8) gene in a compari-
son of the American Paint Horse and Quarter Horse with
other breeds. This gene was also associated with muscle fi-
ber type proportions in these breeds.

Another important trait for particular horse breeds is
their ability to perform alternate gaits. Recently, it was
shown that the gene Doublesex and Mab-3 Related Tran-
scription Factor 3 (DMRT3) is involved with this trait in

several breeds (Andersson et al., 2012). In addition, the
region encompassing this gene was suggested (based on
population differentiation) to be under selection in several
breeds that has been selected for alternative gaits (identi-
fied as a breed-defining characteristic) (Petersen et al.,
2013).

Conclusions

Domestication and artificial selection processes have
definitely shaped livestock genomes. The identification of
candidate regions as being under selection can help re-
searchers understand the molecular mechanisms involved
in adaptation and may also be useful in identifying regions
associated with important traits that are under selection.
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